Каждая фирма, взявшись за производство конкретного продукта, стремится добиться максимальной прибыли. Проблемы, связанные с производством продукции, могут быть разделены на три уровня:

  1. Перед предпринимателем может стоять вопрос о том, как производить заданное количество продукции на определенном предприятии. Эти проблемы относятся к вопросам краткосрочной минимизации издержек производства;
  2. предприниматель может решать вопросы о производстве оптимального, т.е. приносящего большую , количество продукции на определенном предприятии. Эти вопросы касаются долгосрочной максимизации прибыли;
  3. перед предпринимателем может стоять выяснения наиболее оптимальных размеров предприятия. Подобные вопросы относятся к долгосрочной максимизации прибыли.

Найти оптимальное решение можно на основе анализа взаимосвязи между издержками и объемом производства (выработкой). Ведь прибыль определяется разницей между выручкой от реализации продукции и всеми издержками. А выручка, и издержки зависят от объема производства. В качестве инструмента анализа этой зависимости экономическая теория использует производственную функцию.

Производственная функция определяет максимальный объем выпуска продукции при каждом заданном количестве ресурсов. Эта функция описывает зависимость между затратами ресурсов и выпуском продукции, позволяя определить максимально возможный объем выпуска продукции при каждом заданном количестве ресурсов, или минимально возможное количество ресурсов для обеспечения заданного объема выпуска продукции. Производственная функция суммирует только технологически эффективные приемы комбинирования ресурсов для обеспечения максимального выпуска продукции. Любое усовершенствование в технологии производства способствующее росту производительности труда, обусловливает новую производственную функцию.

ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ – функция, отображающая зависимость между максимальным объемом производимого продукта и физическим объемом факторов производства при данном уровне технических знаний.

Поскольку объем производства зависит от объема использованных ресурсов, то зависимость между ними может быть выражена в виде следующей функциональной записи:

Q = f(L,K,M),

где Q – максимальный объем продукции, произведенной при данной технологии и определенных факторах производства;
L – труд; К – капитал; М – материалы; f – функция.

Производственная функция при данной технологии обладает свойствами, которые определяют соотношение между объемом производства и количеством используемых факторов. Для разных видов производства производственные функции различны, тем не менее? все они имеют общие свойства. Можно выделить два основных свойства.

  1. Существует предел для роста объема выпуска, который может быть достигнут ростом затрат одного ресурса при прочих равных условиях. Так, в фирме при фиксированном количестве машин и производственных помещений имеется предел роста выпуска путем увеличения дополнительных рабочих, поскольку не будет обеспечен машинами для работы.
  2. Существует определенная взаимная дополняемость (комплектарность) факторов производства, однако без уменьшения объема выпуска вероятна и определенная взаимозаменяемость данных факторов производства. Так, для выпуска блага могут быть использованы различные комбинации ресурсов; можно произвести это благо при использовании меньшего объема капитала и большего объема затрат труда, и наоборот. В первом случае производство считается технически эффективным в сравнении со вторым случаем. Однако существует предел того, насколько труд может быть заменен большим объемом капитала, чтобы не сократилось производство. С другой стороны, имеется предел применения ручного труда без использования машин.

В графической форме каждый вид производства может быть представлен точкой, координаты которой характеризуют минимально необходимые для выпуска данного объема продукции ресурсы, а производственная функция – линией изокванты.

Рассмотрев производственную функцию фирмы, перейдем к характеристике следующих трех важных понятий: общего (совокупного), среднего и предельного продукта.

Рис. а) Кривая общего продукта (ТР); б) кривая среднего продукта (АР) и предельного продукта (МР)

На рис. показана кривая общего продукта (ТР), который изменяется в зависимости от величины переменного фактора X. На кривой ТР отмечены три точки: В – точка перегиба, С – точка, которая принадлежит касательной, совпадающей с линией, соединяющей данную точку с началом координат, D – точка максимального значения ТР. Точка А перемещается по кривой ТР. Соединив точку А с началом координат, получим линию ОА. Опустив перпендикуляр из точки А на ось абсцисс, получим треугольник ОАМ, где tg а есть отношение стороны AM к ОМ, т. е. выражение среднего продукта (АР).

Проведя через точку А касательную, получим угол Р, тангенс которого будет выражать предельный продукт МР. Сопоставляя треугольники LAM и ОАМ, находим, что до определенного момента тангенс Р по величине больше tg а. Таким образом, предельный продукт (МР) больше среднего продукта (АР). В том случае, когда точка А совпадает с точкой В, тангенс Р принимает максимальное значение и, следовательно, предельный продукт (МР) достигает наибольшего объема. Если точка А совпадает с точкой С, то значение среднего и предельного продукта равны. Предельный продукт (МР), достигнув максимального значения в точке В (рис. 22, б), начинает Сокращаться и в точке С пересечется с графиком среднего продукта (АР), который в этой точке достигает максимального значения. Затем и предельный, и средний продукт сокращаются, но предельный продукт уменьшается опережающими темпами. В точке максимума общего продукта (ТР) предельный продукт МР = 0.

Мы видим, что наиболее эффективное изменение переменного фактора X наблюдается на отрезке от точки В до точки С. Здесь предельный продукт (МР), достигнув своего максимального значения, начинает уменьшаться, средний продукт (АР) еще увеличивается, общий продукт (ТР) получает наибольший прирост.

Таким образом, производственная функция – это функция, позволяющая определить максимально возможный объем выпуска продукции при различных сочетаниях и количествах ресурсов.

В теории производства традиционно используются двухфакторная производственная функция, в которой объем производства, является функцией использования ресурсов труда и капитала:

Q = f (L, K).

Она может быть представлена в виде графика или кривой. В теории поведения производителей при определенных допущениях существует единственная комбинация ресурсов, при которой минимизируются затраты на ресурсы при данном объеме производства.

Расчет производственной функции фирмы – это поиск оптимума, среди многих вариантов, предусматривающих различные сочетания факторов производства, такого, который даёт максимально возможный объем выпуска продукции. В условиях растущих цен и денежных затрат фирма, т.е. издержек на приобретение факторов производства, расчет производственной функции сосредоточен на поисках такого варианта, который обеспечил бы максимизацию прибыли при наименьших издержках.

Расчет производственной функции фирмы, стремящийся к достижению равновесия между предельными издержками и предельным доходом, будет сосредоточен на поиски такого варианта, который обеспечит необходимый выпуск продукции при минимальных издержках производства. Минимальные издержки определяются на стадии расчетов производственной функции методом замещения, вытеснения дорогостоящих или возросших в цене факторов производства альтернативными, более дешевыми. Замещение осуществляется с помощью сравнительного экономического анализа взаимозаменяемых и взаимодополняемых факторов производства их рыночных цен. Удовлетворительным будет такой вариант, в котором комбинация факторов производства и заданный объем выпуска продукции соответствует критерию наименьших издержек производства.

Существует несколько видов производственной функции. Основными из них являются:

  1. Нелинейная ПФ;
  2. Линейная ПФ;
  3. Мультипликативная ПФ;
  4. ПФ «затраты-выпуск».

Производственная функция и выбор оптимального размера производства

Производственная функция – это зависимость между набором факторов производства и максимально возможным объемом продукта, производимым с помощью данного набора факторов.

Производственная функция всегда конкретна, т.е. предназначается для данной технологии. Новая технология – новая производительная функция.

С помощью производственной функции определяется минимальное количество затрат, необходимых для производства данного объема продукта.

Производственные функции, независимо от того, какой вид производства ими выражается, обладают следующими общими свойствами:

  1. Увеличение объема производства за счет роста затрат только по одному ресурсу имеет предел (нельзя нанимать много рабочих в одно помещение – не у всех будут места).
  2. Факторы производства могут быть взаимодополняемы (рабочие и инструменты) и взаимозаменяемы (автоматизация производства).

В наиболее общем виде производственная функция выглядит следующим образом:

Q = f (K,L,M,T,N),

где L – объем выпуска;
K – капитал (оборудование);
М – сырье, материалы;
Т – технология;
N – предпринимательские способности.

Наиболее простой является двухфакторная модель производственной функции Кобба-Дугласа, с помощью которой раскрывается взаимосвязь труда (L) и капитала (К). Эти факторы взаимозаменяемы и взаимодополняемые

Q = AK α * L β ,

где А – производственный коэффициент, показывающий пропорциональность всех функций и изменяется при изменении базовой технологии (через 30-40 лет);
K, L – капитал и труд;
α, β – коэффициенты эластичности объема производства по затратам капитала и труда.

Если = 0,25, то рост затрат капитала на 1% увеличивает объем производства на 0,25%.

На основе анализа коэффициентов эластичности в производственной функции Кобба-Дугласа можно выделить:

  1. пропорционально возрастающую производственную функцию, когда α + β = 1 (Q = K 0,5 * L 0,2).
  2. непропорционально – возрастающую α + β > 1 (Q = K 0,9 * L 0,8);
  3. убывающую α + β < 1 (Q = K 0,4 * L 0,2).

Оптимальные размеры предприятий не абсолютны по своей природе, а поэтому не могут устанавливаться вне времени и вне района размещения, так как они различны для разных периодов и экономических районов.

Оптимальный размер проектируемого предприятия должен обеспечить минимум затрат ли максимум прибыли, рассчитанных по формулам:

Тс+С+Тп+К*Ен_ – минимум, П – максимум,

где Тс – затраты на доставку сырья и материалов;
С – затраты на производство, т.е. себестоимость продукции;
Тп – затраты на доставку готовой продукции до потребителей;
К – капитальные затраты;
Ен – нормативный коэффициент эффективности;
П – прибыль предприятия.

Сл., под оптимальными размерами предприятий понимаются такие, которые обеспечивают выполнение заданий плана по выпуску продукции и приросту производственных мощностей с минусом приведенных затрат (с учетом капитальных вложений в сопряженные отрасли) и максимально возможной народнохозяйственной эффективностью.

Проблема оптимизации производства и соответственно ответа на вопрос, каким должен быть оптимальный размер предприятия, со всей остротой встала и перед западными предпринимателями, президентами компаний и фирм.

Те же, кому не удалось достичь необходимых масштабов, оказались в незавидном положении производителей с высокими издержками, обреченных на существование на грани разорения и в конечном счете банкротства.

Однако сегодня те американские компании, которые все еще стремятся преуспеть в конкурентной борьбе за счет экономии на концентрации производства, не столько выигрывают, сколько теряют. В современных условиях такой подход изначально ведет к снижению не только гибкости, но и эффективности производства.

Кроме этого, предприниматели помнят: небольшой размер предприятий означает меньший объем инвестиций и, следовательно, меньший финансовый риск. Что касается чисто управленческой стороны проблемы, то американские исследователи отмечают, что предприятия с числом занятых более 500 человек становятся плохо управляемыми, неповоротливыми и слабо реагируют на возникающие проблемы.

Поэтому ряд американских компаний в 60-е годы пошел на разукрупнение своих отделений и предприятий с целью существенного уменьшения размеров первичных производственных звеньев.

Помимо простого механического разукрупнения предприятий, организаторы производства проводят радикальную реорганизацию внутри предприятий, формируя в них командные и бригадные орг. структуры взамен линейно-функциональных.

При определении оптимального размера предприятия фирмы пользуются концепцией минимального эффективного размера. Он представляет собой просто наименьший объем производства, при котором фирма может минимизировать свои долгосрочные средние издержки.

Производственная функция и выбор оптимального размера производства.

Производством называется любая человеческая деятельность по преобразованию ограниченных ресурсов - материальных, трудовых, природных - в готовую продукцию. Производственная функция характеризует зависимость между количеством используемых ресурсов (факторов производства) и максимально возможным объемом выпуска, который может быть достигнут при условии, что все имеющиеся ресурсы используются наиболее рациональным образом.

Производственная функция обладает следующими свойствами:

  1. Существует предел увеличения производства, который может быть достигнут при увеличении одного ресурса и постоянстве прочих ресурсов. Если, например, в сельском хозяйстве увеличивать количество труда при постоянных количествах капитала и земли, то рано или поздно наступает момент, когда выпуск перестает расти.
  2. Ресурсы дополняют друг друга, но в определенных пределах возможна и их взаимозаменяемость без сокращения выпуска. Ручной труд, например, может заменяться использованием большего количества машин, и наоборот.
  3. Чем длиннее временной период, тем большее количество ресурсов может быть пересмотрено. В этой связи различают мгновенный, короткий и длительный периоды. Мгновенный период - период, когда все ресурсы являются фиксированными. Короткий период - период, когда, по крайней мере, один ресурс является фиксированным. Длительный период – период, когда все ресурсы являются переменными.

Обычно в микроэкономике анализируется двухфакторная производственная функция, отражающая зависимость выпуска (q) от количества используемых труда (L ) и капитала (K ). Напомним, что под капиталом понимаются средства производства, т.е. количество машин и оборудования, используемое в производстве и измеряемое в машино-часах. В свою очередь количество труда измеряется в человеко-часах.

Как правило, рассматриваемая производственная функция выглядит так:

q = AK α L β

A, α, β - заданные параметры. Параметр А - это коэффициент совокупной производительности факторов производства. Он отражает влияние технического прогресса на производство: если производитель внедряет передовые технологии, величина А возрастает, т. е. выпуск увеличивается при прежних количествах труда и капитала. Параметры α и β - это коэффициенты эластичности выпуска соответственно по капиталу и труду. Иными словами, они показывают, на сколько процентов изменяется выпуск при изменении капитала (труда) на один процент. Коэффициенты эти положительны, но меньше единицы. Последнее означает, что при росте труда при постоянном капитале (либо капитала при постоянном труде) на один процент производство возрастает в меньшей степени.

Построение изокванты

Приведенная производственная функция говорит о том, что производитель может заменять труд капиталом и капитал трудом, оставляя выпуск неизменным. Например, в сельском хозяйстве развитых стран труд является высокомеханизированным, т.е. на одного работника приходится много машин (капитала). Напротив, в развивающихся странах тот же объем производства достигается за счет большого количества труда при незначительном капитале. Это позволяет построить изокванту (рис. 8.1).

Изокванта (линия равного продукта) отражает все комбинации двух факторов производства (труда и капитала), при которых выпуск остается неизменным. На рис. 8.1 рядом с изоквантой проставлен соответствующий ей выпуск. Так, выпуск q 1 , достижим при использовании L 1 труда и K 1 капитала или с использованием L2 труда и K2 капитала.

Рис. 8.1. Изокванта

Возможны и другие комбинации объемов труда и капитала, минимально необходимых для достижения данного выпуска.

Все комбинации ресурсов, соответствующих данной изокванте, отражают технически эффективные способы производства. Способ производства A является технически эффективным в сравнении со способом В, если он требует использования хотя бы одного ресурса в меньшем количестве, а всех остальных не в больших количествах в сравнении со способом В. Соответственно способ В является технически неэффективным в сравнении с А. Технически неэффективные способы производства не используются рациональными предпринимателями и не относятся к производственной функции.

Из вышесказанного вытекает, что изокванта не может иметь положительный наклон, как это показано на рис. 8.2.

Отрезок, выделенный пунктиром, отражает все технически неэффективные способы производства. В частности, в сравнении со способом А способ В для обеспечения одинакового выпуска (q 1 ) требует того же количества капитала, но большего количества труда. Очевидно, поэтому, что способ B не является рациональным и не может приниматься в расчет.

На основе изокванты можно определить предельную норму технической замены.

Предельная норма технической замены фактора Y фактором X (MRTS XY) - это количество фактора Y (например, капитала), от которого можно отказаться при увеличении фактора X (например, труда) на 1 ед., чтобы выпуск не изменился (остаемся на прежней изокванте).

Рис. 8.2. Технически эффективное и неэффективное производство

Следовательно, предельная норма технической замены капитала трудом исчисляется по формуле
При бесконечно малых изменениях L и K она составляет
Таким образом, предельная норма технической замены есть производная функции изокванты в данной точке. Геометрически она представляет собой наклон изокванты (рис. 8.3).

Рис. 8.3. Предельная норма технической замены

При движении сверху - вниз вдоль изокванты предельная норма технической замены все время убывает, о чем говорит уменьшающийся наклон изокванты.

Если же производитель увеличивает и труд, и капитал, то это позволяет ему достичь большего выпуска, т.е. перейти на более высокую изокванту (q2). Изокванта, расположенная правее и выше предыдущей, соответствует большему объему выпуска. Совокупность изоквант образует карту изоквант (рис. 8.4).

Рис. 8.4. Карта изоквант

Особые случаи изоквант

Напомним, что приведенные изокванты соответствуют производственной функции вида q = AK α L β . Но бывают и другие производственные функции. Рассмотрим случай, когда имеет место совершенная замещаемость факторов производства. Допустим, например, что на складских работах можно использовать квалифицированных и неквалифицированных грузчиков, причем производительность квалифицированного грузчика в N раз выше, чем неквалифицированного. Это означает, что мы можем заменить любое количество квалифицированных грузчиков неквалифицированными в соотношении N к одному. И наоборот, можно заменить N неквалифицированных грузчиков одним квалифицированным.

Производственная функция при этом имеет вид: q = ax + by , где x - число квалифицированных рабочих, y - число неквалифицированных рабочих, а и b - постоянные параметры, отражающие производительность соответственно одного квалифицированного и одного неквалифицированного рабочего. Соотношение коэффициентов а и b - предельная норма технической замены неквалифицированных грузчиков квалифицированными. Она постоянна и равна N: MRTSxy = a/b = N .

Пусть, например, квалифицированный грузчик в состоянии в единицу времени обработать 3 т груза (это будет коэффициент а в производственной функции), а неквалифицированный - только 1 т (коэффициент b). Значит, работодатель может отказаться от трех неквалифицированных грузчиков, дополнительно нанимая одного квалифицированного грузчика, чтобы выпуск (общий вес обработанного груза) при этом остался прежним.

Изокванта в данном случае является линейной (рис. 8.5).

Рис. 8.5. Изокванта при совершенной заменяемости факторов

Тангенс угла наклона изокванты равен предельной норме технической замены неквалифицированных грузчиков квалифицированными.

Еще одна производственная функция - функция Леонтьева. Она предполагает жесткую дополняемость факторов производства. Это означает, что факторы могут использоваться только в строго определенной пропорции, нарушение которой технологически невозможно. Например, авиационный рейс может быть нормально осуществлен при наличии как минимум одного самолета и пяти членов экипажа. При этом нельзя увеличивать самолето-часы (капитал), одновременно сокращая человеко-часы (труд), и наоборот, и сохранять неизменным выпуск. Изокванты в данном случае имеют вид прямых углов, т.е. предельные нормы технической замены равны нулю (рис. 8.6). В то же время можно увеличивать выпуск (количество рейсов), увеличивая в одной и той же пропорции и труд, и капитал. Графически это означает переход на более высокую изокванту.

Рис. 8.6. Изокванты в случае жесткой дополняемости факторов производства

Аналитически такая производственная функция имеет вид: q = min {aK; bL}, где а и b - постоянные коэффициенты, отражающие производительность соответственно капитала и труда. Соотношение этих коэффициентов определяет пропорцию использования капитала и труда.

В нашем примере с авиарейсом производственная функция выглядит так: q = min{1K; 0,2L}. Дело в том, что производительность капитала здесь составляет один рейс на один самолет, а производительность труда - один рейс на пять человек или 0,2 рейса на одного человека. Если авиакомпания располагает самолетным парком в 10 машин и имеет 40 человек летного персонала, то ее максимальный выпуск составит: q = min{ 1 х 8; 0,2 х 40} = 8 рейсов. Два самолета при этом будут простаивать на земле из-за нехватки персонала.

Взглянем, наконец, на производственную функцию, предполагающую существование ограниченного числа производственных технологий для производства заданного количества продукции. Каждой из них соответствует определенное состояние труда и капитала. В результате мы имеем ряд опорных точек в пространстве «труд-капитал», соединив которые, получаем ломаную изокванту (рис. 8.7).

Рис. 8.7. Ломаные изокванты при наличии ограниченного числа производственных методов

На рисунке видно, что выпуск продукции в объеме q1 можно получить при четырех комбинациях труда и капитала, соответствующих точкам А, B, С и D. Возможны также и промежуточные комбинации, достижимые в тех случаях, когда предприятие совместно использует две технологии для получения определенного совокупного выпуска. Как всегда, увеличив количества труда и капитала, мы переходим на более высокую изокванту.

Производственными функциями называются экономико-математические модели, связывающие переменные величины затрат с величинами выпуска. Понятия "затраты" и "выпуск" имеют отношение, как правило, к процессу производства продукции; это объясняет происхождение названия данного типа моделей. Если рассматривается экономика региона или страны в целом, то разрабатываются агрегированные производственные функции, в которых выпуском служит показатель совокупного общественного продукта. Частными случаями производственных функций являются функции выпуска (зависимость объема производства от наличия или потребления ресурсов), функции издержек (связь объема продукции и издержек производства), функции капитальных затрат (зависимость капитальных вложений от производственной мощности создаваемых предприятий) и др.

Широко используются мультипликативные формы представления производственных функций. В самом общем виде мультипликативная производственная функция записывается следующим образом:

Здесь коэффициент А определяет размерность величин и зависит от избранных единиц измерения затрат и выпуска. Сомножители X i представляют влияющие факторы и могут иметь различное экономическое содержание в зависимости от того, какие факторы влияют на величину выпуска Р. Степенные параметры α, β, ..., γ показывают ту долю в приросте конечного продукта, которую вносит каждый из факторов-сомножителей; они называются коэффициентами эластичности производства относительно затрат соответствующего ресурса и показывают, на сколько процентов возрастает выпуск при увеличении затрат данного ресурса на один процент.

Сумма коэффициентов эластичности имеет важное значение для характеристики свойств производственной функции. Предположим, что затраты всех видов ресурсов возрастают в k раз. Тогда величина выпуска в соответствии с (7.16) составит

Следовательно, если , то при увеличении затрат в к раз выпуск возрастает также в k раз; производственная функция в этом случае является линейно однородной. При Е > 1 такое же увеличение затрат приведет к росту выпуска более чем в к раз, а при Е < 1 – менее чем в к раз (так называемый эффект масштаба).

В качестве примера мультипликативных производственных функций можно привести широко известную производственную функцию Кобба – Дугласа:

N – национальный доход;

А – коэффициент размерности;

L, К – объемы приложенного труда и основного капитала соответственно;

α и β – коэффициенты эластичности национального дохода но труду L и капиталу К.

Эта функция применялась американскими исследователями при анализе развития экономики США в 30-х годах прошлого века.

Эффективность использования ресурсов характеризуется двумя основными показателями: средняя (абсолютная ) эффективность ресурса

и предельная эффективность ресурса

Экономический смысл величины μi очевиден; в зависимости от типа ресурса она характеризует такие показатели, как производительность труда, фондоотдача и др. Величина v i показывает предельный прирост выпуска продукта при увеличении затрат i-го ресурса на "малую единицу" (на 1 руб., на 1 нормо-час и т.д.).

Множество точек n -мерного пространства факторов производства (ресурсов), удовлетворяющих условию постоянства выпуска Р (Х ) = С, называется изоквантой. Важнейшими свойствами изоквант являются следующие: изокванты не пересекаются друг с другом; большей величине выпуска соответствует более удаленная от начала координат изокванта; если все ресурсы абсолютно необходимы для производства, то изокванты не имеют общих точек с координатными гиперплоскостями и с осями координат.

В материальном производстве большое значение приобретает понятие взаимозаменяемости ресурсов. В теории производственных функций возможности замещения ресурсов характеризуют производственную функцию с точки зрения различных комбинаций затрат ресурсов, приводящих к одному и тому же уровню выпуска продукта. Поясним это на условном примере. Пусть производство определенного количества сельхозпродукции требует 10 работников и 2 т удобрений, а при внесении в почву только 1 т удобрений потребуется уже 12 работников для получения того же урожая. Здесь 1 т удобрений (первый ресурс) заменяется трудом двух работников (второй ресурс).

Условия эквивалентной взаимозаменяемости ресурсов в некоторой точке вытекают из равенства dP = 0:

Отсюда предельная норма замещения (эквивалентной заменяемости) каких-либо двух ресурсов k и l задается формулой

(7.20)

Предельная норма замещения как показатель производственной функции характеризует относительную эффективность допускающих взаимную замену факторов производства при движении вдоль изокванты. Например, для функции Кобба – Дугласа предельная норма замещения затрат труда затратами капитала, т.е. производственными фондами, имеет вид

(7.21)

Знак минус в правых частях формул (7.20) и (7.21) означает, что при фиксированном объеме производства увеличению одного из взаимозаменяемых ресурсов соответствует уменьшение другого.

Пример 7.1. Рассмотрим пример производственной функции Кобба – Дугласа, для которой известны коэффициенты эластичности выпуска по труду и капиталу: α = 0,3; β = 0,7, а также затраты труда и капитала: L = 30 тыс. чел.; К = 490 млн руб. В этих условиях предельная норма замещения производственных фондов затратами труда равна

Таким образом, в этом условном примере в тех точках двухмерного пространства (L, К ), где ресурсы труда и капитала взаимозаменяемы, уменьшение производственных фондов на 7 тыс. руб. может быть компенсировано увеличением затрат труда на 1 чел., и наоборот.

С понятием предельной нормы замещения связано понятие эластичности замещения ресурсов. Коэффициент эластичности замещения характеризует отношение относительного изменения соотношения затрат ресурсов k и l к относительному изменению предельной нормы замещения этих ресурсов:

Этот коэффициент показывает, на сколько процентов должно измениться отношение между взаимозаменяемыми ресурсами, чтобы предельная норма замещения этих ресурсов изменилась на 1%. Чем выше эластичность замены ресурсов, тем в более широких пределах они могут заменять друг друга. При бесконечной эластичности () не существует границ взаимозаменяемости ресурсов. При нулевой эластичности замещения () возможность замены отсутствует; в этом случае ресурсы взаимодополняют друг друга и обязательно должны использоваться в определенном соотношении.

Рассмотрим в дополнение к функции Кобба – Дугласа некоторые другие производственные функции, широко используемые в качестве эконометрических моделей. Линейная производственная функция имеет вид

– оцениваемые параметры модели;

, – факторы производства, взаимозамещаемые в любых пропорциях (эластичность замещения ).

Изокванты этой производственной функции образуют семейство параллельных гиперплоскостей в неотрицательном ортанте n -мерного пространства факторов.

Во многих исследованиях применяются производственные функции с постоянной эластичностью замещения .

(7.23)

Производственная функция (7.23) является однородной функцией степени п. Все эластичности замещения ресурсов равны между собой:

вследствие этого данная функция называется функцией с постоянной эластичностью замещения (функцией CES ). Если , эластичность замещенияменьше единицы; если , величина больше единицы; при функция CES преобразуется в мультипликативную степенную производственную функцию (7.16).

Двухфакторная функция CES имеет вид

При п = 1 и р = 0 эта функция преобразуется в функцию типа функции Кобба – Дугласа (7.17).

Кроме производственных функций с постоянными коэффициентами эластичности выпуска от ресурсов и постоянной эластичностью замещения ресурсов в экономическом анализе и прогнозировании применяются и функции более общего вида. В качестве примера можно привести функцию

Эта функция отличается от функции Кобба – Дугласа множителем , где z = K/L – фондовооруженность (капиталовооруженность) труда, и в ней эластичность замещения принимает различные значения в зависимости от уровня капиталовооруженности труда. В связи с этим данная функция относится к типу производственных функций с переменной эластичностью замещения (функции VES ).

Перейдем к рассмотрению ряда вопросов практического использования производственных функций в экономи-

ческом анализе. Макроэкономические производственные функции применяются как инструмент прогнозирования объемов валовой продукции, конечного продукта и национального дохода, для анализа сравнительной эффективности факторов производства. Так, важным условием роста производства и производительности труда является увеличение фондовооруженности труда. Если для функции Кобба – Дугласа

задать условие линейной однородности , то из соотношения между производительностью труда (P/L ) и фондовооруженностью труда (K/L )

(7.24)

следует, что производительность труда растет медленнее фондовооруженности, так как . Этот вывод, как и многие другие результаты анализа на основе производственных функций, всегда справедлив для статических производственных функций, не учитывающих совершенствования технических средств труда и качественных характеристик используемых ресурсов, т.е. без учета технического прогресса. Для оценки параметров модели (7.24) ее линеаризируют путем логарифмирования:

Наряду с количественным увеличением используемых объемов ресурсов (трудовых ресурсов, производственных фондов и т.д.) важнейшим фактором роста производства служит научно-технический прогресс, заключающийся в совершенствовании технических средств и технологии, повышении квалификации работающих, улучшении организации управления производством. Статические эконометрические модели, в том числе и статические производственные функции, не учитывают фактор технического прогресса, поэтому используются динамические макроэкономические производственные функции, параметры которых определяются путем обработки временных рядов. Технический прогресс обычно отражают в производственных функциях в виде тенденции развития производства, зависящей от времени.

Например, функция Кобба – Дугласа с учетом фактора технического прогресса приобретает следующий вид:

В модели (7.25) множитель отражает тенденцию развития производства, связанную с научно-техническим прогрессом. В этом множителе t – время, а λ – темп прироста выпуска продукции благодаря техническому прогрессу. При практическом использовании модели (7.25) для оценки ее параметров проводится линеаризация путем логарифмирования, аналогично модели (7.24):

Следует особо отметить, что при построении производственных функций, как и для всех многофакторных эконометрических моделей, весьма важным моментом является правильный отбор влияющих факторов . В частности, необходимо избавляться от явлений мультиколлинеарности факторов и явлений автокорреляции внутри каждого из них. Этот вопрос детально описан в параграфе 7.1 данной главы. При оценке параметров производственных функций на основе статистических наблюдений, включая временные ряды, основным методом является метод наименьших квадратов.

Рассмотрим применение производственных функций для экономического анализа и прогнозирования на условном примере из области экономики труда.

Пример 7.2. Пусть объем выпуска продукции отрасли характеризуется производственной функцией типа функции Кобба – Дугласа:

Р – объем выпуска продукции (млн руб.);

Т – численность работников отрасли (тыс. чел.);

Ф – среднегодовая стоимость основных производственных фондов (млн руб.).

Допустим, параметры этой производственной функции известны и равны: а = 0,3; β = 0,7; коэффициент размерности А = = 0,6 (тыс. руб./чел.)0,3. Известна также величина среднегодовой стоимости основных производственных фондов Ф = 900 млн руб. В этих условиях требуется:

  • 1) определить количество работников отрасли, необходимое для выпуска продукции в объеме 300 млн руб.;
  • 2) выяснить, как изменится выпуск продукции при увеличении численности работающих па 1% и тех же объемах производственных фондов;
  • 3) оценить взаимозаменяемость материальных и трудовых ресурсов.

Чтобы ответить на вопрос первого задания, линеаризируем эту производственную функцию путем логарифмирования по натуральному основанию;

откуда следует, что

Подставляя исходные данные, получим

Отсюда (тыс. чел.).

Рассмотрим второе задание. Так как , данная производственная функция является линейно однородной; в соответствии с этим коэффициенты аир являются коэффициентами эластичности выпуска по труду и фондам соответственно. Следовательно, увеличение числа работающих отрасли на 1% при неизменном объеме производственных фондов приведет к росту выпуска продукции на 0,3%, т.е. выпуск составит 300,9 млн руб.

Переходя к третьему заданию, рассчитаем предельную норму замещения производственных фондов трудовыми ресурсами. В соответствии с формулой (7.21)

Таким образом, при условии взаимозаменяемости ресурсов для обеспечения постоянства выпуска (т.е. при движении по изокванте) уменьшение производственных фондов отрасли на 3,08 тыс. руб. может быть возмещено увеличением трудовых ресурсов на 1 чел., и наоборот.

Стандартная производственная функция. Понятие производственной функции

Ответ

Предприниматели приобретают на рынках факторы производства, организуют производство и выпускают продукцию. Производственная функция – это технологическая зависимость между количеством используемых факторов производства и максимально возможным выпуском продукции, произведенным в течение определенного периода времени. Такая технологическая связь существует для каждого определенного уровня развития техники. Производственная функция выражает максимальный объем выпуска продукции при каждой комбинации факторов производства. Функция может быть представлена в виде таблицы, графика или аналитически как уравнение.

Если весь набор необходимых для производства ресурсов представить как затраты труда, капитала и материалов, то производственная функция примет следующий вид:

Q = F (Т, К, М),

где Q - максимальный объем продукции, производимой при данной технологии в заданном соотношении: труда – Т, капитала - К, материалов – М.

Производственная функция показывает взаимосвязь между факторами и дает возможность определить долю каждого в создании товаров и услуг.

Графически взаимосвязь между факторами производства может быть изображена в виде изокванты. Изокванта – это кривая, отражающая различные варианты комбинации ресурсов, которые могут быть использованы для производства определенного объема продукции. Набор изоквант образует карту изоквант, которая показывает альтернативы производственной функции. Изокванты имеют следующие свойства:

Изокванты не могут пересекаться, т.к. являются геометрическим местом равных выпусков продукции;

Изокванты строго выпуклы к началу координат и имеют отрицательный наклон;

Чем выше и правее изокванта, тем больший объем выпуска она характеризует.

Производственная функция может быть определена только эмпирическим (опытным) путем, т.е. посредством измерений на основе фактических показателей.

Вопрос 7. Производственные возможности экономики

Ответ

Общим свойством экономических ресурсов является их ог­раниченное количество, поэтому перед экономикой постоянно стоит вопрос альтернативного выбора: увеличение производ­ства одного товара (товарного набора) означает отказ от про­изводства части другого. Общество стремится обеспечить полную занятость и полный объем производства, чтобы максимально удовлетворить свои потребности. Понятие полной занятости характеризует экономически целесообразное использование всех ресурсов. Под полным объемом производства подразумевается эффективное распределение ресурсов, обеспечивающее наибольший выход продукции.

Альтернативный выбор в экономике может быть охаракте­ризован с помощью кривой производственных возможностей, каждая точка которой отражает максимально возможный объем производства двух продуктов при данных ресурсах. Общество определяет, какую комбинацию этих продуктов оно выбирает. Функционирование экономики на границе производственных возможностей свидетельствует о ее эффективности и правильности выбора способа производства блага. Точки, находящиеся вне кривой производственных возможностей, противоречат принятому условию.

Количество других продуктов, которым нужно пожертвовать, чтобы полу­чить какое-либо количество данного продукта, называется альтернативными (вме­ненными) издержками производства данного продукта. Следует различать вмененные издержки дополнительной единицы то­вара и общие (или совокупные) вмененные издержки. Установлено отсутствие совершенной эластичности или взаимозаменяемости ресурсов. Из этого следует, что при переключении ресурсов с производства одного продукта на другой каждая дополнительная единица продукта потребует привлечения все большего количества дополнительных продуктов. Это явление получило название закона возрастания вмененных издержек. Таким образом, закон вмененных издержек отражает процесс постоянного возраста­ния вмененных затрат.

Теория вмененных издержек и кривая производственных возможностей используются в обосновании инвестиционных программ и проектов, а также при формировании оптимальной структуры продукции, изучении поведения потребителя и при решении других вопросов, требующих перераспределения ресурсов.

Вопрос 8. Стадии общественного производства

Ответ

Производственные факторы (фонды или капитал) проходят три стадии: покупка факторов производства; процесс производ­ства, где происходит соединение средств производства и рабо­чей силы; реализация товара и получение прибыли.

Непрерывно повторяющийся процесс производства называ­ется воспроизводством . Различают простое(убывающее) и рас­ширенное воспроизводство. Простое воспроизводство обеспечивает воссоздание ранее достигнутого состояния экономики – это производство в неизмененном масштабе. Убывающее производство характерно для кризисных состояний экономики. При нем масштабы производства сокращаются. Расширенное производство характеризуется постоянным увеличением масштабов производства. Выделяют интенсивный и экстенсивный типы расширенного воспроизводства. При интенсивном типе расширение масштабов производства достигается за счет качественного совершенствования и лучшего использования факторов производства, применения более эффективных технологий, роста производительности труда. Экстенсивный тип характеризуется количественным увеличением факторов производства.

Последовательное прохождение производственными фонда­ми (капиталом) трех стадий образует кругооборот производ­ственных фондов. Кругооборот производственных фондов, рас­сматриваемый как непрерывно повторяющийся процесс, назы­вается оборотом фондов (капитала). Время оборота фондов состоит из времени производства и времени обращения. Обо­рот фондов (капитала) заканчивается тогда, когда в процессе ре­ализации товаров владелец фондов полностью возмещает аван­сированный в факторы производства капитал.

В зависимости от специфики оборота производственные фонды делятся на основные, служащие длительное время, и оборотные, которые потребляются в течение одного производ­ственного цикла.

Различают физический и моральный износ основных про­изводственных фондов. Процесс возмещения износа основных производственных фондов путем постепенного включения их стоимости в затраты на производство создаваемых благ называ­ется амортизацией. Отношение суммы ежегодно переносимых амортизационных отчислений к стоимости средств труда в про­центах называется нормой амортизации.

Фонды обращения предприятия включают готовую продук­цию и денежные средства предприятия. Вместе с оборотными производственными фондами они образуют оборотные сред­ства предприятия. Оборачиваемость оборотных средств - важный показатель эффективности их использования.

Эффективность производ­ства в целом определяется соотношением эффекта (результата) и причины, его вызывающей. Важнейшими показателями эффективности производства являются: производительность труда, трудоемкость, фондовооруженность, фондоотдача, фондоемкость, материалоемкость.

Вопрос 9. Продукт как результат производства

Ответ

Продукт представляет собой результат целесообразной деятельности людей – труда (вещь или услуга) и одновременно выступает условием протекания процесса труда. Продукт обеспечивает воспроизводство личного и вещественного факторов производства.

Различают вещественную и общественную стороны продукта. Натурально – вещественная сторона продукта – это совокупность его свойств (механических, химических, физических и т. д.), которые делают данный продукт полезной вещью, способной удовлетворять человеческую потребность. Это свойство продукта получило название потребительской стоимости. Общественная сторона продукта заключается в том, что каждый продукт, будучи результатом человеческого труда аккумулирует в себе определенное количество этого труда.

Продукт, изготовленный отдельным производителем, выступает как единичный или индивидуальный продукт. Результатом всего общественного производства является общественный продукт, который представляет собой всю массу потребительных стоимостей, созданных в обществе, и служит основой его материальной и духовной жизни.

По своей натурально – вещественной форме общественный продукт делится на средства производства и предметы личного потребления. Средства производства возвращаются в процессе производства. Они служат для замены изношенных производственных фондов и для их увеличения (расширения). Предметы личного потребления окончательно покидают сферу производства и поступают в сферу потребления. Деление общественного продукта на средства производства и предметы личного потребления позволяет разделить все материальное производство на два крупных подразделения: производство средств производства (1 подразделение) и производство предметов личного потребления (2 подразделение).

В условиях товарного хозяйства общественный продукт имеет стоимость, внешним проявлением которой выступает цена . Стоимость продукта определяется суммарными (совокупными) затратами на его производство, т. е. затратами прошлого (овеществленного) труда и затратами живого труда. В западной литературе вместо термина «продукт» часто используется термин «благо».

Характеризует зависимость между количеством используемых ресурсов () и максимально возможным объемом выпуска, который может быть достигнут при условии, что все имеющиеся ресурсы используются наиболее рациональным образом.

Производственная функция обладает следующими свойствами:

1. Существует предел увеличения производства, который может быть достигнут при увеличении одного ресурса и постоянстве прочих ресурсов. Если, например, в сельском хозяйстве увеличивать количество труда при постоянных количествах капитала и земли, то рано или поздно наступает момент, когда выпуск перестает расти.

2. Ресурсы дополняют друг друга, но в определенных пределах возможна и их взаимозаменяемость без сокращения выпуска. Ручной труд, например, может заменяться использованием большего количества машин, и наоборот.

3. Чем длиннее временной период, тем большее количество ресурсов может быть пересмотрено. В этой связи различают мгновенный, короткий и длительный периоды. Мгновенный период — период, когда все ресурсы являются фиксированными. Короткий период — период, когда, по крайней мере, один ресурс является фиксированным. Длительный период - период, когда все ресурсы являются переменными.

Обычно в микроэкономике анализируется двухфакторная производственная функция, отражающая зависимость выпуска (q) от количества используемых труда () и капитала (). Напомним, что под капиталом понимаются средства производства, т.е. количество машин и оборудования, используемое в производстве и измеряемое в машино-часах (тема 2, п. 2.2). В свою очередь количество труда измеряется в человеко-часах.

Как правило, рассматриваемая производственная функция выглядит так:

A, α, β — заданные параметры. Параметр А — это коэффициент совокупной производительности факторов производства. Он отражает влияние технического прогресса на производство: если производитель внедряет передовые технологии, величина А возрастает, т.е. выпуск увеличивается при прежних количествах труда и капитала. Параметры α и β — это коэффициенты эластичности выпуска соответственно по капиталу и труду. Иными словами, они показывают, на сколько процентов изменяется выпуск при изменении капитала (труда) на один процент. Коэффициенты эти положительны, но меньше единицы. Последнее означает, что при росте труда при постоянном капитале (либо капитала при постоянном труде) на один процент производство возрастает в меньшей степени.

Построение изокванты

Приведенная производственная функция говорит о том, что производитель может заменять труд капитаном и капитал трудом, оставляя выпуск неизменным. Например, в сельском хозяйстве развитых стран труд является высокомеханизированным, т.е. на одного работника приходится много машин (капитала). Напротив, в развивающихся странах тот же объем производства достигается за счет большого количества труда при незначительном капитале. Это позволяет построить изокванту (рис. 8.1).

Изокванта (линия равного продукта) отражает все комбинации двух факторов производства (труда и капитала), при которых выпуск остается неизменным. На рис. 8.1 рядом с изоквантой проставлен соответствующий ей выпуск. Так, выпуск , достижим при использовании труда и капитала или с использованием труда и капитана.

Рис. 8.1. Изокванта

Возможны и другие комбинации объемов труда и капитала, минимально необходимых для достижения данного выпуска.

Все комбинации ресурсов, соответствующих данной изокванте, отражают технически эффективные способы производства. Способ производства A является технически эффективным в сравнении со способом В , если он требует использования хотя бы одного ресурса в меньшем количестве, а всех остальных не в больших количествах в сравнении со способом В . Соответственно способ В является технически неэффективным в сравнении с А. Технически неэффективные способы производства не используются рациональными предпринимателями и не относятся к производственной функции.

Из вышесказанного вытекает, что изокванта не может иметь положительный наклон, как это показано на рис. 8.2.

Отрезок, выделенный пунктиром, отражает все технически неэффективные способы производства. В частности, в сравнении со способом А способ В для обеспечения одинакового выпуска () требует того же количества капитала, но большего количества труда. Очевидно, поэтому, что способ B не является рациональным и не может приниматься в расчет.

На основе изокванты можно определить предельную норму технической замены.

Предельная норма технической замены фактора Y фактором X (MRTS XY) — это количество фактора (например, капитала), от которого можно отказаться при увеличении фактора (например, труда) на 1 ед., чтобы выпуск не изменился (остаемся на прежней изокванте).

Рис. 8.2. Технически эффективное и неэффективное производство

Следовательно, предельная норма технической замены капитала трудом исчисляется по формуле

При бесконечно малых измененияхL и K она составляет

Таким образом, предельная норма технической замены есть производная функции изокванты в данной точке. Геометрически она представляет собой наклон изокванты (рис. 8.3).

Рис. 8.3. Предельная норма технической замены

При движении сверху — вниз вдоль изокванты предельная норма технической замены все время убывает, о чем говорит уменьшающийся наклон изокванты.

Если же производитель увеличивает и труд, и капитал, то это позволяет ему достичь большего выпуска, т.е. перейти на более высокую изокванту (q 2). Изокванта, расположенная правее и выше предыдущей, соответствует большему объему выпуска. Совокупность изоквант образует карту изоквант (рис. 8.4).

Рис. 8.4. Карта изоквант

Особые случаи изоквант

Напомним, что приведенные соответствуют производственной функции вида . Но бывают и другие производственные функции. Рассмотрим случай, когда имеет место совершенная замещаемость факторов производства. Допустим, например, что на складских работах можно использовать квалифицированных и неквалифицированных грузчиков, причем производительность квалифицированного грузчика в N раз выше, чем неквалифицированного. Это означает, что мы можем заменить любое количество квалифицированных грузчиков неквалифицированными в соотношении N к одному. И наоборот, можно заменить N неквалифицированных грузчиков одним квалифицированным.

Производственная функция при этом имеет вид: где — число квалифицированных рабочих, — число неквалифицированных рабочих, а и b — постоянные параметры, отражающие производительность соответственно одного квалифицированного и одного неквалифицированного рабочего. Соотношение коэффициентов а и b — предельная норма технической замены неквалифицированных грузчиков квалифицированными. Она постоянна и равнаN : MRTS xy = a/b = N.

Пусть, например, квалифицированный грузчик в состоянии в единицу времени обработать 3 т груза (это будет коэффициент а в производственной функции), а неквалифицированный — только 1 т (коэффициент b). Значит, работодатель может отказаться от трех неквалифицированных грузчиков, дополнительно нанимая одного квалифицированного грузчика, чтобы выпуск (общий вес обработанного груза) при этом остался прежним.

Изокванта в данном случае является линейной (рис. 8.5).

Рис. 8.5. Изокванта при совершенной заменяемости факторов

Тангенс угла наклона изокванты равен предельной норме технической замены неквалифицированных грузчиков квалифицированными.

Еще одна производственная функция — функция Леонтьева. Она предполагает жесткую дополняемость факторов производства. Это означает, что факторы могут использоваться только в строго определенной пропорции, нарушение которой технологически невозможно. Например, авиационный рейс может быть нормально осуществлен при наличии как минимум одного самолета и пяти членов экипажа. При этом нельзя увеличивать самолето-часы (капитал), одновременно сокращая человеко-часы (труд), и наоборот, и сохранять неизменным выпуск. Изокванты в данном случае имеют вид прямых углов, т.е. предельные нормы технической замены равны нулю (рис. 8.6). В то же время можно увеличивать выпуск (количество рейсов), увеличивая в одной и той же пропорции и труд, и капитал. Графически это означает переход на более высокую изокванту.

Рис. 8.6. Изокванты в случае жесткой дополняемости факторов производства

Аналитически такая производственная функция имеет вид: q = min {aK; bL} , где а иb — постоянные коэффициенты, отражающие производительность соответственно капитала и труда. Соотношение этих коэффициентов определяет пропорцию использования капитала и труда.

В нашем примере с авиарейсом производственная функция выглядит так: q = min{1K; 0,2L} . Дело в том, что производительность капитала здесь составляет один рейс на один самолет, а производительность труда — один рейс на пять человек или 0,2 рейса на одного человека. Если авиакомпания располагает самолетным парком в 10 машин и имеет 40 человек летного персонала, то ее максимальный выпуск составит:q = min{ 1 х 8; 0,2 х 40} = 8 рейсов. Два самолета при этом будут простаивать на земле из-за нехватки персонала.

Взглянем, наконец, на производственную функцию, предполагающую существование ограниченного числа производственных технологий для производства заданного количества продукции. Каждой из них соответствует определенное состояние труда и капитала. В результате мы имеем ряд опорных точек в пространстве «труд-капитал», соединив которые, получаем ломаную изокванту (рис. 8.7).

Рис. 8.7. Ломаные изокванты при наличии ограниченного числа производственных методов

На рисунке видно, что выпуск продукции в объемеq 1 можно получить при четырех комбинациях труда и капитала, соответствующих точкам А, B, С иD . Возможны также и промежуточные комбинации, достижимые в тех случаях, когда предприятие совместно использует две технологии для получения определенного совокупного выпуска. Как всегда, увеличив количества труда и капитала, мы переходим на более высокую изокванту.

Введение …………………………………………………………………………..3

Глава I .4

1.1. Факторы производства……………………………………………………….4

1.2. Производственная функция и её экономическое содержание…………….9

1.3. Эластичность замещения факторов………………………………………..13

1.4. Эластичность производственной функции и отдача от масштаба………16

1.5. Свойства производственной функции и основные характеристики производственной функции……………………………………………………..19

Глава II. Виды производственных функций………………………………..23

2.1. Определение линейно - однородных производственных функций……...23

2.2. Виды линейно-однородных производственных функций………………..25

2.3. Другие виды производственных функций………………………………...28

Приложение……………………………………………………………………..30

Заключение……………………………………………………………………...32

Список используемой литературы…………………………………………...34

Введение

В условиях современного общества ни один человек не может потреблять только то, что он сам производит. Для наиболее полного удовлетворения своих потребностей люди вынуждены обмениваться тем, что они производят. Без постоянного производства благ не было бы потребления. Поэтому большой интерес представляет анализ закономерностей, действующих в процессе производства благ, которые формируют в дальнейшем их предложение на рынке.

Производственный процесс - это основное и первоначальное понятие экономики. Что же понимается под производством?

Каждый знает, что производство благ и услуг на пустом месте невозможно. Для того, чтобы произвести мебель, продукты питания, одежду и другие товары, необходимо иметь соответствующие исходные материалы, оборудование, помещение, клочок земли, специалистов, которые организуют производство. Все, необходимое для организации процесса производства называют факторами производства. Традиционно к факторам производства относят капитал, труд, землю и предпринимательство.

Для организации производственного процесса необходимые факторы производства должны присутствовать в определенном количестве. Зависимость максимального объема производимого продукта от затрат используемых факторов называется производственной функцией .

Глава I . Производственные функции, основные понятия и определения .

1.1. Факторы производства

Материальная основа любой экономики образуется из производства. От того, в какой мере в стране развито производство зависит в целом экономика этой страны.

В свою очередь, источниками любого производства являются ресурсы, которыми располагает то или иное общество. «Ресурсы – наличие средств труда, предметов труда, денег, товаров или людей для использования в настоящее время или в будущем» .

Таким образом, факторы производства, - это совокупность тех природных, материальных, социальных и духовных сил (ресурсов), которые могут быть использованы в процессе создания товаров, услуг и иных ценностей. Другим словами, факторы производства – это то, что оказывает определённое влияние на само производство.

В экономической теории ресурсы принято делить на три группы:

1. Труд – совокупность физических и умственных способностей человека, которые могут использоваться в процессе изготовления товара или оказания услуги.

2. Капитал (физический) – здания, сооружения, станки, оборудование, транспортные средства, необходимые для производства.

3. Природные ресурсы – земля и её недра, водоёмы, леса и т.д. Всё то, что можно использовать в производстве в натуральном, необработанном виде.

Именно наличие или отсутствие в стране факторов производства обуславливает её экономическое развитие. Факторы производства, в какой-то степени, являются потенциалом экономического роста. От того, как эти факторы используются, зависит общее положение дел в экономике страны.

В дальнейшем, развитие теории «трёх факторов» привело к более расширенному определению факторов производства. В настоящее время к ним относят:

2. землю (природные ресурсы);

3. капитал;

4. предпринимательскую способность;

Следует отметить, что все эти факторы тесно взаимосвязаны между собой. Например, производительность труда резко возрастает при использовании результатов научно-технического прогресса.

Таким образом, факторы производства, - это такие факторы, которые оказывают определённое воздействие на сам процесс производства. Так, например, увеличив капитал путем приобретения нового производственного оборудования, можно увеличить объёмы производства и увеличить выручку от реализации продукции.

Необходимо рассмотреть подробнее существующие факторы производства.

Труд есть целесообразная деятель­ность человека, с помощью которой он преобразует природу и приспосаб­ливает ее для удовлетворения своих потребностей. В экономической тео­рии под тру­дом как фактором производства подразумеваются любые умственные и физи­че­ские усилия, прилагаемые людьми в процессе хозяй­ственной деятельности.

Говоря о труде необходимо остановится на таких понятиях, как произ­водительность труда и интенсивность труда. Интенсивность труда характе­ри­зует напряженность труда, которая определяется степенью расходования фи­зической и умственной энергии в единицу времени. Интенсивность труда увеличивается при ускорении работы конвейера, увеличении количества од­новременно обслуживаемого оборудования, уменьшении потерь рабочего времени. Производительность труда показывает, какое количество продук­ции производится на единицу времени.

Для увеличения производительности труда решающую роль играет прогресс науки и техники. Так, например, внедрение в начале ХХ века конвейеров привело резкому скачку производи­тельности труда. Конвейерная организация производства базировалась на принципе дробного разделения труда.

Научно-техническая революция привела к изменениям в характере труда. Труд стал более квалифицированным, физический труд имеет все мень­шее значение в процессе производства.

Говоря о земле, как факторе производства, подразумевают не только саму землю как таковую, но и воду, воздух и другие природные ресурсы.

Капитал как фактор про­изводства отождествляется со средствами производства. Капитал состоит из благ длительного пользования, созданных экономи­ческой системой для производства других товаров. Другой взгляд на капи­тал связан с его денежной формой. Капитал, когда он воплощен в еще не инвестированных финансах, есть сумма денег. Во всех этих определениях есть общая идея, а именно капитал характеризуется способностью прино­сить доход.

Различают физический или основной, оборотный и человеческий капи­тал. Физический капитал – это материализованный в зданиях, станках и оборудовании капитал, функционирующий в процессе производства несколько лет. Другой вид капитала, включающий сырье, материалы, энер­гетические ресурсы, расходуется за один производственный цикл. Он носит название оборотного капитала. Деньги, затраченные на оборотный капитал, полностью возвращаются к предпринимателю после реализации продукции. Затраты на основной капитал не могут быть возмещены так быстро. Чело­веческий капитал возникает как следствие образования, профессиональной подготовки и поддержания физического здоровья.

Предприниматель­ская способность – особый фак­тор производства, при помощи которого собираются другие факторы производства в эффек­тивную комбинацию.

Научно-технический прогресс является важным двигателем экономического роста. Он охватывает целый ряд явлений, характеризующих совершенствование процесса производства. Научно-технический прогресс включает в себя совершенствование технологий, новые методы и формы управления и организации производства. Научно-технический прогресс позволяет по-новому комбинировать данные ресурсы с целью увеличения конечного выпуска продукции. При этом, как правило, возникают новые, более эффективные отрасли. Рост эффективности труда становится основным фактором производства.

Но необходимо понимать, что не существует прямой зависимости между факторами производства и объёмом выпускаемой продукции. Например, принимая на работу новых работников, предприятие создаёт предпосылки для выпуска дополнительного объёма продукции. Но в то же время, каждый привлечённый новый работник увеличивает для предприятия затраты по оплате труда. Кроме этого, нет гарантии, что выпущенная дополнительно продукция будет востребована покупателем, и что предприятие получит доход от реализации этой продукции.

Таким образом, говоря о зависимости между факторами производства и объёмом продукции, необходимо понимать, что данная зависимость определяется разумным сочетания этих факторов с учётом имеющегося спроса на выпускаемую продукцию.

Важную роль в понимании проблемы сочетания факторов производства играет так называемая теория предельной полезности и предельных издержек, суть которой заключается в том, что каждая дополнительная единица однотипного блага приносит все меньшую пользу потребителю, и требует возрастания затрат от производителя. Современная теория производства опирается на концепцию убывающей отдачи или предельного продукта и полагает, что все факторы производства взаимозависимо участвуют в создании продукта.

Главной задачей любого предприятия является максимизация прибыли. Один из способов достижения этого - разумное сочетание факторов производства. Но кто может определить, какие пропорции факторов производства приемлемы для того или иного предприятия, той или иной отрасли? Вопрос заключается в том, сколько и каких факторов производства необходимо использовать для получения максимально возможной прибыли.

Именно эта проблема и является одной из проблем, решаемой математической экономикой, а способ её решения - выявление математической зависимости между используемыми факторами производства и объемом выпуска продукции, то есть, в построении производственной функции.

1.2. Производственная функция и её экономическое содержание

Что такое функция с точки зрения математической науки?

Функция – это зависимость одной переменной от другой (других) переменной, выраженная следующим образом:

где х – независимая переменная, а y – зависимая от x функция.

Изменение переменной x ведёт к изменению функции y .

Функция двух переменных выражается зависимостью: z = f(x,y). Трёх переменных: Q = f(x,y,z), и так далее.

Например, площадь круга: S ( r )=π r 2 - есть функция его радиуса, и чем больше радиус, тем больше площадь круга.

Получаем, что производственная функция – это математическая зависимость между максимальным объемом выпуска продукции в единицу времени и комбинацией факторов, его создающих, при имеющемся уровне знаний и технологий. При этом, главная задача математической экономики с практической точки зрения состоит в выявлении этой зависимости, то есть, в построении производственной функции для конкретной отрасли или конкретного предприятия.

В теории производства в основном используют двухфакторную производственную функцию, которая в общем виде записывается следующим образом:

Q = f ( K , L ), (1.1)

При этом такие факторы, как технический прогресс и предпринимательская способность считаются неизменными в относительно коротком промежутке времени и не влияющими на объём выпуска продукции, а фактор «земля» рассматривается вместе с «капиталом».

Производственная функция определяет взаимосвязь выпуска продукции Q с факторами производства: капиталом K, трудом L. Производственная функция описывает множество технически эффективных способов производства заданного объема продукции. Техническая эффективность производства характеризуется использованием наименьшего количества ресурсов при данном объеме производства. Например, способ производства считается более эффективным, если он предполагает использование хотя бы одного ресурса в меньшем, а всех остальных не в большем количестве, чем другие способы. Если же один способ предполагает использование одних ресурсов в большем, а других в меньшем количестве, чем другой способ, тогда эти способы не сравнимы по технической эффективности. В этом случае оба способа рассматриваются как технически эффективные, а для их сравнения используют экономическую эффективность. Наиболее экономически эффективным способом производства данного объема продукции считается тот, при котором затраты на использование ресурсов минимальны.

Графически каждый способ можно представить точкой, координаты которой характеризуют минимальное количество ресурсов L и K, а производственную функцию – линией равного выпуска, или изоквантой. Каждая изокванта представляет множество технически эффективных способов производства определенного объема продукции. Чем дальше от начала координат расположена изокванта, тем больший объем выпуска она предоставляет. На рисунке 1.1. приведены три изокванты, соответствующие выпуску 100, 200 и 300 единиц продукции, так что можно сказать, что для выпуска 200 единиц продукции необходимо взять либо K 1 единиц капитала и L 1 единиц труда, либо K 2 единиц капитала и L 2 единиц труда, либо какую-то их комбинацию, предоставленную изоквантой Q 2 =200.


Q 3 =300

Рисунок 1.1. Изокванты, представляющие разные уровни выпуска

Необходимо дать определение таким понятиям как изокванта и изокоста.

Изокванта - кривая, представляющая собой всевозможные сочетания двух издержек, обеспечивающих заданный постоянный объем производства (на рисунке 1.1. представлена сплошной линией).

Изокоста - линия, образованная множеством точек, показывающих какое количество сочетающихся факторов производства или ресурсов можно приобрести при имеющихся денежных средствах (на рисунке 1.1. представлена пунктирной линией – касательная к изокванте в точке сочетания ресурсов).

Точка касания изокванты и изокосты – это оптимальное сочетание факторов для конкретного предприятия. Точка касания находится путём решения системы двух уравнений, выражающих изокванту и изокосту.

Основными свойствами производственной функции являются:

1. Непрерывность функции, то есть, её график представляет сплошную, непрерывную линию;

2. Производство не возможно при отсутствии хотя бы одного из факторов;

3. Увеличение затрат любого из факторов при неизменных количествах другого приводит к увеличению выпуска продукции;

4. Можно сохранить выпуск продукции на постоянном уровне, замещая некоторое количество одного фактора дополнительным использованием другого. То есть, уменьшение использования труда можно компенсировать дополнительным использованием капитала (например, приобретая новое производственное оборудование, которое обслуживается меньшим числом работников).

1.3. Эластичность замещения факторов

На основании вышеизложенного можно сделать вывод о том, что основным вопросом производственной функции является вопрос правильной комбинации факторов производства, при которой уровень выпуска продукции будет оптимальный, то есть, приносящий наибольшую прибыль. В целях поиска оптимальной комбинации, необходимо ответить на вопрос: На какую величину надо увеличить затраты одного фактора при снижении затрат другого на единицу. Вопрос соотношения затрат замещающих друг друга факторов производства решается при помощи введения такого понятия, как

Мерой взаимозаменяемости факторов производства служит предельная норма технического замещения MRTS (marginal rate of technical substitution), которая показывает, на сколько единиц можно уменьшить один из факторов при увеличении другого фактора на единицу, сохраняя выпуск неизменным.

Предельную норму технического замещения характеризует наклон изоквант. Более крутой наклон изокванты показывает что, при увеличении количества труда на единицу, нужно будет отказаться от нескольких единиц капитала для сохранения данного уровня производства. MRTS выражается формулой:

MRTS L , K =–DK/DL

Изокванты могут иметь различную конфигурацию.

Линейная изокванты на рисунке 1.2(а) предполагает совершенную замещаемость производственных ресурсов, то есть, данный выпуск может быть получен с помощью либо только труда, либо только капитала, либо с помощью комбинации этих ресурсов.

Изокванта, представленная на рисунке 1.2(б) характерна для случая жесткой дополняемости ресурсов. В этом случае известен лишь один технически эффективный способ производства. Такую изокванту иногда называют изоквантой леонтьевского типа (см. далее), по имени экономиста В.В. Леонтьева, предложившего такой тип изокванты. На рисунке 1.2(в) показана ломаная изокванта, предполагающая наличие нескольких методов производства (P). При этом предельная норма технического замещения при движении вдоль изокванты сверху вниз убывает. Изокванта подобной конфигурации используется в линейном программировании – методе экономического анализа. Ломаная изокванта реалистично представляет производственные возможности современных производств. Наконец, на рисунке 1.2(г) представлена изокванта, предполагающая возможность непрерывной, но не совершенной замещаемости ресурсов.

K а) KQ 2 б)

Рисунок 1.2. Возможные конфигурации изоквант.

1.4. Эластичность производственной функции и отдача от масштаба.

Предельный продукт некоторого ресурса характеризует абсолютное изменение выпуска продукта, приходящегося на единицу изменения расхода данного ресурса, причем изменения предполагаются малыми. Для производственной функции предельный продукт i- того ресурса равен частной производной: .

Влияние относительного изменения расхода i-того фактора на выпуск продукта, представленное также в относительной форме, характеризуется частной эластичностью выпуска по затратам этого продукта:

Для простоты будем обозначать . Частная эластичность производственной функции равна отношению предельного продукта данного ресурса к его среднему продукту.

Рассмотрим частный случай, когда эластичность производственной функции по некоторому аргументу – постоянная величина.

Если по отношению к исходным значениям аргументов x 1 , x 2 ,…,x n один из аргументов (i- тый) изменится в один раз, а остальные станутся на прежних уровнях, то изменение выпуска продукта описывается степенной функцией: . Полагая I=1, найдем, что A=f(x 1 ,…,x n), и поэтому .

В общем случае, когда эластичность – переменная величина, равенство (1) является приближенным при значениях I, близких к единице, т.е. при I=1+e, и тем более точным, чем ближе e/к нулю.

Пусть теперь затраты всех ресурсов изменились в I раз. Последовательно применяя только что описанный прием к x 1 , x 2 ,…,x n , можно убедиться в том, что теперь

Сумма частных эластичностей некоторой функции по всем ее аргументам получила название полной эластичности функции. Вводя обозначение для полной эластичности производственной функции, мы можем представить полученный результат в виде

Равенство (2) показывает, что полная эластичность производственной функции позволяет дать отдаче от масштаба числовое выражение. Пусть расход всех ресурсов немного увеличился с сохранением всех пропорций (I>1). Если E>1, то выпуск продукции увеличился больше, чем в I раз (возрастающая отдача от масштаба), а если E<1, то меньше, чем в I раз. При E=1 выпуск продукции изменится в той же самой пропорции, что и затраты всех ресурсов (постоянная отдача).

Выделение короткого и длительного периодов при описании характеристик производства – грубая схематизация. Изменение объемов потребления различных ресурсов – энергии, материалов, рабочей силы, станков, зданий и т. д. – требует различного времени. Допустим, что ресурсы перенумерованы в порядке убывания подвижности: быстрее всего можно изменить x 1 , а затем x 2 и т. д., а изменение x n требует наибольшего времени. Можно выделить сверхкороткий, или нулевой период, когда не может измениться ни один фактор; 1-й период, когда изменяется только x 1; 2-й период, допускающий изменение x 1 и x 2 и т.д.; наконец, длительный, или n-й период, в течении которого могут измениться объемы всех ресурсов. Различных периодов, таким образом, оказывается n+1.

Рассматривая некоторый промежуточный по величине, k-й период, мы можем говорить о соответствующей этому периоду отдачи от масштаба, имея в виду пропорциональное изменение объемов тех ресурсов, которые в этом периоде могут изменяться, т.е. x 1 , x 2 ,…, x k . Объемы x k +1 , x n , при этом сохраняют фиксированные значения. Соответствующий этому показатель отдачи от масштаба равен e 1 +e 2 +…+e k .

Удлиняя период, мы добавляем к этой сумме следующие слагаемые, пока не получится значение E для длительного периода.

Поскольку производственная функция возрастает по каждому аргументу, все частные эластичности e 1 положительны. Отсюда следует, что чем продолжительнее период, тем больше отдача от масштаба.

1.5. Свойства производственной функции

Для каждого вида производства может быть построена своя производственная функция, тем не менее каждая из них будет обладать следующими фундаментальными свойствами:

1. Существует предел роста объема производства, который достигается посредством увеличения использования одного ресурса при прочих равных параметрах. Примером может служить невозможность увеличения объема производства (при достижении конкретного его значения) на определенном предприятии за счет привлечения новых работников при заданных основных фондах. Можно достичь такой точки, когда каждый отдельный работник не будет обеспечен средствами труда для работы, рабочим местом, его присутствие явится помехой другим занятым, и прирост производства от найма этого предельного работника будет приближаться к нулю или даже станет отрицательным.

2. Есть определенная взаимная дополняемость (комплементарность) факторов производства, но без сокращения объема производства возможна и определенная взаимная их заменяемость. Например, для получения данного урожая определенный размер посевной площади может быть обработан большим числом рабочих вручную, без применения удобрений и современных средств производства. На этом же участке для производства необходимого количества урожая может трудиться несколько работников, использующих сложные машины и разнообразные удобрения. Следует отметить, что при условии взаимодополнения ни один из традиционных ресурсов (земля, труд, капитал) не может быть полностью вытеснен другими (не будет взаимодополнения). Механизм же взаимозамещения действует на противоположной посылке: некоторый вид ресурса может быть замещен другим. Взаимодополнение и взаимозамещение имеют противоположную направленность. Если взаимодополнение требует обязательного наличия всех ресурсов, то взаимозамещение в своей крайней форме может привести к полному исключению некоторого из них.

Анализ производственной функции предполагает необходимость разграничения краткосрочного и долгосрочного периодов времени. В первом случае имеется в виду такой временной интервал, в течение которого объем производства может регулироваться только при помощи изменения количества используемых переменных факторов, в то время как постоянные затраты остаются неизменными. Факторы производства, затраты которых неизменны в краткосрочном периоде времени, называются постоянными.

Соответственно факторы производства, размер которых изменяется в краткосрочном периоде - переменные. Долгосрочный период времени рассматривается как интервал, который достаточен для того, чтобы предприятие могло изменить затраты всех факторов производства. Это означает, что в данном случае не существует пределов для роста объема производства и все факторы становятся переменными. В наиболее общем виде различия краткосрочного и долгосрочного интервалов могут быть сведены к следующему.

Во-первых, это касается условий хозяйствования. В краткосрочном периоде значительное расширение объема производства невозможно, ограничивается имеющимися производственными мощностями фирмы. В длительном периоде фирма имеет больше свободы в отношении увеличения объемов выпуска, поскольку все факторы производства становятся переменными.

Во-вторых, необходимо учитывать специфику издержек производства. Краткосрочный период характеризуется наличием как постоянных, так и переменных издержек производства, в долгосрочном периоде все издержки становятся постоянными.

В-третьих, краткосрочный период предполагает постоянство фирм, работающих в данной отрасли. В долгосрочном периоде имеется реальная возможность выхода или вступления в отрасль новых конкурентов.

В-четвертых, следует определить возможности извлечения экономической прибыли в рассматриваемые периоды. В условиях долгосрочного периода экономическая прибыль равна нулю. В краткосрочном периоде экономическая прибыль может быть как положительной, так и отрицательной.

ПФ удовлетворяет следующему ряду свойств:

1) без ресурсов нет выпуска, т.е. f(0,0,a)=0;

2) при отсутствии хотя бы одного из ресурсов нет выпуска, т.е. ;

3) с ростом затрат хотя бы одного ресурса объем выпуска растет;

4) с ростом затрат одного ресурса при неизменном количестве другого ресурса объем выпуска растет, т.е. если x>0, то ;

5) с ростом затрат одного ресурса при неизменном количестве другого ресурса величина прироста выпуска на каждую дополнительную единицу i-го ресурса не растет (закон убывающей эффективности), т.е. если то ;

6) при росте одного ресурса предельная эффективность другого ресурса возрастает, т.е. если x>0, то ;

7) ПФ является однородной функцией, т.е. ; при р>1 имеем рост эффективности производства от роста масштаба производства; при р<1 имеем падение эффективности производства от роста масштаба производства; при р=1 имеем постоянную эффективность производства при росте его масштаба.

Глава II . Виды производственных функций

2.1. Определение линейно - однородных производственных функций

Производственная функция называется однородной степени n, если при умножении ресурсов на некоторое число k полученный объем производства будет в kn раз отличаться от первоначального. Условия однородности производственной функции записывается следующим образом:

Q = f (kL, kK) = knQ

Например, в день затрачивается 9 часов труда (L) и 9 часов работы машин (К). Пусть при данном сочетании факторов L и Kфирма может производить в день продукции на сумму 200 тыс. рублей. В этом случае производственная функция Q = F(L,K) будет представлена следующим равенством:

Q = F(9; 9) = 200 000, где F – определённого вида алгебраическая формула, в которую подставляются значения L и T.

Допустим, фирма принимает решение увеличить работу капитала и применение труда в два раза, что приводит к росту объёма выпускаемой продукции до 600 тыс. рублей. Получаем, что умножение факторов производства на 2 приводит к увеличению объёма производства в 3 раза, то есть, используя условия однородности производственной функции:

Q = f (kL, kK) = knQ, получаем:

Q = f (2L, 2K) = 2×1,5×Q, то есть, в данном случае мы имеем дело с однородной производственной функцией степени 1,5.

Показатель степени n называется степенью однородности.

Если n = 1, то говорят, что функция однородна первой степени или линейно однородна. Линейно однородная производственная функция представляет интерес тем, что для нее характерна постоянная отдача, то есть, при увеличении факторов производства объём выпускаемой продукции постоянно увеличивается в одинаковой мере.

Если n>1, то производственная функция демонстрирует возрастающую отдачу, то есть, рост факторов производства ведёт к ещё большему росту объёма производства (например: увеличение факторов в два раза ведёт к увеличению объёма в 2 раза; в 3 раза – к увеличению в 6 раз; в 4 раза – к увеличению в 12 раз и т.д.) Если n<1, то производственная функция демонстрирует убывающую отдачу, то есть, рост факторов производства ведёт к уменьшению отдачи по росту объёмов производства (например: увеличение факторов в 2 раза – ведёт к увеличению объемов в 2 раза; увеличение факторов в 3 раза – к увеличению объёмов в 1,5 раз; увеличение факторов в 4 раза – к увеличению объёмов в 1,2 раза и т.д.).

2.2. Виды линейно-однородных производственных функций

Примерами линейно однородных производственных функций являются производственная функция Кобба-Дугласа и производственная функция с постоянной эластичностью замещения.

Впервые производственная функция была рассчитана в 1920-е годы для обрабатывающей промышленности США экономистами Коббом и Дугласом. Исследования Пола Дугласа в сфере обрабатывающей промышленности США и последующая их обработка Чарльзом Коббом привели к появлению математического выражения, описывающего влияние применения труда и капитала на выработку продукции в обрабатывающей отрасли, в виде равенства:

Ln(Q) = Ln(1,01) + 0,73×Ln(L) + 0.27×Ln(K)

В общем виде производственная функция Кобба-Дугласа имеет вид:

Q = AK α L β ν

lnQ = lnA + α lnK + βlnL + lnν

Если α+β<1, то наблюдается убывающая отдача от масштабов использования факторов производства (рис. 1.2.в). Если α+β=1, то существует постоянная отдача от масштабов использования факторов производства (рис. 1.2.а). Если α+β>1, то наблюдается возрастающая отдача от масштабов использования факторов производства (рис. 1.2.б).

В производственной функции Кобба-Дугласа степенные коэффициенты α и β в сумме выражают степень однородности производственной функции:

Предельная норма технического замещения капитала трудом при данной технологии определяется по формуле:


׀MRTS L , K ׀ =

Если внимательно посмотреть на функцию Кобба-Дугласа для обрабатывающей промышленности США, рассчитанную в 1920-е годы, то можно ещё раз, уже на конкретном примере отметить, что производственная функция является математическим выражением (через определённую алгебраическую форму) зависимости объёмов производства (Q) от объёмов использования факторов производства (Lи K). Так, придавая конкретные значения переменным L и K можно определить предполагаемые объёмы выпуска продукции (Q) для обрабатывающей промышленности США в 1920-е годы.

Эластичность замещения в производственной функции Кобба-Дугласа всегда равна 1.

Но производственная функция Кобба-Дугласа имела некоторые недостатки. Для преодоления ограничения функции Кобба-Дугласа, которая всегда является однородной в первой степени, в 1961 г. несколькими экономистами (К. Эрроу, Х. Ченери, Б. Минхас и Р. Солоу) была предложена производственная функция с постоянной эластичностью замещения. Это линейно однородная производственная функция с постоянной эластичностью замещения ресурсов. Позже была предложена и производственная функция с переменной эластичностью замещения. Она представляет собой обобщение производственной функции с постоянной эластичностью замещения, допускающее изменение эластичности замещения с изменением отношения между затрачиваемыми ресурсами.

Линейно однородная производственная функция с постоянной эластичностью замещения ресурсов имеет следующий вид:

Q = а -1/b ,

Эластичность замещения факторов для данной производственной функции определяется формулой:

2.3. Другие виды производственных функций

Другим видом производственной функции является линейная производственная функция, которая имеет следующий вид:

Q(L,K) = aL + bK

Данная производственная функция является однородной первой степени, следовательно, она имеет постоянную отдачу от масштабов производства. Графически данная функция представлена на рисунке 1.2, а.

Экономический смысл линейной производственной функции состоит в том, что она описывает такое производство, в котором факторы являются взаимозаменяемыми, то есть, не имеет значения – использовать только труд или только капитал. Но в реальной жизни такая ситуация практически не возможна, так как любая машина все равно обслуживается человеком.

Коэффициенты a и b функции, которые находятся при переменных L и Kпоказывают пропорции, в которых один фактор может быть замещён другим. Например, если a=b=1, то это значит, что 1 час труда может быть заменен 1 часом машинного времени для того, чтобы произвести такой же объём продукции.

Необходимо отметить, что в некоторых видах хозяйственной деятельности труд и капитал вообще не могут заменить друг друга и должны использоваться в фиксированной пропорции: 1 рабочий - 2 станка, 1 автобус - 1 водитель. В этом случае эластичность замещения факторов равна нулю, а технология производства отображается производственной функцией Леонтьева:

Q(L,K) = min{; },

Если, например, на каждом автобусе дальнего следования должно быть два водителя, то при наличии в автобусном парке 50 автобусов и 90 водителей одновременно могут обслуживаться только 45 маршрутов:
min{90/2;50/1} = 45.

Приложение

Примеры решения задач с использованием производственных функций

Задача 1

Фирма, занимающаяся речными перевозками, использует труд перевозчиков (L) и паромы (K). Производственная функция имеет вид . Цена единицы капитала равна 20, цена единицы труда равна 20. Каков будет наклон изокосты? Какое количество труда и капитала должна привлечь фирма для осуществления 100 перевозок?

3. капитал;

4. предпринимательская способность;

5. научно-технический прогресс.

Все эти факторы тесно взаимосвязаны между собой.

Производственная функция – это математическая зависимость между максимальным объемом выпуска продукции в единицу времени и комбинацией факторов, его создающих, при имеющемся уровне знаний и технологий. При этом главная задача математической экономики с практической точки зрения состоит в выявлении этой зависимости, то есть, в построении производственной функции для конкретной отрасли или конкретного предприятия.

В теории производства в основном используют двухфакторную производственную функцию, которая в общем виде выглядит так:

Q = f ( K , L ), где Q - объем производства; К - капитал; L – труд.

Вопрос соотношения затрат замещающих друг друга факторов производства решается при помощи такого понятия, как эластичность замещения факторов производства.

Эластичность замещения – это соотношение затрат замещающих друг друга факторов производства при неизменном объёме выпуска продукции. Это своего рода коэффициент, который показывает степень эффективности замещения одного фактора производства другим.

Мерой взаимозаменяемости факторов производства служит предельная норма технического замещения MRTS, которая показывает, на сколько единиц можно уменьшить один из факторов при увеличении другого фактора на единицу, сохраняя выпуск неизменным.

Изокванта - кривая, представляющая собой всевозможные сочетания двух издержек, обеспечивающих заданный постоянный объем производства.

Денежные средства как правило ограничены. Линия, образуемая множеством точек, показывающих какое количество сочетающихся факторов производства или ресурсов можно приобрести при имеющихся денежных средствах, называется изокостой. Таким образом, оптимальным сочетанием факторов для конкретного предприятия является общее решение уравнений изокосты и изокванты. Графически – это точка касания линий изокосты и изокванты.

Производственная функция может быть записана в самых различных алгебраических формах. Как правило, экономисты работают с линейно однородными производственными функциями.

В работе также были рассмотрены конкретные примеры решения задач с применением производственных функций, которые позволили сделать вывод о их большой практической значимости в экономической деятельности любого предприятия.

Список используемой литературы

1. Доугерти К. Введение в эконометрику. – М.: Финансы и статистика, 2001.

2. Замков О.О., Толстопятенко А.В., Черемных Ю.П. Математические методы в экономике: Учебник. – М.: Изд. «ДИС», 1997.

3. Курс экономической теории: учебник. – Киров: «АСА», 1999.

4. Микроэкономика. Под ред. Проф. Яковлевой Е.Б. – М.: СПб. Поиск, 2002.

5. Салманов О. Математическая экономика. – М.: BHV, 2003.

6. Чураков Е.П. Математические методы обработки экспериментальных данных в экономике. – М.: Финансы и статистика, 2004.

7. Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе. – М.: Юнити-Дана, 2000.


Большой коммерческий словарь./Под редакцией Рябовой Т.Ф. – М.: Война и мир, 1996. С. 241.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека