Примеры анаэробных бактерий. Анаэробы

Самой богатой по количеству и разнообразию путей метаболизма группой организмов являются прокариоты. Часть из них, чтобы синтезировать АТФ (основную энергетическую "валюту" клетки), используют схему аэробного дыхания, типичную для большинства эукариотов. Микроорганизмы, не обладающие данным механизмом, называются анаэробами. Эти бактерии способны получать энергию из химических соединений без участия кислорода.

Классификация анаэробов

По отношению к кислороду выделяют две группы анаэробных бактерий:

  • факультативные - могут получать энергию как с участием кислорода, так и без него, переход с одного типа метаболизма на другой зависит от условий среды;
  • облигатные - никогда не используют O 2 .

Для факультативных анаэробов бескислородный тип метаболизма имеет приспособительное значение, и бактерии прибегают к нему только в крайнем случае, при попадании в анаэробную среду. Это объясняется тем, что кислородное дыхание энергетически гораздо выгодней.

У другой группы анаэробов отсутствует биохимический механизм использования O 2 для окисления соединений, и присутствие этого элемента в окружающей среде не только не полезно, но и токсично.

Выделяют несколько типов облигатных анаэробов, различающихся по устойчивости к присутствию молекулярного кислорода:

  • строгие погибают даже при незначительной концентрации O 2 ;
  • умеренно строгие характеризуются средней или высокой устойчивостью к присутствию кислорода;
  • аэротолерантные - особая группа прокариот, способная не только выживать, но и расти в воздушной среде.

Отношение конкретной бактерии к кислороду можно определить по характеру ее роста в толще питательной среды.

К аэротолерантным микроорганизмам относят молочнокислые бактерии. Некоторые виды (например, Clostridium) могут быть устойчивы к высокой концентрации кислорода за счет образования эндоспор.

Анаэробный энергетический метаболизм

Все анаэробы - это типичные хемотрофы, поскольку в качестве источника энергии используют энергию химических связей. При этом энергетическими донорами могут быть как органические вещества (хемоорганотрофия), так и неорганические (хемолитотрофия).

У бактерий-анаэробов существуют две разновидности бескислородного метаболизма: дыхание и брожение. Принципиальное различие между ними заключается в механизме ассимиляции энергии.

Так, при брожении энергия сначала запасается в фосфагенной форме (например, в виде фосфоенолпирувата), а затем при участии цитозольных дегидрогеназ происходит субстратное фосфолирирование АДФ. Электроны при этом передаются эндогенному или экзогенному акцептору, который становится побочным продуктом процесса.

При дыхательном типе метаболизма энергия запасается в специфическом соединении - Pmf, который либо сразу используется для клеточных процессов, либо поступает в сосредоточенную на мембране электротранспортную цепь, где синтезируется АТФ. Только, в отличие от аэробного дыхания, конечным акцептором электронов служит не кислород, а другое соединение, которое может иметь как органическую, так и неорганическую природу.

Разновидности анаэробного дыхания

Основная задача, которую решает анаэробная бактерия с дыхательным типом метаболизма, - найти альтернативу молекулярному кислороду. Именно от этого зависит энергитический выход реакции. В зависимости от вещества, выполняющего роль терминального акцептора, различают следующие виды анаэробного дыхания:

  • нитратное;
  • железное;
  • фумаратное;
  • сульфатное;
  • серное;
  • карбонатное.

Анаэробное дыхание менее эффективно, чем аэробное, но по сравнению с брожением дает гораздо больший энергетический выхлоп.

Анаэробное деструктивное сообщество бактерий

Данный тип микробиоты образуется в богатых органикой экологических нишах, в которых кислород практически полностью израсходован (затапливаемые почвы, подземные гидросистемы, илистые отложения и т.д.). Здесь происходит ступенчатая деградация органических соединений, осуществляемая двумя группами бактерий:

  • первичные анаэробы отвечают за первый этап дессимиляции органики;
  • вторичные анаэробы - это микроорганизмы с метаболизмом дыхательного типа.

Среди первичных анаэробов различают гидролитиков и диссипотрофов, которые связаны друг с другом трофическими взаимодействиями. Гидролитики образуют биопленки на поверхности твердых субстратов и продуцируют гидролитические экзоферменты, которые расщепляют сложные органические соединения на олигомеры и мономеры.

Образовавшиеся питательный субстрат в первую очередь используются самими гидролитиками, но также и диссипотрофами. Последние обычно менее кооперированы и не выделяют значительных количеств экзоферментов, поглощая готовые продукты гидролиза биополимеров. Характерным представителем диссипотрофов являются бактерии рода Syntrophomonas.

Культивирование

Особые требования по выращиванию предъявляются только к облигатно-анаэробным бактериям. Факультативные прекрасно размножаются в кислородной среде.

Методы культивирования анаэробных микроорганизмов подразделяются на три категории: химические, физические и биологические. Их основная задача заключается в том, чтобы понизить либо полностью исключить присутствие кислорода в питательной среде. Степень допустимой концентрации O 2 определяется уровнем толерантности конкретного анаэроба.

Физические методы

Суть физических методов состоит в том, чтобы убрать кислород из воздушной среды, с которой контактирует культура, либо полностью исключить контакт бактерий с воздухом. К данной группе относят следующие технологии культивирования:

  • выращивание в микроаэростате - специальном приборе, в котором вместо атмосферного воздуха создается искусственная газовая смесь;
  • глубинное культивирование - посев бактерий не на поверхность, а высоким слоем или в толщу среды таким образом, чтобы туда не проникал воздух;
  • использование вязких сред, в которых диффузия O 2 снижается с увеличением плотности;
  • выращивание в анаэробной банке;
  • заливка поверхности среды вазелиновым маслом или парафином;
  • использование CO 2 -инкубатора;
  • применение анаэробной станции SIMPLICITY 888 (самый современный метод).

Обязательной частью физических методов является предварительное кипячение питательной среды, чтобы удалить из нее молекулярный кислород.

Использование химических веществ

Химические соединения, используемые для выращивания анаэробов, разделяют на 2 группы:

  • Поглотители кислорода сорбируют молекулы O 2. Поглощающая способность зависит от вида вещества и объема воздушного пространства в среде. Наиболее часто применяют пирогаллол (щелочной раствор), металлическое железо, хлорид одновалентной меди, дитионит натрия.
  • Восстанавливающие агенты (цистеин, дитиотрейтол, аскорбиновая кислота и др.) снижают окислительно-восстановительный потенциал среды.

Особой разновидностью химических методов является использование газогенерирующих систем, в состав которых входят агенты, генерирующие водород и углекислый газ, а O 2 поглощает палладиевый катализатор. Такие системы применяют в замкнутых емкостях для выращивания (анаэростаты, пластиковые пакеты и т.д.).

Биологические методы

К биологическим методам относят совместное выращивание анаэробов и аэробов. Последние удаляют из среды кислород, создавая условия для роста своих "сожителей". В качестве сорбирующих агентов могут использовать и факультативно-анаэробные бактерии.

Существует две модификации данного метода:

  • Посев двух культур на разные половины чашки Петри, которую затем закрывают крышкой.
  • Посев с использованием "часового стекла", содержащего среду с аэробной бактерией. Таким стеклом накрывают чашку Петри, сплошным слоем засеянную анаэробной культурой.

Иногда аэробные микроорганизмы используют на этапе подготовки жидкой питательной среды для инокуляции анаэробов. После удаления остаточного кислорода аэроба (например, E. colli) убивают нагреванием, а затем засевают нужную культуру.

Выделение чистой культуры

Чистой культурой называют популяцию микроорганизмов, принадлежащую к одному виду, обладающую одними свойствами и полученную из одной клетки. Для получения группы бактерий с такими характеристиками обычно используют методы истончающего штриха и предельных разведений, но работа с анаэробами - это особый процесс, требующий исключения контакта с кислородом при получении изолированных колоний.

Существует несколько способов выделения чистой культуры анаэробов. К ним относятся:

  • Метод Цейсслера - посев истончающим штрихом на чашки Петри с созданием анаэробных условий и последующей инкубацией в термостате (от 24 до 72 часов).
  • Метод Вейнберга - выделение анаэробов в культуру с использованием сахарного агара (посев высоким столбиком), бактерии переносятся запаянным капилляром. Вначале материал помещается в пробирку с изотоническим раствором (этап разведения), затем в пробирку с агаром, имеющим температуру 40-45 градусов, в которой тщательно перемешивается со средой. После этого происходит последовательный пересев в еще 2 пробирки, последняя из которых охлаждается под струей воды.
  • Метод Перетца - разведенный в изотоническом растворе материал заливают в чашку Петри таким образом, чтобы она заполнила пространство под лежащей на ее дне стеклянной пластинкой, на которой и должен начаться рост.

Во всех трех методах материал из полученных изолированных колоний пересевается на среду контроля стерильности (СКС) либо среду Китта-Тароцци.

Анаэробные инфекции доставляют больному немало хлопот, так как их проявления острые и эстетически неприятные. Провокаторами этой группы заболеваний являются спорообразующие или неспорообразующие микроорганизмы, которые попали в благоприятные для жизнедеятельности условия.

Инфекции, вызванные анаэробными бактериями, развиваются стремительно, могут поражать жизненно важные ткани и органы, поэтому их лечение необходимо начинать сразу после постановки диагноза, чтобы избежать осложнений или летального исхода.

Что это такое?

Анаэробная инфекция – патология, возбудителями которой являются бактерии, способные расти и размножаться при полном отсутствии кислорода или его низком напряжении. Их токсины обладают высокой проникающей способностью и считаются крайне агрессивными.

К данной группе инфекционных заболеваний относятся тяжелые формы патологий, характеризующиеся поражением жизненно важных органов и высоким уровнем смертности. У больных обычно преобладают проявления интоксикационного синдрома над местными клиническими признаками. Данная патология отличается преимущественным поражением соединительнотканных и мышечных волокон.

Причины анаэробной инфекции

Анаэробные бактерии относят к условно-патогенным и входят в состав нормальной микрофлоры слизистых оболочек, пищеварительной и мочеполовой систем и кожи. При условиях, провоцирующих их неконтролируемое размножение, развивается эндогенная анаэробная инфекция. Анаэробные бактерии, обитающие в разлагающихся органических остатках и почве, при попадании в открытые раны вызывают экзогенную анаэробную инфекцию.

Развитию анаэробной инфекции способствуют повреждения тканей, создающие возможность проникновения возбудителя в организм, состояние иммунодефицита, массированное кровотечение, некротические процессы, ишемия, некоторые хронические заболевания. Потенциальную опасность представляют инвазивные манипуляции (удаление зубов, биопсия и под.), хирургические вмешательства. Анаэробные инфекции могут развиваться вследствие загрязнения ран землей или попадания в рану других инородных тел, на фоне травматического и гиповолемического шока, нерациональной антибиотикотерапии, подавляющей развитие нормальной микрофлоры.

По отношению к кислороду анаэробные бактерии подразделяют на факультативные, микроаэрофильные и облигатные. Факультативные анаэробы могут развиваться как в обычных условиях, так и при отсутствии доступа кислорода. К этой группе относятся стафилококки, кишечная палочка, стрептококки, шигеллы и ряд других. Микроаэрофильные бактерии представляют собой промежуточное звено между аэробными и анаэробными, для их жизнедеятельности кислород необходим, но в малых количествах.

Среди облигатных анаэробов различают клостридиальные и неклостридиальные микроорганизмы. Клостридиальные инфекции относятся к экзогенным (внешним). Это ботулизм, газовая гангрена, столбняк, пищевые токсикоинфекции. Представители неклостридиальных анаэробой являются возбудителями эндогенных гнойно-воспалительных процессов, таких как перитонит, абсцессы, сепсис, флегмоны и т.д.

Симптомы

Инкубационный период длится около трех суток. Анаэробная инфекция начинается внезапно. У больных преобладают симптомы общей интоксикации над местным воспалением. Их самочувствие резкое ухудшается до появления локальных симптомов, раны приобретают черную окраску.

Больных лихорадит и знобит, у них возникает выраженная слабость и разбитость, диспепсия, заторможенность, сонливость, апатичность, падает кровяное давление, учащается сердцебиение, синеет носогубный треугольник. Постепенно заторможенность сменяется возбуждением, неспокойствием, спутанностью сознания. У них учащается дыхание и пульс.

Состояние ЖКТ также изменяется: язык у больных сухой, обложен, они испытывают жажду и сухость во рту. Кожа лица бледнеет, приобретает землистый оттенок, глаза западают. Возникает так называемое «маска Гиппократа» - «fades Hippocratica». Пациенты становятся заторможенными или резко возбужденными, апатичными, депрессивными. Они перестают ориентироваться в пространстве и собственных чувствах.

Местные симптомы патологии:

  1. Отек тканей конечности быстро прогрессирует и проявляется ощущениями полноты и распирания конечности.
  2. Сильная, нестерпимая, нарастающая боль распирающего характера, не снимаемая анальгетиками.
  3. Дистальные отделы нижних конечностей становятся малоподвижными и практически нечувствительными.
  4. Гнойно-некротическое воспаление развивается бурно и даже злокачественно. При отсутствии лечения мягкие ткани быстро разрушаются, что делает прогноз патологии неблагоприятным.
  5. Газ в пораженных тканях можно обнаружить с помощью пальпации, перкуссии и прочих диагностических методик. Эмфизема, крепитация мягких тканей, тимпанит, легкий треск, коробочный звук - признаки газовой гангрены.

Течение анаэробной инфекции может быть молниеносным (в течение 1 суток с момента операции или травмы), острым (в течение 3-4 суток), подострым (более 4 суток). Анаэробная инфекция часто сопровождается развитием полиорганной недостаточности (почечной, печеночной, сердечно-легочной), инфекционно-токсического шока, тяжелого сепсиса, являющихся причиной летального исхода.

Диагностика анаэробной инфекции

Перед началом лечения важно определить точно, анаэробный или аэробный микроорганизм вызвал инфекцию, а для этого недостаточно только внешней оценки симптомов. Методы определения инфекционного агента могут быть разными:

  • иммуноферментный анализ крови (эффективность и скорость этого метода высокая, как и цена);
  • рентгенография (этот метод наиболее эффективен при диагностике инфекции костей и суставов);
  • бактериальный посев плевральной жидкости, экссудата, крови или гнойных выделений;
  • окраска по Граму взятых мазков;

Лечение анаэробной инфекции

При анаэробной инфекции комплексный подход к лечению предполагает проведение радикальной хирургической обработки гнойного очага, интенсивной дезинтоксикационной и антибактериальной терапии. Хирургический этап должен быть выполнен как можно раньше – от этого зависит жизнь больного.

Как правило, он заключается в широком рассечении очага поражения с удалением некротизированных тканей, декомпрессии окружающих тканей, открытом дренировании с промыванием полостей и ран растворами антисептиков. Особенности течения анаэробной инфекции нередко требуют проведения повторных некрэктомий, раскрытия гнойных карманов, обработки ран ультразвуком и лазером, озонотерапии и т. д. При обширной деструкции тканей может быть показана ампутация или экзартикуляция конечности.

Важнейшими составляющими лечения анаэробной инфекции являются интенсивная инфузионная терапия и антибиотикотерапия препаратами широкого спектра действия, высокотропными к анаэробам. В рамках комплексного лечения анаэробной инфекции находят свое применение гипербарическая оксигенация, УФОК, экстракорпоральная гемокоррекция (гемосорбция, плазмаферез и др.). При необходимости пациенту вводится антитоксическая противогангренозная сыворотка.

Прогноз

Исход анаэробной инфекции во многом зависит от клинической формы патологического процесса, преморбидного фона, своевременности установления диагноза и начала лечения. Уровень летальности при некоторых формах анаэробной инфекции превышает 20%.

Лучшим решением для переработки канализационных стоков в загородных условиях является установка локального очистного сооружения – септика или станции биологической очистки.

В качестве компонентов, ускоряющих распад органических отходов, выступают бактерии для септиков – полезные микроорганизмы, не причиняющие вреда окружающей среде. Согласитесь, чтобы правильно подобрать состав и дозу биоактиваторов, необходимо понимать принцип их работы и знать правила их применения.

Эти вопросы подробно изложены в статье. Информация поможет собственникам локальной канализации улучшить функционирование септика и облегчить его обслуживание.

Сведения об аэробах и анаэробах заинтересует тех, кто решил для загородного участка или хочет «модернизировать» уже имеющуюся выгребную яму.

Подобрав нужные виды бактерий и определив дозировку (согласно инструкции), можно улучшить работу простейшего сооружения накопительного типа или наладить функционирование более сложного устройства – двух-трехкамерного септика.

Биологическая переработка органики – природный процесс, который давно используется человеком в хозяйственных целях.

Простейшие микроорганизмы, питаясь отходами жизнедеятельности людей, за короткий промежуток времени превращают их в твердый минеральный осадок, осветленную жидкость и жир, всплывающий на поверхность и образующий пленку.

Галерея изображений

Использование бактерий в бытовых и санитарных целях целесообразно по следующим причинам:

  • Природные микроорганизмы, развивающиеся и живущие по законам природы, не наносят ущерб окружающей флоре и фауне. Этот факт необходимо учитывать владельцам приусадебных участков, которые свободную территорию применяют для выращивания садовых и огородных культур, устройства газонов и цветников.
  • Пропадает необходимость в приобретении агрессивных химических препаратов, в отличие от естественных элементов, негативно действующих на почву и растения.
  • Запах, характерный для хозяйственно-бытовых стоков, чувствуется гораздо слабее или вообще пропадает.
  • Стоимость биоактиваторов мала по сравнению с той пользой, которую они приносят.

В связи с загрязнением почвы и водоемов проблема экологии затронула дачные участки, деревни и территории с загородными новостройками – коттеджными поселками. Благодаря действию бактерий-санитаров ее частично можно решить.

В системе канализации задействованы два вида бактерий: анаэробные и аэробные. Более подробная информация об особенностях жизнедеятельности двух видов микроорганизмов поможет вам разобраться в принципе действия септиков и накопителей, а также в нюансах обслуживания очистных сооружений.

Как происходит анаэробная очистка

Распад органики в накопительных ямах происходит в два этапа. Сначала можно наблюдать кислое брожение, сопровождающееся большим количеством неприятного запаха.

Это медленно протекающий процесс, во время которого образуется первичный ил болотного или серого цвета, также испускающий резкий запах. Время от времени кусочки ила отрываются от стенок и поднимаются вверх вместе с пузырьками газа.

Со временем газы, вызванные закисанием, заполняют весь объем емкости, вытесняют кислород и создают среду, идеально подходящую для развития анаэробных бактерий. С этого момента начинается щелочной распад канализационных стоков – метановое брожение.

Оно имеет совершенно иную природу и, соответственно, другие результаты. Например, полностью исчезает специфический запах, а ил обретает очень темную, практически черную окраску.

Преимущества анаэробной очистки:

  • небольшой объем бактериальной биомассы;
  • эффективная минерализация органики;
  • отсутствие аэрации, следовательно, экономия на дополнительном оборудовании;
  • возможность использования метана (в больших количествах).

К недостаткам можно отнести строгое соблюдение условий существования: определенной температуры, показателя pH, регулярный вывоз твердого осадка. В отличие от активного ила, выпавшие в осадок минерализованные вещества, не являются питательной средой для растений и не применяются в качестве удобрения.

Схемы ЛОС с применением анаэробных бактерий

Простейшим устройством, в котором могут жить и размножаться анаэробные бактерии, является сливная яма. Современные выгребы – это бетонные или , установленные в грунте ниже уровня промерзания.

Изделия из ПНД можно приобрести в специализированных компаниях или на сайтах производителей, бетонные – самостоятельно, при помощи или под контролем специалистов.

По мере накопления лишнего ила его вынимают и используют в качестве удобрения для выращивания овощей, на время помещая в компостные кучи.

Главными врагами биологической очистки являются химические моющие средства и антибиотики, растворенные в канализационных стоках. Они губительны для разного рода бактерий, поэтому агрессивные химические вещества (например, хлор и растворы с его содержанием) запрещено сливать в септик.

Преимущества и недостатки применения аэробов

Практически все существующие станции глубокой биологической очистки имеют в своем составе аэробные камеры, так как «кислородные» бактерии имеют некоторые преимущества перед анаэробами.

Они уничтожают растворенные в воде примеси, оставшиеся после механической и анаэробной очистки. Твердый осадок при этом не образуется, а налет можно удалить вручную.


Один из вариантов установки станции глубокой очистки с принудительным сливом в канаву: для работы компрессора и дренажного насоса требуется подключение к электросети (+)

Активный ил, являющийся результатом жизнедеятельности аэробов, экологически безопасен и, в отличие от химических веществ, приносит пользу произрастающей на участке растительности. Вместо неприятного запаха, характерного для закисающих стоков в выгребных ямах, наружу выходит углекислый газ.

Но главным достоинством является качество очистки воды – до 95-98%. Недостатком является энергозависимость системы.

При отсутствии электрического питания компрессор перестает подавать кислород, и при долгом простаивании без аэрации бактерии могут погибнуть. Оба вида бактерий, аэробы и анаэробы, чувствительны к бытовой химии, поэтому при использовании биологической очистки необходим контроль состава сточных вод.

Схемы ЛОС с аэробной очисткой

Осветление канализационных стоков при помощи аэробов осуществляется в станциях глубокой биологической очистки. Как правило, такая станция состоит из 3-4 камер.

Первый отсек является отстойником, в котором происходит деление отходов на различные субстанции, второй служит для анаэробной очистки, а уже в 3 (в некоторых моделях и в 4) отсеке производится аэробное осветление жидкости.


Схема установки станции глубокой биологической очистки с инфильтратором и накопительным колодцем, из которого производится сброс очищенной воды в канаву (+)

После трех- четырехступенчатой обработки вода используется для хозяйственных нужд (полива) или поступает на доочистку в одно из очистительных сооружений:

  • фильтрующий колодец;
  • поле фильтрации;
  • инфильтратор.

Но иногда вместо одного из сооружений устраивают грунтовый дренаж, в котором доочистка происходит в естественных условиях. В песчаных, гравийных и щебенистых грунтах мельчайшие остатки органики перерабатываются аэробами.

Через глины, суглинки, практически все супеси кроме песчанистого и сильно трещиноватого варианта вода не сможет просочиться в нижележащие слои. Грунтовую доочистку глинистые породы тоже не производят, т.к. обладают крайне низкими фильтрационными качествами.

Если геологический разрез на участке представлен именно глинистыми грунтами, системы грунтовой доочистки (поля фильтрации, поглотительные колодцы, инфильтраторы) не используются.

Эффективный способ доочистки стоков из септика – поле фильтрации, представляющее собой котлован с гравийной засыпкой. Стоки поступают из распределительного колодца по дренам, доступ кислорода обеспечивают стояки

Поле фильтрации представляет собой разветвленную систему перфорированных труб (дрен), отходящих от распределительного колодца. Очищенные стоки поступают сначала в колодец, затем в зарытые в грунт дрены. Трубы снабжены стояками, по которым поступает кислород, необходимый аэробным бактериям.

Инфильтратор – готовое изделие из ПНД, последняя ступень ЛОС для доочистки осветленных стоков. Его зарывают в грунт рядом с септиком, разместив на дренажной подушке из щебня. Условия установки инфильтратора те же – легкий, пропускающий воду грунт и низкий уровень грунтовых вод.

Монтаж группы инфильтраторов в грунт: чтобы обеспечить обработку большого объема жидкости и более высокую степень очистки, применяют несколько изделий, соединенных трубами

Фильтрующий колодец на первый взгляд напоминает накопительную емкость, но имеет одно существенное различие – проникающее дно. Нижняя часть остается открытой, засыпанной на 1-1,2 м дренажным слоем (щебнем, гравием, песком). Обязательно наличие вентиляции и технического люка.

Если доочистки не требуется, очищенные до 95 – 98 % сточные воды прямо из септика выводятся в придорожный кювет или канаву.

Правила применения биоактиваторов

Чтобы запустить или усилить процесс биологической очистки, иногда необходимы добавки – биоактиваторы в виде сухих порошков, таблеток или растворов.

Они пришли на смену хлорке, которая приносила окружающей среде больше вреда, чем пользы. Для производства биоактиваторов выбраны наиболее стойкие и активные штаммы бактерий, живущих в земле.

При выборе биоактиватора следует учитывать такие факторы, как тип очистного сооружения, место засыпки, специфика бактерий и ферментов, входящих в состав препарата

Препараты, помогающие ускорить процесс распада органики, обычно имеют универсальный комплексный состав, иногда – узконаправленный. Например, существуют стартовые разновидности, которые помогают «оживить» процесс очистки после зимней консервации или длительного простоя.

Узконаправленные виды нацелены на решение какой-то определенной проблемы, например, удаления большого количества жира из канализационных труб или расщепления концентрированных мыльных стоков.

Применение биоактиваторов в ЛОС и выгребных ямах имеет ряд преимуществ.

Постоянные пользователи отмечают следующие положительные моменты:

  • уменьшение объема твердых отходов на 65-70%;
  • уничтожение патогенной микрофлоры;
  • исчезновение резкого канализационного запаха;
  • более быстрое протекание процесса очистки;
  • профилактика засоров и заиливания различных частей канализационной системы.

Для быстрой адаптации бактерий необходимы специальные условия, например, достаточное количество жидкости в емкости, наличие питательной среды в виде органических отходов или комфортная температура (в среднем от +5ºС до + 45ºС).

И не стоит забывать, что живым бактериям для септика угрожают химические вещества, нефтепродукты, антибиотики.

Образец универсального типа – французский биоактиватор «Атмосбио». Рекомендуется для использования в септиках, выгребных ямах, дачных туалетах. Стоимость упаковки 300 гр. – 600 руб.

Рынок биопрепаратов дефицита не испытывает, кроме отечественных марок широко представлены и зарубежные. Наиболее известные марки – «Атмосбио» , , «BioExpert» , «Водограй» , , «Микрозим Септи Трит» , «Биосепт» .

Выводы и полезное видео по теме

Представленные видеоролики содержат полезный материал о выборе и применении биологических препаратов.

Практический опыт использования биоактиваторов в деревне:

Микроорганизмы увеличивают эффективность работы ЛОС, не причиняя вреда окружающей среде. Чтобы создать максимально комфортные условия для жизнедеятельности бактерий, следуйте инструкции и не забывайте вовремя обслуживать очистные сооружения.

Есть, что дополнить, или возникли вопросы по теме выбора и применения бактерий для септиков – можете оставлять комментарии к публикации. Форма для связи находится в нижнем блоке.

Анаэробы I Анаэро́бы (греч. отрицательная приставка an- + aēr + b жизнь)

микроорганизмы, развивающиеся при отсутствии в окружающей их среде свободного кислорода. Обнаруживаются практически во всех образцах патологического материала при различных гнойно-воспалительных заболеваниях, являются условно-патогенными, иногда патогенными. Различают факультативные и облигатные А. Факультативные А. способны существовать и размножаться как в кислородной, так и в бескислородной среде. К ним относятся кишечная , иерсинии, стрептококки, и другие Бактерии .

Облигатные А. погибают при наличии свободного кислорода в окружающей среде. Их разделяют на две группы: , образующие , или клостридии, и бактерии, не образующие спор, или так называемые неклостридиальные анаэробы. Среди клостридий различают возбудителей анаэробных клостридиальных инфекций - ботулизма, клостридиальной раневой инфекции, столбняка. К неклостридиальным А. относят грамотрицательные и грамположительные бактерии палочковидной или шаровидной формы: , фузобактерии, вейллонеллы, пептококки, пептострептококки, пропионибактерии, эубактерии и др. Неклостридиальные А. являются составной частью нормальной микрофлоры человека и животных, но в то же время играют большую роль в развитии таких гнойно-воспалительных процессов, как , абсцессы легких и головного мозга, эмпиема плевры, флегмоны челюстно-лицевой области, отит и др. Большинство анаэробных инфекций (Анаэробная инфекция), вызываемых неклостридиальными анаэробами, относится к эндогенным и развивается главным образом при снижении резистентности организма в результате , оперативного вмешательства, охлаждения, нарушения иммунитета.

Основную часть клинически значимых А. составляют бактероиды и фузобактерии, пептострептококки и споровые грамположительные палочки. На долю бактероидов приходится около половины гнойно-воспалительных процессов, вызванных анаэробными бактериями.

Библиогр.: Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова. М., 1987.

II Анаэро́бы (Ан- + , син. анаэробные)

1) в бактериологии - микроорганизмы, способные существовать и размножаться при отсутствии в окружающей среде свободного кислорода;

Анаэро́бы облига́тные - А., погибающие при наличии свободного кислорода в окружающей среде.

Анаэро́бы факультати́вные - А., способные существовать и размножаться как при отсутствии, так и при наличии свободного кислорода в окружающей среде.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Анаэробы" в других словарях:

    Современная энциклопедия

    - (анаэробные организмы) способны жить в отсутствии атмосферного кислорода; некоторые виды бактерий, дрожжей, простейших, червей. Энергию для жизнедеятельности получают, окисляя органические, реже неорганические вещества без участия свободного… … Большой Энциклопедический словарь

    - (гр.). Бактерии и тому подобные низшие животные, способные жить лишь при полном отсутствии кислорода воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. анаэробы (см. анаэробиоз) иначе анаэ робионты,… … Словарь иностранных слов русского языка

    Анаэробы - (от греческого an отрицательная частица, aer воздух и bios жизнь), организмы, способные жить и развиваться в отсутствие свободного кислорода; некоторые виды бактерий, дрожжей, простейших, червей. Облигатные, или строгие, анаэробы развиваются… … Иллюстрированный энциклопедический словарь

    - (от а..., ан... и аэробы), организмы (микроорганизмы, моллюски и др.), способные жить и развиваться в бескислородной среде. Термин ввел Л. Пастер (1861), открывший бактерии масляно кислого брожения. Экологический энциклопедический словарь.… … Экологический словарь

    Организмы (в основном прокариоты), способные жить при отсутствии в среде свободного кислорода. Облигатные А. получают энергию в результате брожения (маслянокислые бактерии и др.), анаэробного дыхания (метаногены, сульфатвосстанавливающие бактерии … Словарь микробиологии

    Сокр. назв. анаэробных организмов. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    АНАЭРОБЫ - (от греч. а отриц. част., аег воздух и bios жизнь), микроскопические организмы, способные черпать энергию (см. Анаэробиоз) не в реакциях окисления, а в реакциях расщепления как органических соединений, так и неорганических (нитраты, сульфаты и пр … Большая медицинская энциклопедия

    АНАЭРОБЫ - организмы, нормально развивающиеся при полном отсутствии свободного кислорода. В природе А. находятся всюду, где разлагаются органические вещества без доступа воздуха (в глубоких слоях почвы, особенно заболоченной, в навозе, иле и т. п.). Имеются … Прудовое рыбоводство

    Ов, мн. (ед. анаэроб, а; м.). Биол. Организмы, способные жить и развиваться при отсутствии свободного кислорода (ср. аэробы). ◁ Анаэробный, ая, ое. А ые бактерии. А ая инфекция. * * * анаэробы (анаэробные организмы), способны жить в отсутствие… … Энциклопедический словарь

    - (анаэробные организмы), организмы, способные жить и развиваться только при отсутствии свободного кислорода. Получают энергию за счёт окисления органических или (реже) неорганических веществ без участия свободного кислорода. К анаэробам… … Биологический энциклопедический словарь

Аэробными организмами называются такие организмы, которые способны жить и развиваться только при наличии в среде свободного кислорода, используемого ими в качестве окислителя. К аэробным организмам принадлежат все растения, большинство простейших и многоклеточных животных, почти все грибы, то есть подавляющее большинство известных видов живых существ.

У животных жизнь в отсутствие кислорода (анаэробиоз) встречается как вторичное приспособление. Аэробные организмы осуществляют биологическое окисление главным образом посредством клеточного дыхания. В связи с образованием при окислении токсичных продуктов неполного восстановления кислорода, аэробные организмы обладают рядом ферментов (каталаза, супероксиддисмутаза), обеспечивающих их разложение и отсутствующих или слабо функционирующих у облигатных анаэробов, для которых кислород оказывается вследствие этого токсичным.

Наиболее разнообразна дыхательная цепь у бактерий, обладающих не только цитохромоксидазой, но и другими терминальными оксидазами.

Особое место среди аэробных организмов занимают организмы, способные к фотосинтезу, - цианобактерии, водоросли, сосудистые растения. Выделяемый этими организмами кислород обеспечивает развитие всех остальных аэробных организмов.

Организмы, способные развиваться при низкой концентрации кислорода (≤ 1 мг/л), называются микроаэрофилами.

Анаэробные организмы способны жить и развиваться при отсутствии в среде свободного кислорода. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Распространены они главным образом среди прокариот. Метаболизм их обусловлен необходимостью использовать иные окислители, чем кислород.

Многие анаэробные организмы, использующие органические вещества (все эукариоты, получающие энергию в результате гликолиза), осуществляют различные типы брожения, при которых образуются восстановленные соединения - спирты, жирные кислоты.

Другие анаэробные организмы - денитрифицирующие (часть из них восстанавливает окисное железо), сульфатвосстанавливающие, метанообразующие бактерии - используют неорганические окислители: нитрат, соединения серы, СО 2 .

Анаэробные бактерии разделяются на группы маслянокислых и т.д. в соответствии с основным продуктом обмена. Особую группу анаэробов составляют фототрофные бактерии.

По отношению к О 2 анаэробные бактерии делятся на облигат- ных, которые неспособны использовать его в обмене, и факультативных (например, денитрифицирующие), которые могут переходить от анаэробиоза к росту в среде с О 2 .

На единицу биомассы анаэробные организмы образуют много восстановленных соединений, основными продуцентами которых в биосфере они и являются.

Последовательность образования восстановленных продуктов (N 2 , Fe 2+, H 2 S, CH 4), наблюдаемая при переходе к анаэробиозу, например в донных отложениях, определяется энергетическим выходом соответствующих реакций.

Анаэробные организмы развиваются в условиях, когда О 2 полностью используется аэробными организмами, например в сточных водах, илах.

Влияние количества растворенного кислорода на видовой состав и численность гидробионтов .

Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О 2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от со- отношения интенсивности процессов его продуцирования и потребления.

В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О 2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О 2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов.

Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода:

1) 7 - 11 мг / л - форель, гольян, подкаменщик;

2) 5 - 7 мг / л - хариус, пескарь, голавль, налим;

3) 4 мг / л - плотва, ерш;

4) 0,5 мг / л - карп, линь.

Некоторые виды организмов приспособились к сезонным ритмам в потреблении О 2 , связанными с условиями жизни.

Так, у рачка Gammarus Linnaeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года.

У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода.

Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски).

Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водя- ные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека