Презентация «История развития решений квадратных уравнений. История зарождения

Из истории возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне . Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

https://pandia.ru/text/78/002/images/image002_15.gif" width="93" height="41 src=">

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение - 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 - х. Разность между ними 2х. Отсюда уравнение:

(10+x)(10-x) =96,

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax2 + bх = с, а>

В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

https://pandia.ru/text/78/002/images/image004_11.gif" width="12" height="26 src=">x2 - 64x = - 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:

x2 - б4х + 322 = -768 + 1024,

(х - 32)2 = 256,

x1 = 16, x2 = 48.

Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах2 = bх.

2) «Квадраты равны числу», т. е. ах2 = с.

3) «Корни равны числу», т. е. ах = с.

4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах2.

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

Квадратные уравнения в Европе XII - XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид..

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

Для того чтобы решить любое квадратное уравнение, надо знать:

· формулу нахождения дискриминанта;

· формулу нахождения корней квадратного уравнения;

· алгоритмы решения уравнений данного вида.

· решать неполные квадратные уравнения;

· решать полные квадратные уравнения;

· решать приведенные квадратные уравнения;

· находить ошибки в решенных уравнениях и исправлять их;

· делать проверку.

Решение каждого уравнения складывается из двух основных частей:

· преобразования данного уравнения к простейшим;

· решения уравнений по известным правилам, формулам или алгоритмам.

Обобщение способов деятельности учащихся при решении квадратных уравнений происходит постепенно. Можно выделить следующие этапы при изучении темы «Квадратные уравнения»:

I этап – «Решение неполных квадратных уравнений».

II этап – «Решение полных квадратных уравнений».

III этап – «Решение приведенных квадратных уравнений».

На первом этапе рассматриваются неполные квадратные уравнения. Так как сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Это уравнения вида: ах2 = 0, ах2 + с = 0, где с≠ 0, ах2 + bх = 0, где b ≠ 0. Рассмотрим решение несколько таких уравнений:

1. Если ах2 = 0. Уравнения такого вида решаются по алгоритму:

1) найти х2;

2) найти х.

Например, 5х2 = 0 . Разделив обе части уравнения на 5 получается: х2 = 0, откуда х = 0.

2. Если ах2 + с = 0, с≠ 0 Уравнения данного вида решаются по алгоритму:

1) перенести слагаемые в правую часть;

2) найти все числа, квадраты которых равны числу с.

Например, х2 - 5 = 0,Это уравнение равносильно уравнению х2 = 5. Следовательно, надо найти все числа, квадраты которых равны числу 5..gif" width="16" height="19">..gif" width="16" height="19 src="> и других корней не имеет.

3. Если ах2 + bх = 0, b ≠ 0. Уравнения такого вида решаются по алгоритму:

1) перенести общий множитель за скобки;

2) найти x1, x2.

Например, х2 - 3х = 0. Перепишем уравнение х2 – 3х = 0 в виде х (х – 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х – 3) = 0 получится число, не равное нулю.

Итак, данные примеры показывают, как решаются неполные квадратные уравнения:

1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;

2) если уравнение имеет вид ах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b = 0..gif" width="16" height="41"> В случае, когда - < 0, уравнение х2 = - не имеет корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда - > 0, т. е. - = m, где m>0, уравнение х2 = m имеет два корня

https://pandia.ru/text/78/002/images/image010_9.gif" width="29" height="24 src=">.gif" width="29" height="24 src=">, (в этом случае допускается более короткая запись = .

Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.

На втором этапе осуществляется переход к решению полного квадратного уравнения. Это уравнения вида ах2 + bx + c = 0, где a, b,c – заданные числа, а ≠ 0, х – неизвестное.

Любое полное квадратное уравнение можно преобразовать к виду , для того, чтобы определять число корней квадратного уравнения и находить эти корни. Рассмотриваются следующие случаи решения полных квадратных уравнений: D < 0, D = 0, D > 0.

1. Если D < 0, то квадратное уравнение ах2 + bx + c = 0 не имеет действительных корней.

Например, 2х2 + 4х + 7 = 0. Решение: здесь а = 2, b = 4, с = 7.

D = b2 – 4ас = 42 – 4*2*7 = 16 – 56 = - 40.

Так как D < 0, то данное квадратное уравнение не имеет корней.

2. Если D = 0, то квадратное уравнение ах2 + bx + c = 0 имеет один корень, который находится по формуле .

Например, 4х – 20х + 25 = 0. Решение: а = 4, b = - 20, с = 25.

D = b2 – 4ас = (-20) 2 – 4*4*25 = 400 – 400 = 0.

Так как D = 0, то данное уравнение имеет один корень. Этот корень находится по формуле ..gif" width="100" height="45">.gif" width="445" height="45 src=">.

Составляется алгоритм решения уравнения вида ах2 + bx + c = 0.

1. Вычислить дискриминант D по формуле D = b2 – 4ас.

2. Если D < 0, то квадратное уравнение ах2 + bx + c = 0 не имеет корней.

3. Если D = 0, то квадратное уравнение имеет один корень, который находится по формуле

4..gif" width="101" height="45">.

Это алгоритм универсален, он применим как к неполным, так и к полным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому алгоритму не решают.

Математики – люди практичные, экономные, поэтому пользуются формулой: https://pandia.ru/text/78/002/images/image022_5.gif" width="155" height="53">. (4)

2..gif" width="96" height="49 src=">, имеющее тот же знак, что и D..gif" width="89" height="49"> то уравнение (3) имеет два корня;

2) если то уравнение имеет два совпадающих корня;

3) если то уравнение не имеет корней.

Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами приведенного квадратного уравнения.

Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Иначе говоря, если x1 и x2 - корни уравнения х2 +px + q = 0, то

Данные формулы называют формулами Виета в честь французского математика Ф. Виета (), который ввел систему алгебраических символов, разработал основы элементарной алгебры. Он был одним из первых, кто числа стал обозначать буквами, что существенно развило теорию уравнений.

Например, приведенное уравнение х2 - 7х +10 = 0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Видно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Справедлива также теорема, обратная теореме Виета.

Теорема, обратная теореме Виета. Если для чисел x1, x2, p, q справедливы формулы (5), то x1 и x2 - корни уравнения х2 +px + q = 0 .

Теорема Виета и теорема, обратная ей, часто применяются при решении различных задач.

Например. Напишем приведенное квадратное уравнение, корнями которого являются числа 1 и -3.

По формулам Виета

– p = x1 + x2 = - 2,

Следовательно, искомое уравнение имеет вид х2 + 2х – 3 = 0.

Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего, требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное уравнение и его корни; в обратной - только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета.

Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители.

Главная > Доклад

МОУ СОШ имени Героев Советского Союза
Сотникова А.Т. и Шепелёва Н. Г. с.Урицкое

Доклад на тему:

«История возникновения

квадратных уравнений»

Подготовили: Изотова Юлия,
Амплеева Елена,
Шепелёв Николай,

Дяченко Юрий.

О математика. В веках овеяна ты славой,

Светило всех земных светил.

Тебя царицей величавой

Недаром Гаусс окрестил.

Строга, логична, величава,

Стройна в полете, как стрела,

Твоя немеркнущая слава

В веках бессмертье обрела.

Мы славим разум человека,

Дела его волшебных рук,

Надежду нынешнего века,

Царицу всех земных наук.

Поведать мы сегодня вам хотим

Историю возникновения

Того, что каждый школьник должен знать –

Историю квадратных уравнений.

Евклид, в III век до н. э. отвел геометрической алгебре в своих «Началах» всю вторую книгу, где собран весь необходимый материал для решения квадратных уравнений.

Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике

Ведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Герон – греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения.

Герон Александрийский; Heron, I в. н. э., греческий механик и математик. Время его жизни неопределенно, известно только, что он цитировал Архимеда (который умер в 212 г. до н. э.), его же самого цитировал Папп (ок. 300 г. н. э.). В настоящее время преобладает мнение, что он жил в I в. н. э. Занимался геометрией, механикой, гидростатикой, оптикой; изобрел прототип паровой машины и точные нивелировочные инструменты. Наибольшей популярностью пользовались такие автоматы Г., как автоматизированный театр, фонтаны и др. Г. описал теодолит, опираясь на законы статики и кинетики, привел описание рычага, блока, винта, военных машин. В оптике сформулировал законы отражения света, в математике - способы измерения важнейших геометрических фигур. Основные произведения Г. - это Иетрика, Пневматика, Автоматопоэтика, Механика (фр.; произведение сохранилось целиком по-арабски), Катоптика (наука о зеркалах; сохранилась только в латинском переводе) и др. Г. использовал достижения своих предшественников: Евклида, Архимеда, Стратона из Лампсака. Его стиль простой и ясный, хотя порой бывает чересчур лаконичен или нестроен. Интерес к сочинениям Г. возник в III в. н. э. Греческие, а затем византийские и арабские ученики комментировали и переводили его произведения.

Диофант – греческий ученый в III век н.э., не прибегая к геометрии, чисто алгебраическим путем решал некоторые квадратные уравнения, причем само уравнение и его решение записывал в символической форме

«Я расскажу вам, как составлял и решал квадратные уравнения греческий математик Диофант. Вот, к примеру, одна из его задач: «Найти два числа, зная, что их сумма равна 20, а их произведение 96».

1. Из условия задачи вытекает, что искомые числа не равны, т.к. если бы они были равны, то их произведение равнялось бы не 96, а 100.

2. Т.о. одно из них будет больше половины их суммы, т.е. 10 + x, другое же меньше, т.е. 10 – х.

3. Разность между ними 2х.

4. Отсюда уравнение (10 + x) * (10 – x) = 96

100 – х 2 = 96 х 2 – 4 = 0

5. Ответ x = 2 . Одно из искомых чисел равно 12,
другое - 8. Решение x = - 2 для Диофанта не существует, т.к. гре-ческая математика знала только положительные числа.» Диофант умел решать очень сложные уравнения, применял для неизвестных буквенные обозначения, ввёл специальный символ для вычисления, использовал сокращения слов. Бхаскаре – Акариа – индийский математик в XII век н.э. открыл общий метод решения квадратных уравнений.

Разберём одну из задач индийских математиков, например, задачу Бхаскары:

«Стая обезьян забавляется: восьмая часть всего числа их в квадрате резвится в лесу, остальные двенадцать кричат на вершине холмика. Скажите мне, сколько всех обезьян?»

Комментируя задачу, хочется сказать, что задаче соответствует уравнение (х/8) 2 + 12 = x . Бхаскара пишет под видом x 2 – 64х = - 768. Прибавляя к обеим частям квадрат 32, уравнение примет вид:

x 2 – 64 x + 32 2 = - 768 + 1024

(x – 32) 2 = 256

После извлечения квадратного корня получаем: x – 32 =16.

«В данном случае, говорит Бхаскара, - отрицательные единицы первой части таковы, что единицы второй части меньше их, а потому последние можно считать и положительными и отрицательными, и получаем двойное значение неизвестного: 48 и 16».

Необходимо сделать вывод: решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Предлагается решить старинную индийскую задачу Бхаскары:

«Квадрат пятой части обезьян, уменьшенный на три, спрятался в гроте, одна обезьяна влезла на дерево, была видна. Сколько было обезьян?» Следует заметить, что данная задача решается элементарно, сводясь к квадратному уравнению.
Аль – Хорезми
- арабский учёный, который в 825 г. написал книгу «Книга о восстановлении и противопоставлении». Это был первый в мире учебник алгебры. Он также дал шесть видов квадратных уравнений и для каждого из шести уравнений в словесной форме сформулировал особое правило его решения. В трактате Хорезми насчитывает 6 видов уравнений, выражая их следующим образом:

1.«Квадраты равны корням», т.е. ах 2 = вх.

2.«Квадраты равны числу», т.е. ах 2 = с.

3.«Корни равны числу», т.е. ах = с.

4.«Квадраты и числа равны корням», т.е. ах 2 + с = вх.

5.«Квадраты и корни равны числу», т.е. ах 2 + вх = с.

6.«Корни и числа равны квадратам», т.е. вх +с = ах 2 .

Разберём задачу аль – Хорезми, которая сводится к решению квадратного уравнения. «Квадрат и число равны корням.» Например, один квадрат и число 21 равны 10 корням того же квадрата, т.е. спрашивается, из чего образуется квадрат, который после прибавления к нему 21 делается равным 10 корням того же квадрата?»

Используя 4-ю формулу аль – Хорезми, ученики должны записать: х 2 + 21 = 10х

Франсуа Виет - французский мате-матик, сформулировал и доказал теорему о сумме и произведении корней приведённого квадратного уравнения.

Искусство, которое я излагаю, ново или по крайней мере было настолько испорчено временем искажено влиянием варваров, что я счел нужным придать ему совершенно новый вид.

Франсуа Виет

Иет Франсуа (1540-13.12. 1603) родился в городе Фонтене ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Ро-шель. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. Знал астрономию и математику и все свободное время отдавал этим наукам.

Главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики: Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, начать в общем виде алгебраические сравнения или какие-нибудь другие алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. Виет и его последователи установи, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Значит, их можно обозначать какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытий, поставив перед собой цель изучать не числа, а действия над ними. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют "отцом" алгебры, основоположником буквенной символики.

Информационные ресурсы:

http:// som . fio . ru / Resources / Karpuhina /2003/12/ Complited %20 work / Concert / index 1. htm

http:// pages . marsu . ru / iac / school / s 4/ page 74. html

Исследовательская работа

На тему

«Способы решения квадратных уравнений »

Выполнила:
группа 8 «Г » класса

Руководитель работы:
Беньковская Мария Михайловна

Цели и задачи проекта.

1. Показать, что в математике, как и во всякой другой науке, достаточно своих неразгаданных тайн.
2. Подчеркнуть, что математиков отличает нестандартное мышление. А иногда смекалка и интуиция хорошего математика просто приводят в восхищение!
3. Показать, что сама попытка решения квадратных уравнений содействовала развитию новых понятий и идей в математике.
4. Научиться работать с различными источниками информации.
5. Продолжить исследовательскую работу по математике

Этапы исследования

1. История возникновения квадратных уравнений.

2. Определение квадратного уравнения и его виды.

3. Решение квадратных уравнений, используя формулу дискриминанта.

4. Франсуа Виет и его теорема.

5. Свойства коэффициентов для быстрого нахождения корней квадратного уравнения.

6. Практическая направленность.

Посредством уравнений, теорем

Я уйму всяких разрешал проблем.

(Чосер, английский поэт, средние века.)

этап. История возникновения квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени, ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать ещё около 2000 лет до нашей эры вавилоняне. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает, по существу, с современными, однако не известно, каким образом дошли вавилоняне до нахождения правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта содержится систематический ряд задач, сопровождаемых объяснениями и решаемые при помощи составления уравнений различных степеней, однако в ней нет систематического изложения алгебры.

Задачи на квадратные уравнения встречаются уже в астрономических трактатах «Ариабхаттиам», составленном в 499г. индейским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Для аль-Хорезми, незнавшего отрицательных чисел, члены каждого уравнения слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений, при решении неполного квадратного уравнения аль-Хорезми, как и все ученые до XVII века, не учитывает нулевого решения.

Трактат аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и формулы их решения.

Формулы решения квадратных уравнений по образцу аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Этот объёмистый труд отличается полнотой и ясностью изложения. Автор самостоятельно разработал некоторые новые алгебраические приёмы решения задач, и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI - XVII и частично XVIII веков.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду при всевозможных комбинациях знаков коэффициентов b,c было сформулировано в Европе лишь в 1544 году М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI веке учитывают, не только положительные, но и отрицательные корни. Лишь в XVII веке, благодаря трудам Жиррара, Декарта, Ньютона и других ученых, способ решения квадратных уравнений принимает современный вид.

ОКАЗЫВАЕТСЯ :

Задачи на квадратные уравнения встречаются уже в 499 г.

В Древней Индии были распространены публичные соревнования в решении трудных задач – ОЛИМПИАДЫ.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

1.1. Из истории возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение - 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 - х. Разность между ними 2х. Отсюда уравнение:

(10+x)(10-x) =96,

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax 2 + bх = с, а> 0. (1)

В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

Бхаскара пишет под видом:

x 2 - 64x = - 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

x 2 - б4х + 32 2 = -768 + 1024,

(х - 32) 2 = 256,

x 1 = 16, x 2 = 48.

Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах 2 = bх.

2) «Квадраты равны числу», т. е. ах 2 = с.

3) «Корни равны числу», т. е. ах = с.

4) «Квадраты и числа равны корням», т. е. ах 2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах 2 .

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

Квадратные уравнения в Европе XII-XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x 2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид..

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

Министерство образования и науки РТ

Муниципальное бюджетное общеобразовательное учреждение

«Усадская средняя общеобразовательная школа

Высокогорского муниципального района Республики Татарстан»

Исследовательская работа:

«История возникновения квадратных уравнений »

Выполнила: Андреева Екатерина,

ученица 8Б класса

Научный руководитель:

Пожарская Татьяна Леонидовна,

учитель математики

Введение

Кто хочет ограничиться настоящим

без знания прошлого,

тот никогда его не поймет.

Г.В. Лейбниц

Уравнения в школьном курсе математики занимают ведущее место, но ни один из видов уравнений не нашел столь широкого применения, как квадратные уравнения.

Уравнение второй степени или квадратные уравнения, люди умели решать еще в Древнем Вавилоне во II тысячелетии до нашей эры. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактатах. И в настоящее время многие задачи алгебры, геометрии, физики так же решаются с помощью квадратных уравнений. Решая их, люди находят ответы на различные вопросы науки и техники.

Цель данного исследования - изучить историю возникновения квадратных уравнений.

Для достижения данной цели необходимо решить следующие задачи:

  1. Изучить научную литературу по теме.
  2. Проследить историю возникновения квадратных уравнений.

Объект исследования: квадратные уравнения.

Предмет исследования: история возникновения квадратных уравнений.

Актуальность темы :

  1. Решением квадратных уравнений люди занимались еще с древних веков. Мне захотелось узнать историю возникновения квадратных уравнений.
  2. В школьных учебниках нет информации об истории возникновения квадратных уравнений.

Методы исследования:

  1. Работа с учебной и научно-популярной литературой.
  2. Наблюдение, сравнение, анализ.

Научная ценность работы, на мой взгляд, заключается в том, что данный материал может быть интересен школьникам, увлекающимся математикой, и учителям на факультативных занятиях.

Квадратные уравнения в Древнем Вавилоне.

В Древнем Вавилоне необходимость решать уравнения не только первой, но и второй степени была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 - х = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Пример, взятый из одной из глиняных табличек этого периода.

«Площадь, состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям, решение которых сводится к решению квадратного уравнения, имеющему положительный корень.

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д

Как составлял и решал Диофант квадратные уравнения

Диофант представляет одну из наиболее трудных загадок в истории науки. Он был одним из самых своеобразных древнегреческих математиков был Диофант Александрийский, труды которого имели большое значение для алгебры и теории чисел. До сих пор не выяснены ни год рождения, ни дата смерти Диофанта. Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Полагают, что он жил в III в.н.э. Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.

Из работ Диофанта самой важной является “Арифметика”, из 13 книг которой только 6 сохранились до наших дней.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача: «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения из арифметики Диофанта:

  1. 12x 2 +x = 1
  2. 630x 2 +73x=6.

Еще в глубокой древности Индия славилась знаниями в области астрономии, грамматики и других наук.

Наибольших успехов Индийские ученые достигли в области математики . Они явились основоположниками арифметики и алгебры, в разработке которых пошли дальше греков.

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 +bх=с, а>0.

Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования
в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

« Обезьянок резвых стая,

Всласть поевши, развлекалась.

Их в квадрате часть восьмая,

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать, повисая…

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствуют о том, что он знал о двузначности корней квадратных уравнений.

Соответствующее задаче уравнение

Бхаскара пишет под видом х 2 - 64х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляют к обеим частям 32 2 ,получая затем:

х 2 -64х+32 2 =-768+1024,

х 1 =16, х 2 =48.

Квадратные уравнения в Китае (1 тысячелетие до н.э.).

Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIII--XII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр. Но подлинный расцвет науки начался после того, как в XII в. до н. э. Китай был завоёван кочевниками Чжоу. В эти годы возникают и достигают удивительных высот китайская математика и астрономия. Появились первые точные календари и учебники математики. К сожалению, «истребление книг» императором Цинь Ши Хуаном (Ши Хуанди) не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.

«Математика в девяти книгах» - это первое математическое сочинение из ряда классических в древнем Китае, замечательный памятник древнего Китая времени династии Ранней Хань (206г. до н.э. - 7 г. н. э.). В этом сочинении содержится разнообразный и богатый по содержанию математический материал, в том числе и квадратные уравнения.

Китайская задача: «Имеется водоём со стороной 10 чи. В центре его растёт камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша?»

(х+1) 2 =х 2 +5 2 ,

х 2 +2х+1= х 2 +25,

Ответ:12чи; 13чи.

Квадратные уравнения у ал-Хорезми

«Я составил краткую книгу об исчислении алгебры и алмукабалы, заключающую в себе простые и сложные вопросы арифметики, ибо это необходимо людям.» Ал-Хорезми Мухаммед бен-Муса.

Ал-Хорезми (Узбекистан) известен прежде всего своей «Книгой о восполнении и противопоставлении» («Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала»), от названия которой произошло слово «алгебра». Этот трактат является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

В теоретической части своего трактата ал-Хорезми даёт Классификацию уравнений 1-й и 2-й степени и выделяет шесть их видов:

1) «Квадраты равны корням», т. е. ах 2 = bх. (пример:)

2) «Квадраты равны числу», т. е. ах 2 = с.(пример:)

3) «Корни равны числу», т. е. ах = с. (пример:)

4) «Квадраты и числа равны корням», т. е. ах 2 + с = bх. (пример:)

5) «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах 2 . (пример:)

Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

«Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: « Раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень».

Знаменитое уравнение Аль-Хорезми: «Квадрат и десять корней равны 39». x 2 + 10x = 39 (IX век) . В своем трактате он пишет: «Правило таково: раздвой число корней, получится в этой задаче пять. Прибавь это к тридцатидевяти, будет шестьдесят четыре. Извлеки из этого корень, будет восемь, и вычти из этого половину числа корней, т.е. пять, останется три: это и будет корень квадрата, который ты искал»

Квадратные уравнения в Европе XII-XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к виду x 2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Заключение.

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

В настоящее время, умение решать квадратные уравнения необходимо для всех. Умение быстро, рационально и правильно решать квадратные уравнения облегчает прохождение многих тем курса математики. Квадратные уравнения решаются не только на уроках математики, но и на уроках физики, химии, информатики. Большинство практических задач реального мира тоже сводится к решению квадратных уравнений.

Литература

  1. Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972.
  2. Березкина Э.И. Математика древнего Китая - М.: Наука, 1980
  3. Пичурин Л.Ф. За страницами учебника алгебры: Кн. для учащихся

7-9 кл. сред.шк. - М.: Просвещение, 1990

  1. Глейзер Г. И. История математики в школе VII - VIII кл. Пособие для учителей. - М.: Просвещение, 1982.
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека