Холинорецепторы, их типы, локализация. Фармакологические свойства ацетилхолина


Еще до открытия роли ацетилхолина как химического медиатора Г. Дейл (Dale) отмечал существенные различия в действии ацетилхолина в разных синапсах. Воздействие в области синапсов постганглионарных парасимпатических нервов он назвал мускариноподобным, так как оно сходно с действием яда мухоморов - мускарином, а в области преганглионарных окончаний, мозгового слоя надпочечников, а также в нервно-мышечных синапсах
поперечно-полосатых мышц никотиноподобным по схожему влиянию малых доз никотина.
Согласно современным представлениям эффект, подобный действию никотина или мускарина, зависит не от качества ацетилхоли- на, а от различий в структуре рецепторов, с которыми оц взаимодействует. Эти отличия делают один вид рецепторов более чувствительными к мускарину (мускариночувствительные М-холинорецепторы), Другой к никотину (никотиночувствительные Н-холинорецепто- ры). М-холинорецепторы избирательно блокируются атропином, а Н-холинорецепторы - алкалоидом кураре d-тубокурарином.
Физиологически важное различие между М-холинорецептора- ми и Н-холинорецепторами - скорость ответа на приходящий сигнал. Никотиновые холинорецепторы обеспечивают быструю передачу и непродолжительные эффекты, тогда как М-холинорецепторы реагируют более медленно и длительно. Объясняется это тем, что Н-холинорецепторы относятся к быстродействующим ионотропным рецепторам. Основу ионотропного рецептора составляет белок, имеющий участки связывания с медиатором, а также образующий ионный канал. Изменение конформации белковой молекулы в результате активации Н-холинорецептора и вызывает открытие ионных каналов для Na+ и К+. Открывшийся на несколько миллисекунд при контакте с ацетилхолином такой канал успевает пропустить до 5 х Ю5 ионов Na+ и К+.
Мускариновые холинорецепторы относятся к медленнодействующим метаботропнъш рецепторам. В качестве вторичных мессенджеров М-холинорецепторы продуцируют цАМФ или цГМФ (в ЦНС, сердце) или диацилглицерол и инозитолфосфат (в желудке, симпатических ганглиях).
Группа М-холинорецепторов неоднородна, в ней выделяют М(-холинорецепторы (в ганглиях и ЦНС), М2-холинорецепторы (в сердце и ЦНС) и М3-холинорецепторы (в ЦНС, гладких мышцах бронхах, желудочно-кишечном тракте, мочевых путях, клетках экзокринных желез), М4-рецепторы, находящиеся преимущественно в ЦНС, и М5-холинорецепторы (в ЦНС и желудке). В миокарде предсердий и нейронах ствола головного мозга возбуждение М2-холиноре- цепторов приводит к активации калиевых каналов: К+ интенсивно покидает клетку, приводя к гиперполяризации клеточной мембраны. Активация холинорецепторов в нейронах коры головного мозга, гиппокампа сопровождается деполяризацией клеточной мембраны.
Группа Н-холинорецепторов также неоднородна. Они подразделяются на рецепторы ганглионарного и мышечного типов. Мышечные Н-холинорецепторы более чувствительны к бунгаротоксину и тубокурарину, локализованы в скелетных мышцах, а рецепторы ганглионарного типа - к бензогексонию, концентрируются они в вегетативных ганглиях, мозговом веществе надпочечников.
М-холинорецепторы периферической нервной системы расположены на постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных парасимпатических волокон, в связи с чем физиологические эффекты их возбуждения (табл. 1) в целом совпадают с эффектами возбуждения парасимпатического отдела вегетативной нервной системы.
Таким образом, при действии фармакологических веществ на периферические М-холинорецепторы наблюдаются: сужение зрачков вследствие сокращения сфинктера зрачка; обильное отделение жидкой слюны; повышение секреции других желез желудочно-кишечного канала; потоотделение; спазм бронхов; усиление перистальтики кишечника и желчных путей, переходящее в спазм; сокращение матки; усиление тонуса мочевого пузыря. Вследствие расширения капилляров (в результате прекращения симпатической импульсации) падает кровяное давление; одновременно происходит резкое замедление пульса после возбуждения М-холинорецепторов ведущих узлов сердца.

При действии атропина и других М-холинолитиков возникают обратные эффекты: расширение зрачков; сухость во рту; уменьшение секреции других желез желудочно-кишечного тракта (в результате блокады парасимпатических импульсов, стимулирующих эти железы); прекращение потоотделения; снижение моторики желудочно-кишечного тракта и уменьшение сокращений бронхиальной мускулатуры, вызываемое парасимпатической иннервацией; учащение сердцебиения (ритм сердца у человека находится под постоянным тормозящим влиянием тонуса блуждающего нерва).
Н-холинорецепторы находятся на постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон (симпатических и парасимпатических), в мозговом слое надпочечников, каротидных клубочках, концевых пластинках скелетных мышц и в центральной нервной системе. При этом Н-холи- норецепторы вегетативных ганглиев существенно отличаются от Н-холинорецепторов скелетных мышц.
При возбуждении ганглионарных Н-холинорецепторов активируются как симпатические, так и парасимпатические постганглионарные волокна. Возникающая при этом реакция представляет собой сочетание симпатических и парасимпатических эффектов: повышение кровяного давления, возбуждение дыхания, усиление перистальтики и
Физиологические эффекты возбуждения периферических
М-холинорецепторов
Таблица 1

Нерв Орган Эффект
Глазодвигательный
нерв
Глаз - сфинктер зрачка
Глаз - ресничная мышца
Сокращение, сужение зрачка, падение внутриглазного давления. Спазм аккомодации
Ветви лицевого нерва Слезные железы Слюнные железы Секреция слез Секреция жидкой слюны
Симпатические волокна, иннервирующие потовые железы Потовые железы Потоотделение
Легочные ветви блуждающего нерва Бронхи - мышечная оболочка Бронхиальные железы Спазм бронхов Секреция слизи
Сердечные волокна блуждающего нерва Синусно-предсердный узел
Предсердно-желудочковый пучок Мышцы сердца
Замедление ритма
Замедление проводимости
Уменьшение силы сокращения
Брюшные ветви блуждающего нерва Желудок
Кишечник
Желчные протоки
Поджелудочная
железа
Усиление моторики и секреции
Усиление сокращений и спазм
Усиление сокращений и спазм
Усиление внешней и внутренней секреции
Тазовые внутренностные нервы Прямая кишка Мочевой пузырь Матка Усиление моторики Усиление тонуса Усиление сокращений

спазм гладкомышечных органов, увеличение секреции желез. Повышению кровяного давления способствует также выход адреналина из мозгового слоя надпочечников. Усиление дыхания становится рефлекторным ответом на возбуждение каротидных Н-холинорецепторов.

ФУНКЦИИ ХОЛИНЕРГИЧЕСКИХ СИНАПСОВ

Холинергические синапсы локализованы в ЦНС (ацетилхолин регулирует моторику, пробуждение, память, обучение), а также в вегетативных ганглиях, мозговом слое надпочечников, каротидных клубочках, скелетных мышцах и внутренних органах, получающих постганглионарные парасимпатические волокна.

В скелетных мышцах синапсы занимают небольшую часть мембраны и изолированы друг от друга. В верхнем шейном ганглии около 100000 нейронов упакованы в объеме 2 - 3 мм 3 .

Ацетилхолин синтезируется в аксоплазме холинергических окончаний из ацетилкоэнзима А (митохондриального происхождения) и незаменимого аминоспирта холина при участии фермента холин-ацетилтрансферазы (холинацетилаза). Иммуноцитохимический метод определения этого фермента позволяет установить локализацию холинергических нейронов.

Ацетилхолин депонируется в синаптических пузырьках (везикулах) в связи с АТФ и нейропептидами (вазоактивный интестинальный пептид, нейропептид Y). Квантами выделяется при деполяризации пресинаптической мембраны и возбуждает холинорецепторы. В окончании двигательного нерва находится около 300 000 синаптических пузырьков, в каждом из них депонировано от 1000 до 50000 молекул ацетилхолина.

Весь ацетилхолин, находящийся в синаптической щели, подвергается гидролизу ферментом ацетилхолинэстеразой (истинная холинэстераза) с образованием холина и уксусной кислоты. Одна молекула медиатора инактивируется в течение 1 мс. Ацетилхолинэстераза локализована в аксонах, дендритах, перикарионе, на пресинаптической и постсинаптической мембранах.

Холин в 1000 - 10 000 раз менее активен по сравнению с ацетилхолином; 50 % его молекул подвергается нейрональному захвату и вновь участвует в синтезе ацетилхолина. Уксусная кислота окисляется в цикле трикарбоновых кислот.

Псевдохолинэстераза (бутирилхолинэстераза) крови, печени, нейроглии катализирует гидролиз эфиров растительного происхождения и лекарственных средств.

Холинорецепторы представляют собой гликопротеины, состоящие из нескольких субъединиц. Большинство холинорецепторов являются резервными. На постсинаптической мембране в нервно-мышечном синапсе расположено до 100 млн холинорецепторов, из них не функционируют 40 - 99 %. В холинергическом синапсе на гладкой мышце находятся около 1,8 млн холинорецепторов, резервными являются 90 - 99%.

В 1914г. Генри Дейл установил, что эфиры холина могут оказывать как мускариноподобный, так и никотиноноподобный эффекты. В соответствии с химической чувствительностью холинорецепторы классифицируют на мускариночувствительные (М) и никотиночувствительные (Н) (табл. 20). Ацетилхолин имеет гибкую молекулу, способную в различных стереоконформациях возбуждать М- и Н-холинорецепторы.



М-холинорецепторы возбуждаются ядом мухомора мускарином и блокируются атропином. Они локализованы в нервной системе и внутренних органах, получающих парасимпатическую иннервацию (вызывают угнетение сердца, сокращение гладких мышц, повышают секреторную функцию экзокринных желез) (табл. 15 в лекции 9). М-холинорецепторы ассоциированы с G -белками и имеют 7 сегментов, пересекающих, как серпантин, клеточную мембрану.

Молекулярное клонирование позволило выделить пять типов М-холинорецепторов:

1. М 1 -холинорецепторы ЦНС (лимбическая система, базальные ганглии, ретикулярная формация) и вегетативных ганглиев;

2. М 2 -холинорецепторы сердца (снижают частоту сердечных сокращений, атриовентрикулярную проводимость и потребность миокарда в кислороде, ослабляют сокращения предсердий);

3. М 3 -холинорецепторы:

· гладких мышц (вызывают сужение зрачков, спазм аккомодации, бронхоспазм, спазм желчевыводящих путей, мочеточников, сокращение мочевого пузыря, матки, усиливают перистальтику кишечника, расслабляют сфинктеры);

· желез (вызывают слезотечение, потоотделение, обильное отделение жидкой, бедной белком слюны, бронхорею, секрецию кислого желудочного сока).

Таблица 20. Холинорецепторы

Рецепторы Агонисты Антагонисты Локализация Функции Эффекторный механизм
Мускариночувствительные
м 1 Оксотреморин Пиренцепин ЦНС Контроль психических и моторных функций, реакции пробуждения и обучения Активация фосфолипазы С посредством G q/11 -белка
Вегетативные ганглии Деполяризация (поздний постсинаптический потенциал)
M 2 Метоктрамин Сердце: синусный узел Замедление спонтанной деполяризации, гиперполяризация Ингибирование аденилатциклазы посредством G i -белка, активация К + -каналов
предсердия Укорочение потенциала действия, уменьшение сократимости
атриовентрикулярный узел Уменьшение проводимости
желудочки Незначительное уменьшение сократимости
М 3 Гексагидросила дифенидол Гладкие мышцы Сокращение Аналогичен М 1
Экзокринные железы Повышение секреторной функции
М 4 Тропикамид Химбацин Альвеолы легких - Аналогичен М 2
М 5 - - ЦНС (черная субстанция среднего мозга, гиппокамп) - Аналогичен М 1
Никотиночувствительные
н H Диметилфенил пиперазин Цитизин Эпибатидин Арфонад ЦНС Аналогичны функциям М, Открытие каналов для Na + , K + , Са 2+
Вегетативные ганглии Деполяризация и возбуждение постганглионарных нейронов
Мозговой слой надпочечников Секреция адреналина и норадреналина
Каротидные клубочки Рефлекторное тонизирование дыхательного центра
Н м Фенилтримети ламмоний Тубокурарин-хлорид a-Бунгаротоксин Скелетные мышцы Деполяризация концевой пластинки, сокращение

Внесинаптические М 3 -холинорецепторы находятся в эндотелии сосудов и регулируют образование сосудорасширяющего фактора - окиси азота (NО).

4. М 4 - и М 5 -холинорецепторы имеют меньшее функциональное значение.

М 1 -, М 3 - и М 5 -холинорецепторы, активируя посредством G q /11 -белка фосфолипазу С клеточной мембраны, увеличивают синтез вторичных мессенджеров - диацилглицерола и инозитолтрифосфата. Диацилглицерол активирует протеинкиназу С, инозитолтрифосфат освобождает ионы кальция из эндоплазматического ретикулума,

М 2 - и М 4 -холинорецепторы при участии G i - и G 0 -белков ингибируют аденилатциклазу (тормозят синтез цАМФ), блокируют кальциевые каналы, а также повышают проводимость калиевых каналов синусного узла.

Дополнительные эффекты М-холинорецепторов - мобилизация арахидоновой кислоты и активация гуанилатциклазы.

Н-холинорецепторы возбуждаются алкалоидом табака никотином в малых дозах, блокируются никотином в больших дозах.

Биохимическая идентификация и выделение Н-холинорецепторов стали возможны благодаря открытию их избирательного высокомолекулярного лиганда a-бунгаротоксина - яда тайваньской гадюки Bungarus multicintus и кобры Naja naja. Н-холинорецепторы находятся в ионных каналах, в течение миллисекунд они повышают проницаемость каналов для Na + , K + и Са 2+ (через один канал мембраны скелетной мышцы проходит 5 - 10 7 ионов натрия за 1 с).

Таблица 21. Классификация лекарственных средств, влияющих на холинерги-ческие синапсы (указаны основные препараты)

Холиномиметики
М, Н-холиномиметики ацетилхолин-хлорид, карбахолин
М-холиномиметики пилокарпин, ацеклидин
Н-холиномиметики (ганглиостимуляторы) цитизин, лобелин
Средства, повышающие выделение ацетилхолина
цисаприд
Антихолинэстеразные средства
Обратимые блокаторы физостигмин, галантамин, амиридин, прозерин
Необратимые блокаторы армин
Холиноблокаторы
М-холиноблокаторы атропин, скополамин, платифиллин, метацин, пиренцепин, ипратропия бромид
Н-холиноблокаторы (ганглиоблокаторы) бензогексоний, пентамин, гигроний, арфонад, пахикарпин, пирилен
Миорелаксанты
Антидеполяризующие тубокурарин-хлорид, пипекурония бромид, атракурия бесилат, мелликтин
Деполяризующие дитилин

Н-холинорецепторы широко представлены в организме. Их классифицируют на Н-холинорецепторы нейронального (Н н) и мышечного (Н м) типов.

Нейрональные Н н -холинорецепторы представляют собой пентамеры и состоят из субъединиц a 2 - a 9 , и β 2 - β 4 (четыре трансмембранные петли). Локализация нейрональных Н-холинорецепторов следующая:

· кора больших полушарий, продолговатый мозг, клетки Реншоу спинного мозга, нейрогипофиз (повышают секрецию вазопрессина);

· вегетативные ганглии (участвуют в проведении импульсов с преганглионарных волокон на постганглионарные);

· мозговой слой надпочечников (повышают секрецию адреналина и норадреналина);

· каротидные клубочки (участвуют в рефлекторном тонизировании дыхательного центра).

Мышечные Н м -холинорецепторы вызывают сокращение скелетных мышц. Они представляют собой смесь мономера и димера. Мономер состоит из пяти субъединиц (a 1 - a 2 , β, γ, ε, δ), окружающих ионные каналы. Для открытия ионных каналов необходимо связывание ацетилхолина с двумя a-субъединицами.

Пресинаптические М-холинорецепторы тормозят, пресинаптические Н-холинорецепторы стимулируют высвобождение ацетилхолина.

К холинергическим средствам относятся холиномиметики и холиноблокаторы.

Вегетативная нервная система состоит из симпатической и парасимпатической систем. Схема строения вегетативной нервной системы представлена на рис. 3.2.

Рис. 3.2.

1 – к глазу: 2 – к лицу; 3 – к руке; 4 – к сердцу, 5 – к легким; 6 – к желудку; 7 – к кишечнику; 8 – к мочевому пузырю; 9 – к прямой кишке

Парасимпатические нервные волокна берут начало от клеток стволовой части головного мозга (например, волокна блуждающего нерва, иннервирующего многие внутренние органы) и от клеток крестцовой части спинного мозга. Эти волокна (преганглионарные парасимпатические волокна) оканчиваются в парасимпатических ганглиях, которые, в отличие от симпатических ганглиев, расположены обычно в толще иннервируемых органов.

В парасимпатических ганглиях окончания преганглионарных волокон контактируют с ганглионарными нервными клетками. Аксоны ганглионарных клеток (постганглионарные парасимпатические волокна) оканчиваются на клетках иннервируемых органов.

Симпатические нервные волокна берут начало от специальных клеток грудного и поясничного отделов спинного мозга. Покинув спинной мозг, эти волокна оканчиваются в симпатических ганглиях (симпатические ганглии находятся вне иннервируемых органов). Преганглионарные симпатические волокна контактируют с нервными клетками (ганглионарными клетками), аксоны ганглионарных клеток (постганглионарные симпатические волокна) выходят за пределы ганглиев и оканчиваются на клетках иннервируемых органов. Схема строения симпатической и парасимпатической нервных систем представлена на рис. 3.3.

Рис. 3.3.

Фармакологические вещества, влияющие на эфферентную иннервацию, действуют в области контактов между окончаниями нервных волокон и клетками (нервные клетки или клетки тканей), на которых они оканчиваются. Такие контакты называют термином "синапс" – соединение. Во всех синапсах возбуждение передается с помощью специальных веществ – медиаторов .

Медиаторы выделяются окончаниями нервных волокон и воздействуют на рецепторы клеток. Действие медиатора кратковременно, следующее возбуждение нервных волокон вызывает выделение новой порции медиатора и т.д.

Постганглионарные симпатические волокна в качестве медиатора выделяют норадреналин, с помощью которого возбуждение передается с симпатических нервных волокон на клетки органов и тканей. В вегетативных ганглиях и симпатической и парасимпатической нервных систем, в синапсах, образованных окончаниями постганглионарных волокон парасимпатической нервной системы и клетками органов и тканей, в нервно-мышечных синапсах (контакты двигательных нервов с клетками скелетных мышц) медиатором (передатчиком возбуждения) является ацетилхолин.

Нервные волокна, выделяющие норадреналин, называются адренергическими , а выделяющие ацетилхолин – холинергическими .

Как уже указывалось в гл. 2, рецепторы мембраны клетки, возбуждаемые соответственно ацетилхолином и норадреналином, также называются холинергическими и адренергическими. Схема локализации холино- и адренорецепторов представлена на рис. 3.4.

Рис. 3.4.

Функции симпатической и парасимпатической нервных систем представлены на рис. 3.5.

Возбуждение симпатической нервной системы приводит к повышению артериального давления, парасимпатической – к снижению.

Рис. 3.3

парасимпатическая система: 1, 5 – сужение сосудов; 2 – сужение зрачка, 4 – сужение бронхов; 3 – усиление секреции желез; 6 – замедление сердечных сокращений; 7, 13 – расслабление; 8 – уменьшение; 9, 11 – усиление моторики желудка и кишечника; 10 – уменьшение секреции; 12 – сокращение мочевого пузыря; симпатическая система: 14 – расширение сосудов, 15 – расширение зрачка, 18 – расширение бронхов; 16 – снижение секреции желез; 19 – ускорение и усиление сокращения сердца; 20 – сокращение мышцы, поднимающей волос; 21 – усиление; 22, 24 – ослабление моторики желудка и кишечника; 23 – усиление секреции; 25 – расслабление мочевого пузыря; 26 – возбуждение; А – сосуды головного мозга; В – зрачок; С – слюнные железы; D – периферийные сосуды; Е – бронхи; F – сердце; G – мышца, поднимающая волос; H – потоотделение; I – желудок; J – печень; К – почка; L – надпочечник; М – кишечник; N – мочевой пузырь; О – половые органы

Возбуждение симпатической нервной системы приводит к расширению бронхов, парасимпатической – к сужению.

Возбуждение симпатической нервной системы приводит к учащению частоты сердечных сокращений (ЧСС) (тахикардия), парасимпатической – урежению (брадикардия).

При возбуждении симпатической нервной системы ослабляется перистальтика ЖКТ, парасимпатической – усиливается.

Повышение тонуса симпатической нервной системы приводит к расширению зрачка, парасимпатической – к сужению зрачка и снижению внутриглазного давления.

Симпатическая нервная система повышает секрецию желез незначительно, парасимпатическая – значительно.

Строение парасимпатической нервной системы представлено на рис. 3.6.

Рис. 3.6.

При взаимодействии ацетилхолина (АХ) с холинорецепторами изменяется состояние клеточной мембраны в области синапса (постсинаптической мембраны). В состоянии покоя синаптическая мембрана поляризована: по обе стороны мембраны расположены частицы, несущие противоположные электрические заряды. Наружная поверхность мембраны заряжена положительно, внутренняя – отрицательно. Разница между зарядами составляет мембранный потенциал (потенциал покоя). При взаимодействии АХ с холинорецепторами постсинаптическая мембрана становится проницаемой для ионов натрия, концентрация которых во внеклеточной жидкости значительно больше, чем внутри клетки. Проникновение внеклеточного натрия через клеточную мембрану ведет к уменьшению мембранного потенциала. Такое изменение поляризации мембраны называют деполяризацией . Падение мембранного потенциала (электрический ток) вызывает возбуждение клетки. Возбуждение вначале возникает в области синапса (потенциал действия).

Действие АХ очень кратковременно, так как он разрушается специальным ферментом – ацетилхолинэстеразой. По окончании действия АХ происходит восстановление поляризации постсинаптической мембраны – реполяризация. Электрические процессы на постсинаптической мембране изображены на рис. 3.7.

Рис. 3.7.

Схематическое изображение холинергического синапса представлено на рис. 3.8.

Рис. 3.8.

1 – ацетилхолин; 2 – ацетилхолинэстераза

Вследствие кратковременного действия ацетилхолин в медицинской практике не используется. Применяют вещества, в своем действии "подражающие" ацетилхолину – возбуждающие холинорецепторы. Такие вещества называют холиномиметиками . Кроме того, используют антихолинэстеразные вещества, которые блокируют ацетилхолинэстеразу и таким образом замедляют расщепление ацетилхолина.

Холинорецепторы разных синапсов проявляют неодинаковую чувствительность к различным фармакологическим веществам.

Постганглионарные нервные окончания парасимпатической нервной системы чувствительны к возбуждающему действию мускарина (алкалоид грибов-мухоморов). Такие рецепторы называют М-холинорецепторы (мускарииочувствительиые). М-холинорецепторы (М-ХР) включают четыре подтипа.

Остальные холинорецепторы эфферентной иннервации проявляют высокую чувствительность к никотину (алкалоид табака), поэтому их называют Н-холинорецепторы (никотиночувствительные). Различают два типа Н-холинорецепторов (Н-ХР): к первому типу относятся Н-холинорецепторы, представленные в ганглиях парасимпатической и симпатической нервных систем (НН), ко второму типу относятся Н-холинорецепторы нервно-мышечных синапсов поперечнополосатой мускулатуры (НМ).

Подтипы холинорецепторов представлены в табл. 3.1.

Таблица 3.1

Подтипы холинорецепторов

Подтипы холинорецепторов

Локализация рецепторов

М-холинорецепторы

ЦНС, энтерохромаффиноподобные клетки желудка

Выделение гистамина, стимулирующего секрецию хлористоводородной кислоты париетальными клетками желудка

Сердце, пресинаптическая мембрана окончаний постганглионарных парасимпатических волокон

Уменьшение частоты сердечных сокращений. Угнетение атриовентрикулярной проводимости. Снижение сократительной активности предсердий. Снижение высвобождения ацетилхолина

М3 (иннервируемые)

Круговая мышца радужной оболочки, цилиарная (ресничная) мышца глаза, гладкие мышцы бронхов, желудка, кишечника, желчного пузыря и желчных протоков, мочевого пузыря, матки, экзокринные железы (бронхиальные железы, железы желудка, кишечника, слюнные, слезные, носоглоточные и потовые железы)

Сокращение, сужение зрачков. Сокращение, спазм аккомодации (глаз устанавливается на ближнюю точку видения). Повышение тонуса (за исключением сфинктеров) и усиление моторики желудка, кишечника и мочевого пузыря. Повышение секреции

холиноре-

цепторов

Локализация рецепторов

Эффекты, вызываемые стимуляцией холинорецепторов

М3 (неиннервируемые)

Эндотелиальные клетки кровеносных сосудов

Выделение эндотелиального релаксирующего фактора (N0), вызывающего расслабление гладких мышц сосудов

Н-холинорецепторы

Скелетные мышцы

Сокращение

Вегетативные ганглии, энтерохромаффинные клетки мозгового вещества надпочечников, каротидные клубочки

Возбуждение ганглионарных нейронов. Секреция адреналина и норадреналина. Рефлекторное возбуждение дыхательного и сосудодвигательного центров

Холиномиметики делят на три группы:

  • 1) вещества, возбуждающие преимущественно М-холинорецепторы (М-холиномиметики, М-ХМ): пилокарпин;
  • 2) вещества, возбуждающие Н-холинорецепторы (Н-холиномиметики, Н-ХМ): цитизин;
  • 3) вещества, одновременно возбуждающие и те и другие рецепторы (М, Н-холиномиметики): ацетилхолин, карбахол.

Основные эффекты М-холиномиметиков, связанные с возбуждением М-холинорецепторов, представлены в табл. 3.2.

Таблица 3.2

Ответ мускаринорецепторов на действие М-холиномиметиков

При отравлении М-ХМ, в том числе мускарином, содержащимся в мухоморах, наблюдается урежение сердечных сокращений, падение артериального давления, сужение зрачков, бронхоспазм, сильное слюнотечение, рвота, понос. Для устранения этих явлений следует назначать вещества, блокирующие М-ХР, например атропин.

При внутривенном введении П-ХМ возбуждают ХР синокаротидной зоны, при этом рефлекторно возбуждается дыхательный центр, дыхание становится более глубоким и частым.

Антихолинэстеразные вещества оказывают непрямое М, Н-холиномиметическое действие.

Пилокарпин – алкалоид растения, произрастающего в Южной Америке. Токсичен, применяется только местно в глазной практике – суживает зрачок (вызывает сокращение круговой мышцы радужной оболочки), в результате чего открываются углы передней камеры глаза, увеличивается отток внутриглазной жидкости, снижается внутриглазное давление, что используется для лечения глаукомы (заболевания, при котором резко повышается внутриглазное давление) в виде глазной мази или капель. Побочное действие – спазм аккомодации (установление глаза на ближнее видение), нарушение зрения.

Цитизин – алкалоид травы термопсиса. В составе таблеток "Табекс" применяется как вспомогательное средство для борьбы с курением табака – ослабляет явления абстиненции при прекращении курения, на его фоне курение становится неприятным. Аналогично используется препарат варениклин ("Наминке").

Никотин в связи с его высокой токсичностью представляет интерес из-за распространенности курения табака. В малых дозах никотин возбуждает ЦНС, в больших дозах оказывает угнетающее действие. Сосудосуживающее действие способствует возникновению стенокардии, гипертонической болезни, острому инфаркту миокарда, облитерирующему эндартерииту, заканчивающемуся гангреной конечностей. Препараты никотинозаместительной терапии для лечения зависимости от никотина представлены в табл. 3.3.

Таблица 3.3

Препараты никотинозаместительной терапии

Лекарственная форма

Препарат

Действующее вещество

Способ применения

Пленки для наклеивания на десну

"Гамибазин",

"Анабазин"

Анабазина

гидрохлорид

С первого дня лечения желательно прекратить курить или резко уменьшить частоту курения (полностью отказаться от курения не позднее 8–10 дня лечения). Пленку приклеивают на слизистую оболочку десны или защечной области, дозу ежедневно уменьшают

Трансдер-мальная терапевтическая система

"Цитизин", "Циперкутен ТТС"

Наклеивают на участок кожи без волосяного покрова. Длительность разовой аппликации – 2–3 сут. Продолжительность терапии – 1–3 нед.

"Никотинелл",

"Никвигин",

"Никоретте"

Таблетки, покрытые оболочкой

Внутрь при соответствующем уменьшении числа таблеток и выкуриваемых сигарет. Полное прекращение курения должно наступить не позднее пятого дня от начала лечения

"Чампикс"

Варениклин

Раствор для ингаляций в комплекте с мундштуком

"Никоретте",

"Никотинелл"

Следует применять в тот момент, когда возникает непреодолимое желание закурить

Пастилки

жевательные

"Никотинелл"

Жевать нужно до ощущения горечи и покалывания во рту до 10 пастилок в день

Жевательная

"Гамибазин"

Анабазина

гидрохлорид

Предназначена для длительного жевания: ежедневно по 1 резинке 4 раза в сутки с уменьшением дозы

"Никоретте"

Нежелательный эффект курения связан также с тем, что вещества, содержащиеся в табачном дыме, способствуют возникновению бронхита и рака легких. Никотин в составе жевательной резинки "Никоретте" также применяется как вспомогательное средство для борьбы с курением табака. Сокращая количество выкуриваемых сигарет, курильщик восполняет дефицит привычного допинга приемом никотина в различных лекарственных формах. Постепенное снижение дозы не вызывает тягостных последствий синдрома отмены. Но самым важным в борьбе с табакокурением является желание никотинозависимого бросить курить.

М, Н-холиномиметик прямого действия – карбахол ("МИО-ХОЛ"), полученный после изменения структуры ацетилхолина, действует до 1,5–2 ч. В виде глазных капель используется для лечения глаукомы.

Такие препараты, как неостигмин ("Прозерин"), пиридостигмина бромид ("Калимин"), дистигмина бромид ("Убретид"), галантамин ("Нивалин", "Реминил"), донепезил ("Арисепт"), недлительно блокируют ацетил-холинэстеразу.

Антихолинэстеразные препараты применяются для лечения глаукомы (неостигмин, галантамин), лечения миастении (заболевания, при котором вследствие нарушения передачи возбуждения в нервно-мышечных синапсах развивается мышечная слабость, – прозерин, калимин). Прозерин применяют как антидот при передозировке миорелаксантов. Убретид используют для профилактики и терапии послеоперационной атонии кишечника, атонии мочевого пузыря. Галантамин, арисепт применяют при болезни Альцгеймера легкой и средней степени тяжести.

Побочные действия антихолинэстеразных препаратов связаны с местными изменениями при лечении глаукомы – гиперемия конъюнктивы (покраснение глаз), миопическая аккомодация (установление глаза на ближнюю точку видения). Системные изменения отмечаются при парентеральном введении (прозерин) или отравлениях фосфорорганическими соединениями, широко распространенными в быту, а также при передозировке препаратами для лечения глаукомы. Основные проявления передозировки антихолинэстеразных средств – головная боль, обмороки. Отмечаются тошнота, рвота, брадикардия, гипотензия, бронхоспазм. Для отравления характерны кишечные колики, понос, тяжесть в животе, слюнотечение, слезотечение, потливость, тремор. При отравлении фосфорорганическими соединениями обычно применяют М-холиноблокаторы, чаще всего атропин.

Холина альфосцерат ("Глиатилин") – предшественник АΧ, используется при острой церебральной ишемии. Возбуждает холинорецепторы, преимущественно центральные (оказывает холиномиметическое действие). В организме расщепляется на холин и глицерофосфат. Субстратно обеспечивает синтез ацетилхолина и фосфатидилхолина нейрональных мембран. Стимулирует холинергическую нейропередачу, улучшает пластичность нейрональных мембран и функцию рецепторов, активирует церебральный кровоток, стимулирует метаболизм ЦНС и ретикулярную формацию. Повышает настроение, улучшает умственную деятельность, концентрацию внимания, запоминание и способность к воспроизведению полученной информации, оптимизирует познавательные и поведенческие реакции, устраняет эмоциональную неустойчивость, апатию при деменции (альцгеймеровского типа, сенильная, старческое слабоумие). В остром периоде черепно-мозговых травм способствует нормализации кровотока и биоэлектрической активности мозга на стороне поражения, способствует регрессу неврологической симптоматики.

М-холиноблокаторы блокируют влияния парасимпатической нервной системы на внутренние органы. Таким образом, их действие противоположно эффектам, связанным с возбуждением парасимпатической нервной системы. Атропин – алкалоид, содержащийся в различных растениях семейства пасленовых: красавке (Atropa Belladonna /..), белене (Hyoscyamus niger L.), разных видах дурмана (Datura stramonium L .) и др., структурно похож на ацетилхолин, однако ему не присуща активность ацетилхолина. Вытесняя АХ из связи с ХР, препарат нарушает передачу возбуждения в постганглионарных синапсах ПСНС.

Показания для использования атропина и других М-холинолитиков следующие.

  • 1. Уменьшение спазмов Ж КТ и тем самым болей в животе. Атропин, платифиллин, метацин, гиосцина бутилбромид ("Бускопан") применяют при спазмах органов брюшной полости (спастические колиты, холецистит, почечная и печеночная колики).
  • 2. Уменьшение секреции желез желудка используется для лечения язвенной болезни желудка и двенадцатиперстной кишки (метацин , селективный препарат пирензепин ("Гастроцепин")).
  • 3. Лечение бронхоспазма – селективный препарат тиотропия бромид ("Спирива").
  • 4. Уменьшение секреции желез пищеварительного тракта и бронхов используется в анестезиологии, особенно в случае применения препаратов для ингаляционного наркоза, которые обладают раздражающим действием и вызывают усиление секреции желез (атропин).
  • 5. Учащение сердцебиений при редком сердечном ритме (атропин).
  • 6. В качестве мидриатических средств (мидриаз – расширение зрачка) при диагностическом осмотре глазного дна (атропин, гоматропин). Тропикамид ("Мидриацил") отличается от других холиноблокирующих средств (атропина и др.) быстрым развитием мидриаза и относительно кратковременным действием. Применяется в офтальмологии в диагностических целях, когда необходимо вызвать мидриаз, в том числе при исследовании глазного дна. Используют также при воспалительных процессах и спайках глаза.
  • 7. Лечение интоксикации холиномиметиками и отравлений мухомором (атропин).
  • 8. При учащенном мочеиспускании, недержании мочи, энурезе применяют оксибутинин ("Дринтан") – М-холиноблокатор, который проявляет также миотропные спазмолитические свойства. Вызывает расслабление гладкой мускулатуры ЖКТ, желче- и мочевыводящих путей, матки и в большей степени – мочевого пузыря (расслабляет детрузор). Толтеродии ("Уротол", "Детрузитол", "Ролитен") также применяют при учащенном мочеиспускании, недержании мочи и дизурии.

Побочное действие М-ХЛ – дальнозоркость и увеличение внутриглазного давления, сухость во рту, запор, задержка мочи, повышение температуры.

Н-ХР вегетативных ганглиев синокаротидной зоны, мозгового вещества надпочечников отличаются от Н-ХР нервно-мышечных синапсов, что особенно четко проявляется при действии Н-холиноблокаторов (Н-ХБ). Основные вегетативные ганглии представлены на рис. 3.9.

Н-ХБ делятся на две группы.

  • 1. Вещества, блокирующие Н-ХР вегетативных ганглиев синокаротидной зоны мозгового вещества надпочечников, получили название ганглиоблокаторов .
  • 2. Вещества, блокирующие ХР нервно-мышечных синапсов, называют курареподобными веществами или миорелаксантами периферического действия.

Ганглиоблокатор азаметония бромид ("Пентамин") применяют при гипертонических кризах. При внутривенном капельном введении достигается снижение артериального давления на необходимое время при проведении хирургического вмешательства, например для предупреждения отека мозга.

Рис. 3.9.

1 – ресничный ганглий; 2 – крылонебный ганглий; 3 – ушной ганглий; 4 – подчелюстной ганглий; 5 – тазовый нерв; 6 – подчревное сплетение; 7 – сердце; 8 – легкие; 9 – печень; 10 – желудок; 11 – поджелудочная железа; 12 – кишечник 13 – почка; римскими цифрами обозначены пары черепных нервов

Побочные действия ганглиоблокаторов: атония кишечника (вплоть до паралитической кишечной непроходимости), ортостатический коллапс (резкое падение артериального давления при переходе больного в вертикальное положение). Также характерны сухость во рту, нарушение аккомодации. При системном применении довольно быстро развивается привыкание, приходится увеличивать дозу.

Курареподобные средства, или миорелаксанты, вызывают расслабление скелетной мускулатуры. Иннервация скелетной мускулатуры представлена на рис. 3.10.

Антидеполяризующие средства – рокурония бромид ("Эсмерон"), векурония бромид ("Норкурон"), пипекурония бромид ("Ардуан"), атракурия безилат – вводятся внутривенно. При этом сразу отмечается расслабление мышц в определенном порядке – шея, конечности, туловище, последние – дыхательные мышцы, остановка дыхания. Пациента переводят на искусственное дыхание. Продолжительность действия – 30–40 мин.

Антагонисты – антихолинэстеразные средства, повышающие содержание АХ путем вытеснения из рецепторов антидеполяризующих миорелаксантов, восстанавливающие таким образом нервно-мышечную передачу.

Деполяризующие миорелаксанты: суксаметония йодид ("Дитилин") и суксаметония хлорид ("Листенон") – представляют собой как бы две молекулы ацетилхолина. Вначале действуют как АХ – вызывают мышечные сокращения, фастикуляции, но АХ быстро разрушается АХЭ, после чего исходное состояние клеточной мембраны восстанавливается (реполяризация). Разрушение дитилина происходит под действием ложной АХЭ, содержащейся в плазме крови. Разрушение происходит медленнее. Вызвав деполяризацию, дитилин длительно поддерживает это состояние, деполяризованная мембрана не в состоянии возбуждаться. Вслед за начальным сокращением мышц наступает их расслабление (миорелаксация), продолжающееся до тех пор, пока дитилин не разрушится ложной АХЭ.

Рис. 3.10.

1 – головной мозг; 2 – мозжечок; 3 – спинной мозг; 4 – межреберные нервы; 5 – локтевой нерв; 6 – лучевой нерв; 7 – бедренный нерв; 8 – седалищный нерв

Обычно длительность действия составляет 5–15 мин (в зависимости от дозы препарата), однако в случае генетически обусловленной недостаточности ложной АХЭ крови дитилин может действовать 5–8 ч. Прекратить действие можно путем переливания крови, которая содержит ложную АХЭ. Антихолинэстеразные вещества усиливают действие деполяризующих миорелаксантов.

М, Н-холиноблокаторы действуют не только на периферические, но и на центральные ХР. В связи со способностью блокировать центральные ХР препараты данной группы названы центральными холиноблокаторами . Препараты тригексифенидил ("Циклодол") и бипериден ("Акинетон") являются одними из основных синтетических холинолитических препаратов, применяемых для лечения паркинсонизма. При применении препаратов могут возникнуть побочные явления, связанные с их холинолитическими свойствами: сухость во рту, нарушение аккомодации, учащение пульса, головокружение. При уменьшении дозы или при отмене приема побочные явления проходят. При передозировке возможны нарушения функции ЦНС (психическое и двигательное возбуждение, галлюцинаторные явления и др.), свойственные действию больших доз холинолитических препаратов. Препараты противопоказаны при глаукоме (особенно при закрытоугольной форме), задержке мочеиспускания, фибрилляции предсердий. Осторожность следует соблюдать при гипертонической болезни, выраженном атеросклерозе, заболеваниях сердца, печени и почек.

Холинергические синапсы локализованы во внутренних органах, получающих постганглионарные парасимпатические волокна, в вегетативных ганглиях, моз­говом слое надпочечников, каротидных клубочках, скелетных мышцах. Передача возбуждения в холинергических синапсах происходит с помощью ацетилхолина.

Ацетилхолин синтезируется в цитоплазме окончаний холинергических нервов из ацетил- Ко А и холина при участии фермента холинацетилтрансферазы (холи-нацетилазы) и депонируется в синаптических пузырьках (везикулах). Под влия­нием нервных импульсов ацетилхолин высвобождается из везикул в синаптичес­кую щель. Происходит это следующим образом. Импульс, достигший пресинаптической мембраны, вызывает ее деполяризацию, в результате чего от­крываются потенциалозависимые кальциевые каналы, через которые ионы каль­ция проникают в нервное окончание. Концентрация Са 2+ в цитоплазме нервного окончания повышается, что способствует слиянию мембраны везикул с преси­наптической мембраной и экзоцитозу везикул (рис. 8.1). Процесс слияния везикулярной и пресинаптической мембран, а, следовательно, экзоцитоз ве­зикул и выделение ацетилхолина блокируется ботулиновым токсином. Вы­свобождение ацетилхолина блокируют также вещества, которые снижают по­ступление Са 2+ в цитоплазму нервных окончаний, например, аминогликозидные антибиотики.

После высвобождения в синаптическую щель ацетилхолин стимулирует холи-норецепторы, локализованные как на постсинаптической, так и на пресинапти­ческой мембране холинергических синапсов.


В синаптической щели ацетилхолин очень быстро гидролизуется ферментом ацетилхолинэстеразой с образованием холина и уксусной кислоты. Холин захва­тывается нервными окончаниями (подвергается обратному нейрональному зах­вату) и вновь включается в синтез ацетилхолина. В плазме крови, печени и дру­гих органах присутствует фермент - бутирилхолинэстераза (псевдохолинэстераза, ложная холинэстераза), которая также может инактивировать ацетилхолин.



На передачу возбуждения в холинергических синапсах могут воздействовать вещества, которые оказывают влияние на следующие процессы: синтез ацетил­холина и его депонирование в везикулах; высвобождение ацетилхолина; взаимо­действие ацетилхолина с холинорецепторами; гидролиз ацетилхолина в синап­тической щели; обратный нейрональный захват холина пресинаптическими окончаниями. Депонирование ацетилхолина в везикулах уменьшает везамикол, который блокирует транспорт ацетилхолина из цитоплазмы в везикулы. Высво­бождение ацетилхолина в синаптическую щель стимулирует 4-аминопиридин (пимадин). Блокирует высвобождение ацетилхолина ботулиновый токсин (ботокс). Обратный нейрональный захват холина ингибирует гемихолиний, который при­меняют в экспериментальных исследованиях.

В медицинской практике в основном используют вещества, которые непос­редственно взаимодействуют с холинорецепторами: холиномиметики (ве­щества, стимулирующие холинорецепторы), или холиноблокаторы (веще­ства, которые блокируют холинорецепторы и таким образом препятствуют действию на них ацетилхолина). Применяют вещества, которые ингибируют гид­ролиз ацетилхолина, - ингибиторы ацетилхолинэстеразы (антихолинэсте-разные средства).


СРЕДСТВА, СТИМУЛИРУЮЩИЕ ХОЛИНЕРГИЧЕСКИЕ СИНАПСЫ

В этой группе выделяют холиномиметики - вещества, которые подобно ацетилхолину непосредственно стимулируют холинорецепторы, и антихо-линэстеразные средства, которые, ингибируя ацетилхолинэстеразу, по­вышают концентрацию ацетилхолина в синаптической щели и таким образом уси­ливают и пролонгируют действие ацетилхолина.

Холиномиметики

Холинорецепторы разных холинергических синапсов обладают неодинаковой чувствительностью к одним и тем же веществам. Холинорецепторы, локализо­ванные в постсинаптической мембране клеток эффекторных органов у оконча­ний постганглионарных парасимпатических волокон, проявляют повышенную чувствительность к мускарину (алкалоиду, выделенному из некоторых видов му­хоморов). Такие рецепторы называют мускариночувствительными, или М-холи-норецепторами.

Холинорецепторы, расположенные в постсинаптической мембране нейронов симпатических и парасимпатических ганглиев, хромаффинных клеток мозгового вещества надпочечников, в каротидных клубочках (которые находятся в месте деления общих сонных артерий) и на концевой пластинке скелетных мышц, наи­более чувствительны к никотину и поэтому называются никотиночувствитель-ными рецепторами или Н-холинорецепторами. Эти рецепторы подразделяются на Н-холинорецепторы нейронального типа (Н н) и Н-холинорецепторы мышеч­ного типа (Н м), различающиеся по локализации (см. табл. 8.1) и по чувствитель­ности к фармакологическим веществам.

Вещества, которые избирательно блокируют Н н -холинорецепторы ганглиев, мозгового вещества надпочечников и каротидных клубочков, называются ганг-лиоблокаторами, а вещества, преимущественно блокирующие Н-холинорецеп­торы скелетных мышц - курареподобными средствами.

Среди холиномиметиков выделяют вещества, которые преимущественно стимулируют М-холинорецепторы (М-холиномиметики), Н-холинорецепторы (Н-холиномиметики) или оба подтипа холинорецепторов одновременно (М-, Н-холиномиметики).

Классификация холиномиметиков

М-холиномиметики: мускарин, пилокарпин, ацеклидин.

Н-холиномиметики: никотин, цититон, лобелии.

М,Н-холиномиметики: ацетилхолин, карбахолин.

М-холиномиметики

М-холиномиметики стимулируют М-холинорецепторы, расположенные в мем­бране клеток эффекторных органов и тканей, получающих парасимпатическую иннервацию. М-холинорецепторы подразделяются на несколько подтипов, ко­торые проявляют неодинаковую чувствительность к разным фармакологическим веществам. Обнаружено 5 подтипов М-холинорецепторов (М,-, М 2 -, М 3 -, М 4 -, М 5 -). Наиболее хорошо изучены М,-, М 2 - и М 3 -холинорецепторы (см. табл. 8.1). Все М-холинорецепторы относятся к мембранным рецепторам, взаимодейству­ющим с G-белками, а через них с определенными ферментами или ионными ка­налами (см. гл. «Фармакодинамика»). Так, М 2 -холинорецепторы мембран кардио-


Таблица 8.1. Подтипы холинорецепторов и эффекты, вызываемые их стимуляцией

М-холинорецепторы

м, ЦНС Энтерохромаффиноподобные клетки желудка Выделение гистамина, который стимулирует секрецию хлористоводородной кислоты пари­етальными клетками желудка
м 2 Сердце Пресинаптическая мембрана окончаний постганглионарных парасимпатических волокон Уменьшение частоты сердечных сокращений. Угнетение атриовентрикулярной проводимости. Снижение сократительной активности пред­сердий Снижение высвобождения ацетилхолина
м 3 (иннер- вируе- мые) Круговая мышца радужной оболочки Цилиарная (ресничная) мышца глаза Гладкие мышцы бронхов, желуд­ка, кишечника, желчного пу­зыря и желчных протоков, мочевого пузыря, матки Экзокринные железы (брон­хиальные железы, железы же­лудка, кишечника, слюнные, слезные, носоглоточные и по­товые железы) Сокращение, сужение зрачков Сокращение, спазм аккомодации (глаз устанав­ливается на ближнюю точку видения) Повышение тонуса (за исключением сфинкте­ров) и усиление моторики желудка, кишечника и мочевого пузыря Повышение секреции
м 3 (неин- нервиру- емые) Эндотелиальные клетки крове­носных сосудов Выделение эндотелиального релаксирующего фактора (N0), который вызывает расслабле­ние гладких мышц сосудов

Н-холинорецепторы

миоцитов взаимодействуют с Gj-белками, угнетающими аденилатциклазу. При их стимуляции в клетках снижается синтез цАМФ и, как следствие, активность цАМФ-зависимой протеинкиназы, фосфорилирующей белки. В кардиомиоци-тах нарушается фосфорилирование кальциевых каналов - в результате мень­ше Са 2+ поступает в клетки синоатриального узла в фазу 4 потенциала действия. Это приводит к снижению автоматизма синоатриального узла и, следовательно,


к уменьшению частоты сердечных сокращений. Уменьшаются также и другие показатели работы сердца (см. табл. 8.1).

М 3 -холинорецепторы гладкомышечных клеток и клеток экзокринных же­лез взаимодействуют с Gq-белками, которые активируют фосфолипазу С. При участии этого фермента из фосфолипидов клеточных мембран образуется ино-зитол-1,4,5-трифосфат (1Р 3), который способствует высвобождению Са 2+ из сар-коплазматического ретикулума (внутриклеточного депо кальция). В резуль­тате при стимуляции М 3 -холинорецепторов концентрация Са 2+ в цитоплазме клеток увеличивается, что вызывает повышение тонуса гладких мышц внут­ренних органов и увеличение секреции экзокринных желез. Кроме того, в мемб­ране эндотелиальных клеток сосудов располагаются неиннервируемые (внеси-наптические) М 3 -холинорецепторы. При их стимуляции увеличивается высвобож­дение из эндотелиальных клеток эндотелиального релаксирующего фактора (N0), который вызывает расслабление гладкомышечных клеток сосудов. Это приводит к снижению тонуса сосудов и уменьшению артериального давления.

М,-холинорецепторы сопряжены с Gq-белками. Стимуляция М,-холино-рецепторов энтерохромаффиноподобных клеток желудка приводит к повы­шению концентрации цитоплазматического Са 2+ и увеличению секреции эти­ми клетками гистамина. Гистамин, в свою очередь, действуя на париетальные клетки желудка, стимулирует секрецию хлористоводородной кислоты. Подти­пы М-холинорецепторов и эффекты, вызываемые их стимуляцией, представле­ны в табл. 8.1.

Прототипом М-холиномиметиков является алкалоид мускарин, содержа­щийся в грибах мухоморах. Мускарин вызывает эффекты, связанные со стиму­ляцией всех подтипов М-холинорецепторов, приведенных в табл. 8.1. Через ге-матоэнцефалический барьер мускарин не проникает и поэтому не оказывает существенного влияния на ЦНС. Мускарин не используется в качестве лекар­ственного средства. При отравлении мухоморами, содержащими мускарин, про­является его токсическое действие, связанное с возбуждением М-холинорецеп­торов. При этом отмечаются сужение зрачков, спазм аккомодации, обильное слюнотечение и потоотделение, повышение тонуса бронхов и секреции бронхи­альных желез (что проявляется ощущением удушья), брадикардия и снижение артериального давления, спастические боли в животе, диарея, тошнота и рвота. При отравлении мухоморами проводят промывание желудка и дают солевые сла­бительные. Для устранения действия мускарина применяют М-холиноблокатор атропин.


Пилокарпин является алкалоидом листьев кустарника Pilocarpus pinna-tifolius Jaborandi, произрастающего в Южной Америке. Пилокарпин, применяе­мый в медицинской практике, получают синтетическим путем. Пилокарпин ока­зывает прямое стимулирующее действие на М-холинорецепторы и вызывает все эффекты, характерные для препаратов этой группы (см. табл. 8.1). Особенно силь­но пилокарпин повышает секрецию желез, поэтому его иногда назначают внутрь при ксеростомии (сухость слизистой оболочки полости рта). Но поскольку пи­локарпин обладает довольно высокой токсичностью, его в основном приме­няют местно в виде глазных лекарственных форм для снижения внутриглазно­го давления.

Величина внутриглазного давления в основном зависит от двух процессов: образования и оттока внутриглазной жидкости (водянистой влаги глаза), кото­рая продуцируется ресничным телом, а оттекает главным образом через дренаж­ную систему угла передней камеры глаза (между радужкой и роговицей). Эта дре­нажная система включает трабекулярную сеть (гребенчатую связку) и венозный синус склеры (шлеммов канал). Через щелевидные пространства между трабеку-лами (фонтановы пространства) трабекулярной сети жидкость фильтруется в шлеммов канал, а оттуда по коллекторным сосудам оттекает в поверхностные вены склеры (рис. 8.2).


Снизить внутриглазное давление можно, уменьшив продукцию внутриглазной жидкости и/или увеличив ее отток. Отток внутриглазной жидкости во многом зависит от размера зрачка, который регулируется двумя мышцами радужной обо­лочки: круговой мышцей (m. sphincter pupillae) и радиальной мышцей (т. dilatator pupillae). Круговая мышца зрачка иннервируется парасимпатическими волокна­ми (п. oculomotorius), а радиальная - симпатическими (п. sympaticus). При со­кращении круговой мышцы зрачок суживается, а при сокращении радиальной мышцы - расширяется.

Пилокарпин, как все М-холиномиметики, вызывает сокращение круговой мышцы радужной оболочки и сужение зрачков (миоз). При этом радужная обо­лочка становится тоньше, что способствует раскрытию угла передней камеры глаза и оттоку внутриглазной жидкости через фонтановы пространства в шлеммов ка­нал. Это приводит к снижению внутриглазного давления.

Способность пилокарпина снижать внутриглазное давление используется при лечении глаукомы - заболевания, которое характеризуется постоянным или пе­риодическим повышением внутриглазного давления, что может привести к атро­фии зрительного нерва и потере зрения. Глаукома бывает открытоугольной и зак-рытоугольной. Открытоугольная форма глаукомы связана с нарушением дренажной системы угла передней камеры глаза, через которую осуществляется отток внутриглазной жидкости; сам угол при этом открыт. Закрытоугольная фор­ма развивается при нарушении доступа к углу передней камеры глаза чаще всего при его частичном или полном закрытии корнем радужки. Внутриглазное давле­ние при этом может повыситься до 60-80 мм рт.ст. (в норме внутриглазное давле­ние составляет от 16 до 26 мм рт.ст.).

В связи со способностью суживать зрачки (миотическое действие) пилокар­пин обладает высокой эффективностью при лечении закрытоугольной глаукомы ив этом случае используется в первую очередь (является препаратом выбора). Назначают пилокарпин и при открытоугольной глаукоме. Пилокарпин приме­няют в виде 1-2% водных растворов (продолжительность действия - 4-8 ч), растворов с добавлением полимерных соединений, оказывающих пролонгиро­ванное действие (8-12 ч), мазей и специальных глазных пленок из полимерно­го материала (глазные пленки с пилокарпином закладывают за нижнее веко 1-2 раза в сутки).

Пилокарпин вызывает сокращение ресничной мышцы, что приводит к рас­слаблению цинновой связки, расстягивающей хрусталик. Кривизна хрусталика увеличивается, он приобретает более выпуклую форму. При увеличении кривиз­ны хрусталика повышается его преломляющая способность - глаз устанавлива­ется на ближнюю точку видения (лучше видны предметы, находящиеся вблизи). Это явление, которое называется спазмом аккомодации, является побочным эф­фектом пилокарпина. При закапывании в конъюнктивальный мешок пилокар­пин практически не всасывается в кровь и не оказывает заметного резорбтивного действия.

Ацеклидин является синтетическим соединением с прямым стимулирую­щим действием на М-холинорецепторы и вызывает все эффекты, связанные с воз­буждением этих рецепторов (см. табл. 8.1).

Ацеклидин можно применять местно (инсталлировать в конъюнктивальный мешок) для понижения внутриглазного давления при глаукоме. После однократ­ной инсталляции снижение внутриглазного давления продолжается до 6 ч. Од­нако растворы ацеклидина обладают местнораздражающим действием и могут вызвать раздражение конъюнктивы.


В связи с меньшей по сравнению с пилокарпином токсичностью ацеклидин применяется для резорбтивного действия при атонии кишечника и мочевого пу­зыря. Побочные эффекты: слюнотечение, диарея, спазмы гладкомышечных ор­ганов. Вследствие того, что ацеклидин повышает тонус гладких мышц бронхов, он противопоказан при бронхиальной астме.

При передозировке М-холиномиметиков используют их антагонисты - М-хо-линоблокаторы (атропин и атропиноподобные средства).

Н-холиномиметики

К этой группе относятся алкалоиды никотин, лобелии, цитизин, которые дей­ствуют преимущественно на Н-холинорецепторы нейронального типа, локали­зованные на нейронах симпатических и парасимпатических ганглиев, хромаф-финных клетках мозгового вещества надпочечников, в каротидных клубочках и в ЦНС. На Н-холинорецепторы скелетных мышц эти вещества действуют в значи­тельно больших дозах.

Н-холинорецепторы относятся к мембранным рецепторам, непосредственно связанным с ионными каналами. По структуре они являются гликопротеинами и состоят из нескольких субъединиц. Так Н-холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (а, а, (3, у, 6), которые окружают ион­ный (натриевый) канал. При связывании двух молекул ацетилхолина с α-субъе-диницами происходит открытие Na + -канала. Ионы Na + входят в клетку, что при­водит к деполяризации постсинаптической мембраны концевой пластинки скелетных мышц и мышечному сокращению.

Никотин - алкалоид, который содержится в листьях табака (Nicotiana tabacum, Nicotiana rustica). В основном никотин попадает в организм человека во время курения табака, примерно 3 мг - за время курения одной сигареты (смер­тельная доза никотина - 60 мг). Он быстро всасывается со слизистых оболочек дыхательных путей (также хорошо проникает через неповрежденную кожу).

Никотин.стимулирует Н-холинорецепторы симпатических и парасимпатичес­ких ганглиев, хромаффинных клеток мозгового вещества надпочечников (повы­шает выделение адреналина и норадреналина) и каротидных клубочков (стиму­лирует дыхательный и сосудодвигательный центры). Стимуляция симпатических ганглиев, мозгового вещества надпочечников и каротидных клубочков приводит к наиболее характерным для никотина эффектам со стороны сердечно-сосудистой системы: увеличению частоты сердечных сокращений, сужению сосудов и повы­шению артериального давления. Стимуляция парасимпатических ганглиев вызы­вает повышение тонуса и моторики кишечника и повышение секреции экзокрин-ныхжелез (большие дозы никотина оказывают на эти процессы угнетающее влияние). Стимуляция Н-холинорецепторов парасимпатических ганглиев является также причиной брадикардии, которая может наблюдаться в начале действия никотина.

Так как никотин обладает высокой липофильностью (является третичным ами­ном), он быстро проникает через гематоэнцефалический барьер в ткани мозга. В ЦНС никотин вызывает высвобождение дофамина, некоторых других биоген-


ных аминов и возбуждающих аминокислот, с чем связывают субъективные при­ятные ощущения, возникающие у курильщиков. В небольших дозах никотин сти­мулирует дыхательный центр, а в больших дозах вызывает его угнетение вплоть до остановки дыхания (паралич дыхательного центра). В больших дозах никотин вызывает тремор и судороги. Действуя на триггерную зону рвотного центра, ни­котин может вызвать тошноту и рвоту.

Никотин в основном метаболизируется в печени и выводится почками в неиз­мененном виде и в виде метаболитов. Таким образом он быстро элиминируется из организма (t ]/2 - 1,5-2 ч). К действию никотина быстро развивается толерант­ность (привыкание).

Острое отравление никотином может произойти при попадании растворов никотина на кожу или слизистые оболочки. При этом отмечаются гиперсалива­ция, тошнота, рвота, диарея, брадикардия, а затем тахикардия, повышение арте­риального давления, сначала одышка, а затем угнетение дыхания, возможны су­дороги. Смерть наступает от паралича дыхательного центра. Основной мерой помощи является искусственное дыхание.

При курении табака возможно хроническое отравление никотином, а также другими токсичными веществами, которые содержатся в табачном дыме и могут оказывать раздражающее и канцерогенное действие. Для большинства куриль­щиков типичны воспалительные заболевания дыхательных путей, например, хро­нический бронхит; чаще отмечается рак легких. Повышается риск сердечно-со­судистых заболеваний.

К никотину развивается психическая зависимость, поэтому при прекращении курения у курильщиков возникает синдром отмены, который связан с возникно­вением тягостных ощущений, снижением работоспособности. Для уменьшения синдрома отмены рекомендуют в период отвыкания от курения использовать же­вательную резинку, содержащую никотин (2 или 4 мг), или трансдермальную те­рапевтическую систему (специальный накожный пластырь, который в течение 24 ч равномерно выделяет небольшие количества никотина).

В медицинской практике иногда используют Н-холиномиметики лобелии и цитизин.

Лобелии - алкалоид растения Lobelia inflata является третичным амином. Стимулируя Н-холинорецепторы каротидных клубочков, лобелии рефлекторно возбуждает дыхательный и сосудодвигательный центры.

Цитизин - алкалоид, который содержится в растениях ракитник (Cytisus laburnum) и термопсис (Thermopsis lanceolata), по структуре является вторичным амином. По действию сходен с лобелином, но несколько сильнее возбуждает ды­хательный центр.

Цитизин и лобелии входят в состав таблеток «Табекс» и «Лобесил», которые применяют для облегчения отвыкания от курения. Препарат цититон (0,15% ра­створ цитизина) и раствор лобелина иногда вводят внутривенно для рефлектор­ной стимуляции дыхания. Однако эти препараты эффективны только при сохра­нении рефлекторной возбудимости дыхательного центра. Поэтому их не применяют при отравлении веществами, которые снижают возбудимость дыха­тельного центра (снотворные средства, наркотические анальгетики).

М, Н-холиномиметики

Ацетилхолин является медиатором во всех холинергических синапсах и стимулирует как М-, так и Н-холинорецепторы. Ацетилхолин выпускают в виде лиофилизированного препарата ацетилхолин-хлорида. При введении ацетилхо-


лина в организм преобладают его эффекты, связанные со стимуляцией М-холи­норецепторов: брадикардия, расширение сосудов и понижение артериального дав­ления, повышение тонуса и усиление перистальтики ЖКТ, повышение тонуса глад­ких мышц бронхов, желчного и мочевого пузыря, матки, усиление секреции бронхиальных и пищеварительных желез. Стимулирующее влияние ацетилхолина на периферические Н-холинорецепторы (никотиноподобное действие) про­является при блокаде М-холинорецепторов (например, атропином). В результате на фоне атропина ацетилхолин вызывает тахикардию, сужение сосудов и, как след­ствие, повышение артериального давления. Происходит это вследствие возбуж­дения симпатических ганглиев, повышения выделения адреналина хромаффинными клетками мозгового вещества надпочечников и стимуляции каротидных клубочков.

В очень больших дозах ацетилхолин может вызвать стойкую деполяризацию постсинаптической мембраны и блокаду передачи возбуждения в холинергических синапсах.

По химической структуре ацетилхолин является четвертичным аммониевым соединением и поэтому плохо проникает через гематоэнцефалический барьер и не оказывает существенного влияния на ЦНС.

В организме ацетилхолин быстро разрушается ацетилхолинэстеразой и поэто­му оказывает кратковременное действие (несколько минут). По этой причине ацетилхолин почти не используют в качестве лекарственного средства. В основ­ном ацетилхолин применяют при проведении экспериментов.

Карбахол (карбахолин) является аналогом ацетилхолина, но в отличие от
него практически не разрушается ацетилхолинэстеразой и поэтому действует бо­
лее продолжительно (в течение 1-1,5 ч). Вызывает такие же фармакологичес­
кие эффекты. Раствор карбахола в виде глазных капель изредка используют при
глаукоме.

Структура холинорецепторов окончательно не установлена. По имеющимся данным, холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (α, α , β, γ, δ), окружающих ионный (натриевый) канал и проходящих через всю толщу липидной мембраны. Ацетилхолин взаимодействует с α-субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны. Холинорецепторы разной локализации обладают неодинаковой чувствительностью к фармакологическим веществам. На этом основано выделение так называемых мускариночувствительных и никотиночувствительных холинорецепторов (соответственно м-холинорецепторы и н-холинорецепторы).

М-холинорецепторы, их подтипы, строение, функционирование и локализация

М-холинорецепторы возбуждаются ядом мухомора мускарином и блокируются атропином. Они локализованы в нервной системе и внутренних органах, получающих парасимпатическую иннервацию.

М-холинорецепторы ассоциированы с G-белками и имеют 7 сегментов, пересекающих, как серпантин, клеточную мембрану.

Молекулярное клонирование позволило выделить пять типов М-холинорецепторов:

1. М1-холинорецепторы ЦНС (лимбическая система, базальные ганглии, ретикулярная формация) и вегетативных ганглиев;

2. М2-холинорецепторы сердца (снижают частоту сердечных сокращений, атриовентрикулярную проводимость и потребность миокарда в кислороде, ослабляют сокращения предсердий);

3. М3-холинорецепторы:

· гладких мышц (вызывают сужение зрачков, спазм аккомодации, бронхоспазм, спазм желчевыводящих путей, мочеточников, сокращение мочевого пузыря, матки, усиливают перистальтику кишечника, расслабляют сфинктеры);

· желез (вызывают слезотечение, потоотделение, обильное отделение жидкой, бедной белком слюны, бронхорею, секрецию кислого желудочного сока).

Внесинаптические М3-холинорецепторы находятся в эндотелии сосудов и регулируют образование сосудорасширяющего фактора - окиси азота (NО).

4. М4- и М5-холинорецепторы имеют меньшее функциональное значение.

М1-, М3- и М5-холинорецепторы, активируя посредством Gq/11-белка фосфолипазу С клеточной мембраны, увеличивают синтез вторичных мессенджеров - диацилглицерола и инозитолтрифосфата. Диацилглицерол активирует протеинкиназу С, инозитолтрифосфат освобождает ионы кальция из эндоплазматического ретикулума,

М2- и М4-холинорецепторы при участии Gi- и G0-белков ингибируют аденилатциклазу (тормозят синтез цАМФ), блокируют кальциевые каналы, а также повышают проводимость калиевых каналов синусного узла.

Пресинаптические М-холинорецепторы тормозят, пресинаптические

Н-холинорецепторы, их подтипы, строение, функционирование и локализация

Н-холинорецепторы в озбуждаются алкалоидом табака никотином в малых дозах, блокируются никотином в больших дозах.

Н-холинорецепторы находятся в ионных каналах, в течение миллисекунд они повышают проницаемость каналов для Na+, K+ и Са2+.

Н-холинорецепторы широко представлены в организме. Их классифицируют на Н- холинорецепторы нейронального (Нн) и мышечного (Нм) типов.

Нейрональные Нн - холинорецепторы и представляют собой пентамеры и состоят из субъединиц a2- a9, и β2- β4 (четыре трансмембранные петли).

Локализация нейрональных Н-холинорецепторов следующая:

кора больших полушарий, продолговатый мозг, клетки Реншоу спинного мозга, нейрогипофиз (повышают секрецию вазопрессина);

вегетативные ганглии (участвуют в проведении импульсов с преганглионарных волокон на постганглионарные);

мозговой слой надпочечников (повышают секрецию адреналина и норадреналина);

каротидные клубочки (участвуют в рефлекторном тонизировании дыхательного центра).

Мышечные Нм-холинорецепторы вызывают сокращение скелетных мышц. Они представляют собой смесь мономера и димера. Мономер состоит из пяти субъединиц (a1 - a2, β, γ, ε, δ), окружающих ионные каналы. Для открытия ионных каналов необходимо связывание ацетилхолина с двумя a-субъединицами.

Н-холинорецепторы стимулируют высвобождение ацетилхолина.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека