Примеры решения задач систем массового обслуживания.

Назначение сервиса СМО . Онлайн-калькулятор предназначен для расчета следующих показателей одноканальных СМО:
  • вероятность отказа канала, вероятность свободного канала, абсолютная пропускная способность;
  • относительная пропускная способность, среднее время обслуживания, среднее время простоя канала.

Инструкция . Для решения подобных задач в онлайн режиме выберите модель СМО. Укажите интенсивность потока заявок λ и интенсивность потока обслуживания μ . Для одноканальной СМО с ограниченной длиной очереди можно указать длину очереди m , а для одноканальной СМО с неограниченной очередью - число заявок в очереди (для расчета вероятности нахождения этих заявок в очереди). см. пример решения . .

Модель СМО Одноканальная СМО с отказами в обслуживании Одноканальная СМО с ограниченной длиной очереди Одноканальная СМО с неограниченной очередью

M =

Интенсивность потока заявок λ: заявок в час мин сутки
Интенсивность потока обслуживания μ: или t обс = час мин
Полученное решение сохраняется в файле Word .

Классификация одноканальных систем массового обслуживания

Пример №1 . Авто заправочная станция имеет одну бензоколонку. Предполагается что простейший поток автомашин поступает на станцию с интенсивностью λ=11 автомашин/ч. Время обслуживания заявки случайная величина которая подчиняется экспоненциальному закону с параметром μ=14 автомашин/ч. Определить среднее число автомашин на станции.

Пример №2 . Имеется пункт проведения профилактического осмотра машин с одной группой проведения осмотра. На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,4 часа. На осмотр поступает в среднем 328 машин в сутки. Потоки заявок и обслуживаний - простейшие. Если машина, прибывшая в пункт осмотра не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания пункта профилактического осмотра.
Решение. Здесь α = 328/24 ≈ = 13.67, t = 0.4. Эти данные необходимо ввести в калькулятор.

1

1. Агишева Д.К., Зотова С.А., Матвеева Т.А., Светличная В.Б. Математическая статистика (учебное пособие) // Успехи современного естествознания. – 2010. – № 2. – С. 122-123; URL: http://www.natural-sciences.ru/ru/article/view?id=7763.

2. Хрущев Д.Г., Силантьев А.В., Агишева Д.К., Зотова С.А. Ошибки принятия гипотезы в математической статистике // Международный студенческий научный вестник. – 2015. – № 3; URL: www..

3. Агишева Д.К., Зотова С.А., Матвеева Т.А., Светличная В.Б. Математическая статистика: учебное пособие / Д.К. Агишева, С.А. Зотова, Т.А. Матвеева, В.Б. Светличная; ВПИ (филиал) ВолгГТУ. – Волгоград, 2010.

Модели массового обслуживания часто встречаются в нашей повседневной жизни. Мы сталкиваемся с ними буквально повсюду: очереди в ожидании обслуживания в кафе, очереди к кассе в магазине, в банке, парикмахерской, автомойке, на бензозаправочной станции и т. д.

Анализ процессов массового обслуживания даёт нам оценку влияния на режим функционирования системы таких показателей, как частота поступления заявок на обслуживание, время обслуживания поступающих заявок, количество и размещение различных компонентов обслуживающего комплекса и т.д.

Простейшей одноканальной моделью с вероятностными входным потоком и процедурой обслуживания является модель, характеризуемая показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид

где λ - интенсивность поступления заявок в систему (среднее число заявок, поступающих в систему за единицу времени).

Плотность распределения длительностей обслуживания:

где - интенсивность обслуживания; tоб - среднее время обслуживания одного клиента.

Рассмотрим систему, работающую с отказами. Можно определить абсолютную и относительную пропускную способность системы.

Относительная пропускная способность равна доли обслуженных заявок относительно всех поступающих и вычисляется по формуле:

Эта величина равна вероятности Р0 того, что канал обслуживания свободен.

Абсолютная пропускная способность - среднее число заявок, которое может обслужить система массового обслуживания в единицу времени:

Вероятность отказа в обслуживании заявки будет равна вероятности состояния «канал обслуживания занят»:

Величина Ротк может быть интерпретирована как средняя доля необслуженных заявок среди всех поданных.

Пусть одноканальная система массового обслуживания (СМО) с отказами представляет собой одно место в очереди к кассе в банке. Заявка - посетитель, прибывший в момент, когда место занято, получает отказ в обслуживании. Интенсивность потока прихода посетителей λ = 3 (чел./ч). Средняя продолжительность обслуживания tоб = 0,6 ч.

Мы будем определять в установившемся режиме следующие предельные значения: относительную пропускную способность q; абсолютную пропускную способность А; вероятность отказа Ротк.

Сравним фактическую пропускную способность системы массового обслуживания с номинальной пропускной способностью, которая была бы, если бы каждый посетитель обслуживался 0,6 часа, и очередь была бы непрерывной.

Вначале определим интенсивность потока обслуживания:

Вычислим относительную пропускную способность:

Величина q означает, что в установившемся режиме система будет обслуживать примерно 62,4 % прибывающих человек.

Абсолютную пропускную способность определим по формуле:

Это означает, что система способна осуществить в среднем 0,624 обслуживания человек в час.

Вычислим вероятность отказа:

Это означает, что около 37,6 % прибывших посетителей на кассу получат отказ в обслуживании.

Определим номинальную пропускную способность системы:

Исходя из данных расчётов, делаем вывод, что Аном в раза больше, чем фактическая пропускная способность, вычисленная с учётом случайного характера потока заявок и времени обслуживания.

Данная система работает неэффективно. Вероятность отказа слишком большая - 37 человек из 100 уйдут из банка не получив обслуживания. Это недопустимо. В такой ситуации есть несколько решений проблемы:

Добавить ещё один канал обслуживания, т.е. организовать двухканальную систему. Это позволит принять больше заявок, но несёт дополнительные затраты на создание дополнительного канала и на дальнейшее его содержание.

Не добавляя ещё одного канала, уменьшить время на обслуживание одной заявки, например, за счёт автоматизации канала.

Не добавляя ещё одного канала, создать систему без отказов, но с ожиданием в очереди. Этого можно добиться, если установить диваны для ожидания.

Таким образом, можно повысить эффективность работы наиболее приемлемым для банка решением.

Библиографическая ссылка

Якушина А.А., Быханов А.В., Елагина А.И., Матвеева Т.А., Агишева Д.К., Светличная В.Б. ОДНОКАНАЛЬНАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ С ПУАССОНОВСКИМ ВХОДНЫМ ПОТОКОМ // Международный студенческий научный вестник. – 2016. – № 3-3.;
URL: http://сайт/ru/article/view?id=15052 (дата обращения: 18.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

По наличию очередей СМО делятся на два типа: СМО с отказами и СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться длины очереди, времени ожидания, «дисциплины обслуживания». Например, рассматриваются следующие СМО:

    СМО с нетерпеливыми заявками (длина очереди и время ожидания обслуживания ограниченно);

    СМО с обслуживанием по приоритетам , т.е. некоторые заявки обслуживаются вне очереди и т.д.

Кроме этого, СМО делятся на открытые и замкнутые.

Воткрытой СМО характеристики потока заявок не зависят от того, сколько каналов СМО занято. Взамкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

3.2 Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает поток заявок с интенсивностью λ (величина, обратная среднему промежутку времени между поступающими заявками). Поток обслуживаний имеет интенсивность μ (величина, обратная среднему времени обслуживания
). Заявка, заставшая систему занятой, сразу же покидает её.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времениt , получит отказ.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени)

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой)

Вероятность отказа (т.е. того, что заявка покинет СМО необслуженной)

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа (
). Среднее время изготовления одной детали равно
. Если при поступлении заявки на изготовление детали станок занят, то деталь направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Решение.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

4. Теория принятия решений

Человеческая деятельность зачастую бывает связана с выбором таких решений, которые позволили бы получить некоторые оптимальные результаты – достичь максимальной прибыли предприятия, добиться наивысшей эффективности какого-либо технического устройства и т.д. Но в каждой конкретной ситуации надо считаться с реальными условиями задачи. Предприятие не сможет получить максимальную прибыль без учёта реальных запасов сырья, его стоимости, доступных финансовых ресурсов и целого ряда других факторов. При попытке достичь наивысшей эффективности технического устройства, среди прочего, следует учитывать ограничения, обусловленные его воздействием на обслуживающий персонал и окружающую среду.

Задача о максимальной прибыли предприятия – типичная для теории принятия решений. Она формулируется следующим образом: какую продукцию и в каком количестве необходимо выпустить предприятию с учётом имеющихся у него ресурсов, чтобы достичь максимальной прибыли? Прибыль, которую приносит каждый вид продукции, и затраты ресурсов на выпуск единицы продукции каждого вида считаются заданными.

Другой типичный пример – так называемая транспортная задача. Требуется перевезти груз от некоторого числа поставщиков к нескольким потребителям, имея в виду, что каждый поставщик может отправлять грузы нескольким потребителям, а каждый потребитель может получать груз от нескольких поставщиков. Стоимость перевозки единицы груза от каждого поставщика к каждому потребителю известна. Требуется так организовать перевозку груза, чтобы весь груз от поставщиков был доставлен потребителям, а суммарная стоимость всей операции по перевозке грузов была минимальной.

Чтобы решить любую из этих задач, необходимо её формализовать, то есть, составить математическую модель. Поэтому сформулированные в задачах требования должны быть выражены количественными критериями и записаны в виде математических выражений. Задача при этом формулируется в виде задачи математического программирования: «Найти экстремум функции при условии выполнения таких-то ограничений».

Теория принятия оптимальных решений представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора. Ввиду того, что размерность практических задач, как правило, достаточно велика, а расчёты в соответствии с алгоритмами оптимизации требуют значительных затрат времени, то методы принятия оптимальных решений, главным образом, ориентированы на реализацию их с помощью компьютера.

Теория принятия решений применяется преимущественно для анализа тех деловых проблем, которые можно легко и однозначно формализовать, а результаты исследования – адекватно интерпретировать. Так, например, методы теории принятия решений используют в самых различных областях управления - при проектировании сложных технических и организационных систем, планировании развития городов, выборе программ развития экономики и энергетики регионов, организации новых экономических зон и т.п.

Необходимость использования подходов и методов теории принятия решений в управлении очевидна: быстрое развитие и усложнение экономических связей, выявление зависимостей между отдельными сложными процессами и явлениями, которые раньше казались не связанными друг с другом, приводят к резкому возрастанию трудностей принятия обоснованных решений. Затраты на их осуществление непрерывно увеличиваются, последствия ошибок становятся всё серьезнеё, а обращение к профессиональному опыту и интуиции не всегда приводит к выбору наилучшей стратегии. Использование методов теории принятия решений позволяет решить эту проблему, причём быстро и с достаточной степенью точности.

В задаче теории принятия решений человек (или группа лиц) сталкивается с необходимостью выбора одного или нескольких альтернативных вариантов решений. Необходимость такого выбора вызвана какой-либо проблемной ситуацией, в которой имеются два состояния – желаемое и действительное, а способов достижения желаемой цели-состояния – не менее двух. Таким образом, у человека в такой ситуации есть некоторая свобода выбора между несколькими альтернативными вариантами. Каждый вариант выбора приводит к результату, который называется исходом. У человека есть свои представления о достоинствах и недостатках отдельных исходов, своё собственное отношение к ним, а следовательно, и к вариантам решения. Таким образом, у человека, принимающего решение (лицо, принимающее решение ), есть система предпочтений.

Под принятием решений понимается выбор наиболее предпочтительного решения из множества допустимых альтернатив.

Несмотря на то, что методы принятия решений отличаются универсальностью, их успешное применение в значительной мере зависит от профессиональной подготовки специалиста, который должен знать специфику изучаемой системы и уметь корректно поставить задачу.

С точки зрения инженера, процесс принятия решения включает в себя четыре основных компонента:

    анализ исходной ситуации;

    анализ возможностей выбора;

    выбор решения;

    оценка последствий решения и его корректировка.

Теория принятия решений, в отличие от классических экономических методов и критериев, используется в условиях недостатка информации. В зависимости от полноты и достоверности информации различают следующие классы задач :

    Принятие решений в условиях достаточной и достоверной информации. Модели относятся к расчётам по выбору вариантов изделия или техпроцесса.

    Принятие решений в условиях риска, когда ожидаемые доходы или убытки могут быть определены с известной заранее функцией распределения.

    Принятие решений в условиях неопределённости, когда функции распределения ожидаемых доходов или убытков неизвестны.

Второй и третий классы задач связаны с вероятностным значением доходов или убытков, а это самый частый случай в практике.

Аннотация: В данной статье представлено теоретическое описание контейнерной площадки, как одноканальной системы массового обслуживания.

The summary: The theoretical description of a container terminal is presented in this article, as single-channel system of mass service.

Задача оптимизации комплекса технического оснащения контейнерного терминала состоит в оценке его эффективности в зависимости от поступающих на переработку контейнеров. Поэтому предметом исследования в данном случае являлось определение достаточности перерабатывающей мощности терминала.

На основании изложенного каждую контейнерную площадку на терминале можно представить в виде системы, в которую поступает поток контейнеров на переработку (погрузки в вагон или автомобиль, а также выгрузку из вагона или автомобиля). Указанная переработка контейнеров производится либо козловыми кранами, либо специальными автопогрузчиками (ричстакерами).

Исследование функционирования таких систем может быть осуществлено методами теории массового обслуживания. Исследовательская модель представляет собой, в общем случае, систему массового обслуживания, которая характеризуется двумя параметрами: параметром входящего потока заявок на обслуживание и параметром обслуживания. Тот и другой параметры являются случайными в зависимости от закона распределения и структуры самой системы исследования и параметров ее функционирования.

Теория массового обслуживания имеет дело со случайными величинами, которые в значительной мере присутствуют и в работе любой контейнерной площадки. Так, например, случайной является масса груза в контейнере, поднимаемом козловым краном или автопогрузчиком. Поскольку заранее рассчитать массу загруженного отправителем контейнера не представляется возможным. Данный показатель, безусловно, зависит от внутренних размеров поданного под загрузку крупнотоннажного контейнера, но и в этих пределах может значительно меняться, поскольку разные грузы отличаются объемом и способом транспортировки. Неопределенным заранее остается и тип контейнера, который понадобится грузоотправителю, будет это 20-фут. или 40-фут. контейнер остается неизвестным до момента подачи заявки на загрузку контейнера.

Помимо этого, случайным является время прибытия или завоза контейнеров на терминал. Просчитать даты окончания формирования и отправления со станции того или иного поезда, а соответственно и дату прибытия на терминал станции назначения очень сложно. Исключение составляют жесткие нитки графика контейнерных поездов, но далеко не весь график движения грузовых поездов состоит из подобных ниток.

Дата сдачи поезда на погрузку или разгрузку зависит от того насколько быстро на станции отправления будет сформирован поезд установленной длины из необходимого количества контейнеров, предъявленных отправителем к перевозке. Процесс прибытия груженых контейнеров от грузоотправителей на станцию имеет случайный характер в силу того, что зависит от целого ряда факторов. В том числе от даты заключения торговых контрактов, готовности груза к отправке, наличия товара на складе покупателя, от сезонности перевозок, а на морских терминалах еще и от погоды в портах отправления и назначения, оказывающей непосредственное влияние на подход судна и работу порта.

Аналогично работе железнодорожного транспорта и завоз груженых контейнеров автотранспортом на терминал не подлежит точному расчету из-за невозможности просчитать дату загрузки контейнера каждым конкретным отправителем. По мере готовности груза к отправке, отправитель заказывает необходимый контейнер у собственника последнего или нанимает экспедитора, который организует данную перевозку. Но сама дата отправки, в любом случае остается случайной.

В дополнении к вышесказанному, на каждой контейнерной площадке имеются все содержательные моменты моделей, описываемых теорией массового обслуживания, такие как: источник заявок на обслуживание, входящий поток требований, канал обслуживания, очередь в ожидании процесса обслуживания, простой канала обслуживания в ожидании поступления заявки на обслуживание.

Под источником заявок на обслуживание на площадке предлагается понимать совокупность контейнеров, загруженных, например, в вагон или поступающих по завозу автомобильным транспортом на контейнерную площадку, которые по определенной процедуре необходимо выгрузить на площадку, или загрузить в подвижной состав автомобильного или железнодорожного транспорта.

Под каналом обслуживания на контейнерной площадке следует понимать устройства, выполняющие определенную технологическую операцию. Прежде всего, это погрузочно-разгрузочные средства для выгрузки контейнеров или погрузки их в подвижной состав автомобильного или железнодорожного транспорта.

К каналам обслуживания также относится подвижной состав автомобильного или железнодорожного транспорта, с помощью которого осуществляется такой вид обслуживания как доставка контейнеров. Количество каналов может изменяться от одного до некоторого конечного значения.

Работа любой контейнерной площадки состоит в переработке поступающего на него потока контейнеров или заявок. В нашем случае понятия контейнер и заявка тождественны. Контейнеры поступают один за другим в некоторые, случайные, моменты времени. Обслуживание поступившего контейнера продолжается какое-то время, после чего канал освобождается и снова готов для приема следующей заявки.

В том случае, если входящий поток является пуассоновским, а параметр обслуживания подчиняется экспоненциальному распределению, то система может быть исследована аналитическими методами. Данные методы теории массового обслуживания позволяют установить показатели эффективности системы массового обслуживания, описывающими с той или другой точки зрения ее способность справляться с потоком заявок (среднее число заявок, обслуживаемых в единицу времени; среднее число занятых обслуживанием каналов; средняя длина очереди и среднее время ожидания каждой заявкой начала обслуживания и др.).

В том случае, если параметр обслуживания подчиняется закону распределения отличному от экспоненциального, то система может быть исследована аналитическими методами, если она является одноканальной системой массового обслуживания. В соответствии с этим необходимо провести качественный и количественный анализ параметров потока заявок и параметра обслуживания. В остальных случаях система массового обслуживания может быть исследована численными методами (методы математического моделирования).

В значительной мере подход аналитического и численного моделирования случайных процессов в методическом плане основан на трудах отечественных ученых, таких как Н.П. Бусленко, Е.С. Вентцель , Б.В. Гнеденко , А.В. Горелик , и других, а также на трудах зарубежных авторов, таких как А. Кофман , Р. Крюон, Т. Саати.

Предметом теории массового обслуживания является установление зависимости между характером потока заявок, производительностью отдельного канала, числом каналов и эффективностью обслуживания.

В качестве характеристик эффективности обслуживания, в зависимости от условий задачи и целей исследования, могут применяться различные величины и функции. Например, среднее время простоя отдельных каналов и системы в целом; среднее время ожидания в очереди; вероятность того, что поступившая заявка немедленно будет принята к обслуживанию; закон распределения длины очереди и т.д.

Каждая из этих характеристик описывает, с той или другой стороны, степень приспособленности системы к выполнению потока заявок, иными словами – ее пропускную способность.

Пропускная способность, в общем случае, зависит не только от параметров системы, но и от характера потока заявок. Например, на контейнерной площадке моменты поступления контейнеров случайны, как и длительность обслуживания заявки. В связи с этим процесс работы площадки протекает нерегулярно: в потоке контейнеров образуются места максимума и минимума. Первое может привести к образованию очередей. Второе к непроизводительным простоям технических средств или подвижного состава, а также площадки. На эти случайности, связанные с неоднородностью потока заявок, накладываются еще случайности, связанные с задержками обслуживания отдельных контейнеров.

Таким образом, процесс функционирования контейнерной площадки, как системы массового обслуживания, представляет собой случайный процесс. Данный процесс, протекающий в системе массового обслуживания, состоит в том, что система в случайные моменты времени переходит из одного состояния в другое: меняется занятость канала обслуживания, число заявок, стоящих в очереди и т.п.

Поэтому, чтобы дать рекомендации по рациональной организации системы, выяснить ее пропускную способность и предъявить к ней требования, необходимо изучить случайный процесс, протекающий в системе, и описать его математически. Для описания случайных процессов, происходящих в системе контейнерной площадки и непосредственно связанных с работой технического комплекса каждой площадки, в настоящей работе предложен математический аппарат теории массового обслуживания.

В теории массового обслуживания существуют так называемые, одноканальные и многоканальные системы. В работе контейнерной площадки, как было сказано выше, под каналом обслуживания можно понимать погрузочно-разгрузочные средства, предназначенные для переработки контейнеров.

При этом площадка, как правило, оснащена несколькими кранами и погрузчиками с различными техническими характеристиками. На практике все имеющиеся на площадке перегрузочные средства будут отличаться друг от друга по ряду признаков: грузоподъемности, режиму работы, сроку службы, способу передвижения захватного устройства, скорости подъема груза и т.д. Данное обстоятельство говорит о том, что на площадке вновь поступивший контейнер может быть переработан любым из имеющихся в наличии погрузочно-разгрузочных средств с определенными техническими характеристиками машины.

Таким образом, необходим качественный анализ обслуживания технического комплекса площадки, который определяется как параметром каждого технического средства, так и системы их.

Поэтому для анализа эффективности технического комплекса контейнерной площадки не всегда имеет смысл рассматривать последний, как многоканальную систему обслуживания. Достаточно дать комплексную оценку техническому оснащению площадки, учитывая особенности каждого погрузочно-разгрузочного средства.

В соответствии с этим в настоящей работе принято решение представить все погрузочно-разгрузочные машины, работающие на контейнерной площадке, независимо от их количества не как несколько параллельных каналов с разными параметрами обслуживания, а как один комплекс, характеризуемый суммарным параметром обслуживания. Это, по предварительной оценке должно существенно упростить методику и процедуру исследования параметров функционирования контейнерного терминального комплекса.

Именно такой подход аналитического исследования функционирования контейнерного терминального комплекса в виде одноканальной системы массового обслуживания выносится на защиту в данной диссертационной работе.

Наличие общего для всей системы параметра производительности определяется техническими особенностями каждой погрузочно-разгрузочной машины.

На основании вышеизложенного рассмотрим контейнерную площадку, как одноканальную систему массового обслуживания с входящим потоком заявок, который подчиняется закону Пуассона. Последнее означает, что поступающие в систему заявки образуют, так называемый, простейший поток, который обладает тремя основными свойствами: ординарностью, стационарностью и отсутствием последействия.

Ординарность потока означает практическую невозможность одновременного поступления двух и более заявок (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени).

Стационарным называют поток, для которого математическое ожидание числа заявок, поступающих в систему в единицу времени, не меняется во времени. Это значит, что число заявок, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным.

Отсутствие последействия обусловливает взаимную независимость поступления того или иного числа заявок на обслуживание в непересекающиеся промежутки времени. Это означает, что число заявок, поступающих в данный отрезок времени, не зависит от числа заявок, обслуженных в предыдущем промежутке времени.

На практике условия простейшего потока не всегда строго выполняются. Часто имеет место не стационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца).

Кроме того, количество поступающих на площадку контейнеров увеличивается на число контейнеров, требующих переработки внутри самой площадки.

Например, обслуживающие площадку технические средства должны переработать не только входящий поток контейнеров, поступивших по завозу автотранспортом, но и погрузить или выгрузить контейнеры, предназначенные к отправке или прибывшие железнодорожным транспортом. В дополнении к вышесказанному имеет место внутренняя сортировка контейнеров, выполняемая на площадке погрузочно-разгрузочными машинами. Примером такой сортировки может служить перестановка имеющихся на площадке контейнеров, обусловленная определенной необходимостью. В общем виде схема контейнерной площадки как одноканальной системы массового обслуживания представлена на рис. 1.

Анализ работы контейнерной площадки с точки зрения рассмотрения последней как одноканальной системы массового обслуживания предложен автором работы впервые. При этом все погрузочно-разгрузочные машины, составляющие технический комплекс площадки, объединены в один канал обслуживания. Условно принято, что контейнер, поступивший в систему, может с равной вероятностью быть переработан любым из имеющихся в наличии кранов или автопогрузчиков. Данный подход позволит применить к описанию работы контейнерной площадки аналитические методы теории массового обслуживания. Последние предлагаются автором как математический аппарат для определения эффективности функционирования технического комплекса контейнерной площадки.

Список литературы:

1. Белый О.В., Попов С.А., Францев Р.Э. Транспортные сети России (системный анализ, управление, перспективы), СПб.: СПГУВК, 1999, 147с

2. Вентцель, Е.С. Теория случайных процессов и ее инженерные приложения / Е.С. Вентцель, Л.А. Овчаров. – 3-е изд., перераб. и доп. – М.: Издательский центр «Академия», 2003. – 432 с.

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека