Эндотелий развивается из. Эндотелий сосудов

Октябрь 30, 2017 Нет комментариев

Стенка интактных артерий состоит из трех оболочек: интимы (tunica intima), медиа (tunica media) и адвентиции (tunica externa).

1. Интима, т.е. внутренняя оболочка, включает эндотелий, тонкий субэндотелиальный слой и внутреннюю эластическую мембрану на границе с медиа - средней оболочкой. Эндотелий представляет собой монослой удлиненных клеток, ориентированных вдоль продольной оси сосуда. Эндотелиальный слой непрочен, его целостность легко нарушается при различных физических воздействиях, а восстановление происходит благодаря митотическому делению эндотелиоцитов под влиянием определенных стимулов со стороны окружающей соединительной ткани и эндотелиоцитов.

2. Медиа представлена циркулярными пучками гладкомышечных клеток, которые отделяются от наружного слоя эластической мембраной, состоящей из продольно ориентированных толстых эластических волокон и спирально расположенных пучков коллагеновых фибрилл.

3. Адвентиция - наружная оболочка сосудистой стенки состоит из рыхлой соединительной ткани, содержащей большое количество фибробластов, и сливается с окружением сосуда. Важной особенностью адвентипии является наличие в ней нервных окончаний и vasa vasorum - сосудов, питающих стенку артерий. Эластические волокна создают резистивное сопротивление, которое повышается при увеличении кровяного давления и тем самым противодействует расширению сосуда.

Эластическое сопротивление определяет базальный компонент сосудистого тонуса - это филогенетически древний механизм ауторегуляции сосудистого тонуса, обеспечивающий сохранность структурной целостности сосудов в условиях их растяжения давлением крови. Гладкомышечные волокна под влиянием нейро-гуморальных факторов создают активное напряжение сосудистой стенки (вазомоторнный компонент сосудистого тонуса) и, соответственно, определенную величину просвета сосуда (объем кровотока) в «интересах» организма. Соотношение между базальным и вазомоторным компонентами сосудистого тонуса различны в разных органах и тканях.

Наибольшую значимость для функционирования сосудов имеют гладкомышечные и эндотелиальные клетки. Особое внимание в современной медицине привлекает эндотелий, который, как оказалось, способен синтезировать весьма большой спектр биологически активных веществ на границе «кровь - клетки тканей/органов» и таким образом выполнять функцию «таможенника» на этой границе.

Эндотелий – эндокринный орган сердечно-сосудистой системы

Совокупность всех эндотелиоцитов (специализированных клеток мезенхимного происхождения) образует эндотелиальную выстилку - однослойный пласт клеток, выстилающий изнутри все «сердечно-сосудистое дерево»: кровеносные сосуды, полости сердца, а также лимфатические сосуды. У взрослого человека эндотелиальная выстилка имеет массу в пределах 1,5-1,8 кг, состоит примерно из одного триллиона клеток, которые способны синтезировать биологически активные молекулы с различными типами действия -аутокринным, паракринным и эндокринным.

Структурная организация эндотелиальной выстилки неодинакова в разных сосудах. Например, существуют рандомический и кластеризованный типы организации эндотелиального монослоя. Первый из них характеризуется относительно беспорядочным расположением эндотелиоцитов, а при втором - эндотелиоцигы примерно одинакового размера формируют кластеры (англ, cluster- группа). Гетерогенность эндотелия сопряжена с типом сосуда (артерии, артериолы, капилляры, венулы, вены), органом или тканью, которые они кровоснабжают.

Эндотелиальные клетки также неоднородны по своей структуре, которая зависит в основном от фибрилл цитоскелета: активных микрофиламетов, микротрубочек, промежуточных филаментов. Эти три типа фибрилл, имеющиеся во всех клетках, формируют различные варианты микроархитектуры эндотел ионитов. Типовые различия клеточной архитектоники обычно устойчивы - они сохраняются даже тогда, когда экспериментаторы выделяют клетки из ткани и культивируют in vitro.

Однако в последние годы было установлено, что эти различия не являются необратимыми: под влиянием определенных сигналов, действующих на клетки извне, или генных мутаций архитектоника эндотелиоцитов может коренным образом перестраиваться вплоть до того, что клетки одного типа могут трансформироваться в клетки другого типа с совершенно иной архитектурой цитоскелета. Процесс трансформации фенотипа клеток, в том числе эндотелиоцитов, в настоящее время включен в понятие, обозначаемое термином «репрограммирование».

Этот процесс привлекает все большее внимание в аспекте современного понимания патогенеза самых различных форм патологии. Неоднородность эндотелиоцитов выражается не только в структурных особенностях, но и в их генетической и биосинтетической специфичности. Так, например, эндотелиоциты коронарных, легочных и церебральных сосудов, несмотря на гистологическую схожесть, весьма существенно различаются по типам экспрессируемых рецепторов, спектру синтезируемых биологически активных молекул: ферментов, белков-регуляторов, белков-мессенджеров. Такая гетерогенность предопределяет неодинаковое участие различных популяций эндотелиоцитов в развитии атеросклероза, ишемической болезни сердца, воспаления и др. форм патологии.

Итак, эндотелий является не только основным структурным компонентом интимы, выполняющим роль барьера между кровью и базальной мембраной сосудистой стенки, но и активным регулятором многих жизненно важных процессов. Многообразие целевых эффектов «гормонального ответа» эндотелиоцитов базируется на их способности синтезировать биологически активные вещества являющиеся, в своем большинстве, функциональными антагонистами. В набор этих веществ входят вазоконстрикторы и вазодилататоры, проагреганты и антиагреганты, прокоагулянты и антикоагулянты, митогены и антимитогены.

«Гормональная» активность интактного эндотелия способствует вазодилатации, препятствует гемокоагуляции и тромбообразованию, ограничивает пролиферативый потенциал клеток сосудистой стенки. В условиях альтерации (alteratio; лат. - изменение), т.е. патогенетически значимого изменения эндотелия, его «гормональный» ответ, напротив, способствует вазоконстрик-ции, гемокоагуляции, тромбообразованию, пролиферативному процессу.

Эндотелиальная выстилка находится под постоянным «прессом» вне-и внутрисосудистых факторов, которые, по сути, являются регуляторами «гормонального ответа» эндотелиоцитов.

В конце прошлого столетия было выявлено два типа ответа эндотелиоцитов на возмущающие воздействия: один из них развивается незамедлительно (без изменения экспрессии генов) и выражается в выделении преформированных и депонированных биологически активных молекул (напр.: Р-селектина, фактора фон Виллебранда, тромбоцитарного активирующего фактора (PAF) из гранул эндотелиоцитов); другой - проявляется спустя 4-6 ч после начала действия возмущающего стимула и характеризуется изменением активности генов, детерминирующей de novo синтез адгезивных молекул (напр.: Е-селекгана, ICAM-1, VCAM-1; интерлейкинов IL-1 и IL-6; хемокинов - IL-8, МСР-1 и других веществ).

В обобщенном виде можно выделить 3 основные группы факторов, индуцирующих «гормональный ответ» эндотелия.

1. Гемодинамический фактор. Влияние этого фактора на функциональную активность эндотелия зависит от скорости кровотока, его характера, а также величины давления крови, обусловливающих развитие т.н. «напряжения сдвига» (англ, «shear stress»).

2. «Клеточные» (местно-образующиеся) биологически активные вещества, обладающие аутокринным или паракринным свойством. К ним относят факторы «реакции освобождения» - дегрануляции и лизиса адгезированных и агрегированных тромбоцитов: тромбопластин, фибриноген, фактор фон Виллебранда, тромбоцитарный фактор роста, фибронектин, серотонин, АДФ, кислые гидролазы, а также продукты переместившихся в краевое, пристеночное положение лейкоцитов (прежде всего нейтрофилов), которые при этом становятся интенсивными продуцентами адгезивных молекул, лизосомальных протеаз, активных форм кислорода, лейкотриенов, простагландинов группы Е и т.д.), а также активированных тучных клеток - источников гистамина, серотонина, лейкотриенов С4 и D4, фактора активации тромбоцитов, гепарина, протеолитических ферментов, хемотаксических и других факторов.

3. Циркулирующие (дистантно-образующиеся) биологически активные вещества, обладающие эндокринным свойством. К ним относят катехоламины, ваэопрессин, ацетилхолин, брадикинин, аденозин, гистамин и многие другие.

Действие медиаторов и нейрогормонов в основном реализуется через специфические рецепторы, расположенные на поверхности эндотелиальных клеток.

Повреждение эндотелия, т.е. патогенетически значимое репрограммирование его биосинтетической активности в условиях развития различных заболеваний, связывают прежде всего с существенным изменением «напряжения сдвига». «Напряжение сдвига» (механический фактор) по определению данного понятия - это внутренние силы, возникающие в деформируемом теле под влиянием внешних статических и динамических нагрузок.

Согласно закону Гука величина упругой деформации твердого тела пропорциональна приложенному механическому напряжению. Упругие свойства сосудистой стенки определяются количественными и качественными характеристиками ее структурных компонентов: соединительнотканных и гладкомышечных клеток, организованных в волокна.

Давление в кровеносном сосуде создает в его стенке «растягивающее (давление зависимое) напряжение сдвига», направленное по касательной к окружности сосуда, а скорость движения крови – «продольное (поток-зависимое) напряжение сдвига», ориентированное вдоль сосуда. Таким образом, напряжение сдвига - это прижимающие и скользящие механические силы воздействия на поверхность эндотелия.

Кроме указанных гемодинамических факторов, на величину напряжения сдвига оказывает влияние вязкость крови. Установлено, что артерии регулируют свой просвет соответственно изменению данного свойства крови: при повышении вязкости сосуды увеличивают свой диаметр, а при понижении - его уменьшают.

Выраженность и направленность регуляторного ответа артерий на изменения величины внутрисосудистого потока не всегда однозначны и зависят от исходного тонуса артерий.

Касаясь механизмов реализации изменений напряжения сдвига, прежде всего возникает вопрос о способности эндотелиоцитов воспринимать механические стимулы. Такое свойство эндотелиальных клеток было продемонстрировано in vivo и in vitro, в то время как вопрос о механосенсорах пока окончательно не решен.Тем не менее установлено, что изменения напряжения сдвига могут опосредованно, через ионоселективные каналы, влиять на мембранный потенциал эндотелиальных клеток и тем самым - на синтез и выделение NO.

Обнаружено также, что эндотелиоциты (включая их ядра) способны ориентироваться в направлении движения потока крови, изменяя при этом интенсивность экспрессии биологически активных веществ в зависимости от сдвиговых напряжений. Оказалось, что такую ориентацию могут предотвращать препараты, повышающие содержание внутриклеточного цАМФ.

Следует отметить, что многие аспекты достаточно сложной биомеханики сосудистой стенки, взаимоотношения кровяного давления и потока до сих пор находятся на этапе их изучения, но вместе с тем в настоящее время положение об активной роли эндотелия в регуляции и нарушениях кровообращения приняло характер парадигмы.

Физиологическое (умеренно выраженное) напряжение сдвига всегда способствует реализации защитно-приспособительных возможностей эндотелиальных клеток. Чрезмерность напряжения сдвига не всегда приводит к реализации защитно-приспособительного потенциала эндотелиальной активности.

Чаще всего значительные (по интенсивности или продолжительности) изменения гемодинамических параметров, главным образом потока и давления крови, сопровождаются истощением или неадекватным использованием функциональных возможностей эндотелия, т. е. развитием эндотелиальной дисфункции.

Эндотелий – это плоские клетки мезенхимного происхождения. Эндотелий выстилает поверхность сердечных полостей, лимфатических и кровеносных сосудов. Эндотелий считается эндокринным органом с активной деятельностью. Благодаря этому слою клеток происходит большое количество процессов в нашем организме: синтез низкомолекулярных веществ, белков, выполнение клетками функции рецепторов, ионных каналов. Нарушение функций эндотелия приводит к развитию различных заболеваний. В Юсуповской больнице большое внимание уделяют лечению пациентов с дисфункцией эндотелия в неврологическом, терапевтическом отделении.

Функция эндотелия

Функции эндотелия разнообразные:

  • Эндотелий влияет на свертывание крови, сосудистый тонус, способность почек фильтровать, артериальное давление, сократительную способность сердца, на метаболические процессы в мозге благодаря синтезу определенных субстанций.
  • Эндотелий оказывает влияние на давление крови в сосудах, степень напряжения стенок сосудов, оказывает механическое воздействие на ток крови по сосудам.

Эндотелий очень чувствителен к воздействию химических веществ – это может вызвать тромбоз, оседание липидных конгломератов и другие процессы. Большую роль в выполнении эндотелием своих функций играет окись азота. При физической нагрузке увеличивается ток крови, который механически раздражает слой эндотелия. Благодаря раздражению происходит синтез окиси азота. Окись азота вызывает расширение просвета сосудов. При повреждении эндотелия исчезает равновесие: не происходит релаксации в мышцах гладкой мускулатуры сосудов, просвет кровеносных сосудов остается суженый. Такое состояние называется дисфункцией эндотелия.

Антитела к антигенам эндотелия

Антитела (аутоантитела) к клеткам сосудистого эндотелия направлены организмом против собственных клеток (эндотелиоцитов). Антитела обнаруживаются в крови людей, болеющих аутоиммунными заболеваниями, наличие этих антител являются маркером для системных васкулитов и других заболеваний иммунной системы. Антитела к клеткам эндотелия – это группы иммуноглобулинов. Исследования показали, что антитела не являются причиной системных васкулитов, они появляются в результате воспалительного процесса, вырабатываются вторично в ответ на поражение клеток. Антитела вступают во взаимодействие только с большими и средними кровеносными сосудами, изредка взаимодействуют с микрососудами. Антитела к эндотелию определяются также при сахарном диабете, вирусных инфекциях, гипертонической болезни и гиперпролактинемии.

Дисфункция эндотелия

Общая масса эндотелия у человека составляет от 1600 до 1900 грамм – это самый большой эндокринный орган. Его функции в организме очень важны и поражение эндотелия приводит к дисфункции, развитию различных тяжелых заболеваний. Эндотелий вырабатывает окись азота, которая защищает сосудистую стенку от различного патологического влияния, предохраняет организм от развития атеросклероза, атеротромбоза. Нарушение синтеза окиси азота приводит к атеросклеротическим изменениям сосудов, образуются тромбы, развиваются тяжелые состояния, растут факторы риска развития сердечно-сосудистых осложнений. Исследования показали, что дисфункция эндотелия должна лечиться вместе с высоким артериальным давлением (существует взаимосвязь между дисфункцией эндотелия и развитием высокого артериального давления).

Современная оценка дисфункции эндотелия проходит с помощью двух методов – неинвазивного и инвазивного. Неинвазивные методы применяются чаще, они не сложные, не представляют особого риска или дискомфорта при проведении. Инвазивный метод проводится с помощью ацетилхолина, который вводится в коронарные сосуды. После введения химического вещества регистрируется изменение диаметра артерий, диагностируется состояние функции эндотелия. Такое исследование имеет высокую стоимость, техническую сложность – все эти факторы ограничивают применение методики. Исследования проводятся с помощью специального зонда во время диагностической коронарографии или эндоваскулярной операции на артериях, они помогают оценить состояние сосудов. Проводится внутрисосудистое исследование ультразвуком – это помогает оценить характер и степень поражения сосудистой стенки.

К неинвазивным методам относятся методика FMD, методика послужила основой для создания других неинвазивных методик с помощью УЗИ, разработаны методы исследования с помощью допплерографии и другие методики исследований функции эндотелия. В Юсуповской больнице проводится диагностическое обследование пациентов с нарушением функции эндотелия, проводится лечение атеросклероза, атеротромбоза, других заболеваний сосудов и сердца.

Список литературы

  • МКБ-10 (Международная классификация болезней)
  • Юсуповская больница
  • "Диагностика". - Краткая Медицинская Энциклопедия. - М.: Советская Энциклопедия, 1989.
  • «Клиническая оценка результатов лабораторных исследований»//Г. И. Назаренко, А. А. Кишкун. г. Москва, 2005 г.
  • Клиническая лабораторная аналитика. Основы клинического лабораторного анализа В.В Меньшиков, 2002 .

Ранее мы отмечали, что на состав крови существенное влияние оказывает эндотелий сосудистой стенки. Известно, что диаметр среднего капилляра равен 6-10 мкм, его длина около 750 мкм. Суммарное поперечное сечение сосудистого русла в 700 раз превышает диаметр аорты. Общая площадь сети капилляров составляет 1000 м 2 . Если учесть, что в обмене участвуют пре- и посткапиллярные сосуды, эта величина вырастает вдвое. Здесь протекают десятки, а скорее всего – сотни биохимических процессов, связанных с межклеточным обменом: его организацией, регуляцией, реализацией. По современным представлениям эндотелий – это активный эндокринный орган, самый большой в организме и диффузно рассеянный по всем тканям. Эндотелий синтезирует соединения, важные для свертывания крови и фибринолиза, адгезии и агрегации тромбоцитов. Он является регулятором деятельности сердца, тонуса сосудов, кровяного давления, фильтрационной функции почек и метаболической деятельности мозга. Он контролирует диффузию воды, ионов, продуктов метаболизма. Эндотелий реагирует на механическое давление крови (гидростатическое давление). Учитывая эндокринные функции эндотелия, британский фармаколог, лауреат Нобелевской премии Джон Вейн назвал эндотелий “маэстро кровообращения”.

Эндотелий синтезирует и выделяет большое количество биологически активных соединений, которые высвобождаются согласно текущей потребности. Функции эндотелия определяются наличием следующих факторов:

1. контролирующих сокращение и расслабление мышц сосудистой стенки, что определяет её тонус;

2. участвующих в регуляции жидкого состояния крови и способствующих тромбообразованию;

3. контролирующих рост сосудистых клеток, их репарацию и замещение;

4. принимающих участие в иммунном ответе;

5. Участвующих в синтезе цитомединов или клеточных медиаторов, обеспечивающих нормальную деятельность сосудистой стенки.

Оксид азота. Одной изсамых важных молекул, продуцируемых эндотелием, является оксид азота, конечная субстанция, осуществляющая многие регуляторные функции. Синтез оксида азота осуществляется из L-аргинина конститутивным ферментом NO-синтазой. К настоящему времени идентифицированы три изоформы NO-синтаз, каждая из которых представляет собой продукт отдельного гена, кодируется и идентифицируется в разных типах клеток. В эндотелиальных клетках и в кардиомиоцитах имеется так называемая NO-синтаза 3 (есNOs или NOs3 )

Оксид азота присутствует во всех типах эндотелия. Даже в покое эндотелиоцит синтезирует определенное количество NO, поддерживая базальный тонус сосудов.

При сокращении мышечных элементов сосуда, снижении парциального напряжения кислорода в ткани в ответ на повышение концентрации ацетилхолина, гистамина, норадреналина, брадикинина, АТФ и др. синтез и секреция NO эндотелием усиливается. Продукция оксида азота в эндотелии также зависит от концентрации кальмодулина и ионов Са 2+ .

Функция NO сводится к торможению работы сократительного аппарата гладкомышечных элементов. При этом активируется фермент гуанилатциклаза и образуется посредник (мессенджер) – циклический 3 / 5 / -гуанозинмонофосфат.

Установлено, что инкубация эндотелиальных клеток в присутствии одного из провоспалительных цитокинов – TNFa – приводит к уменьшению жизнеспособности эндотелиальных клеток. Но если усиливается образование оксида азота, то эта реакция защищает эндотелиальные клетки от действия TNFa. В то же время ингибитор аденилатциклазы 2 / 5 / -дидезоксиаденозин полностью подавляет цитопротекторный эффект донора NO. Следовательно, одним из путей действия NO может быть цГМФ-зависимое ингибирование распада цАМФ.

Что же делает NO?

Оксид азота тормозит адгезию и агрегацию тромбоцитов и лейкоцитов, что связано с образованием простациклина. Одновременно он ингибирует синтез тромбоксана А 2 (ТхА 2). Оксид азота тормозит активность ангиотензина II, вызывающего повышение тонуса сосудов.

NO регулирует локальный рост эндотелиальных клеток. Являясь свободнорадикальным соединением с высокой реактивной способностью, NO стимулирует токсическое действие макрофагов на опухолевые клетки, бактерии и грибки. Оксид азота противодействует оксидантному повреждению клеток, вероятно, из-за регуляции механизмов синтеза внутриклеточного глутатиона.

С ослаблением генерации NO связано возникновение гипертензии, гиперхолестеринемии, атеросклероза, а также спастических реакций коронарных сосудов. Кроме того, нарушение генерации оксида азота приводит к дисфункции эндотелия, касающейся образования биологически активных соединений.

Эндотелин. Одним из самых активных пептидов, выделяемых эндотелием, является сосудосуживающий фактор эндотелин, действие которого проявляется в чрезвычайно малых дозах (в одну миллионную мг). В организме присутствуют 3 изоформы эндотелина, чрезвычайно мало отличающиеся по своему химическому составу друг от друга, включающие по 21 аминокислотному остатку и значительно различающиеся по механизму своего действия. Каждый эндотелин является продуктом отдельного гена.

Эндотелин 1 – единственный из этого семейства, который образуется не только в эндотелии, но и в гладкомышечных клетках, а также в нейронах и астроцитах головного и спинного мозга, мезангиальных клетках почки, эндометрии, гепатоцитах и эпителиоцитах молочной железы. Основными стимулами образования эндотелина 1 являются гипоксия, ишемия и острый стресс. До 75% эндотелина 1 секретируется эндотелиальными клетками в направлении гладкомышечных клеток сосудистой стенки. При этом эндотелин связывается с рецепторами на их мембране, что, в конечном итоге, приводит к их констрикции.

Эндотелин 2 – основным местом его образования являются почки и кишечник. В небольших количествах он обнаруживается в матке, плаценте и миокарде. По своим свойствам практически не отличается от эндотелина 1.

Эндотелин 3 постоянно циркулирует в крови, но его источник образования не известен. В высоких концентрациях он обнаружен в головном мозге, где, как предполагается, он регулирует такие функции, как пролиферация и дифференцировка нейронов и астроцитов. Кроме того, он найден в желудочно-кишечном тракте, легких и почках.

Учитывая функции эндотелинов, а также их регуляторную роль в межклеточных взаимодействиях, многие авторы считают, что эти пептидные молекулы следует отнести к цитокинам.

Синтез эндотелина стимулируется тромбином, адреналином, ангиотензином, интерлейкином-I (IL-1) и различными ростовыми факторами. В большинстве случаев эндотелин секретируется из эндотелия внутрь, к мышечным клеткам, где расположены чувствительные к нему рецепторы. Различают три типа эндотелиновых рецепторов: А, В и С. Все они располагаются на мембранах клеток различных органов и тканей. Эндотелиальные рецепторы относятся к гликопротеидам. Большая часть синтезируемого эндотелина взаимодействует с ЭтА-рецепторами, меньшая – с рецепторами ЭтВ-типа. Действие эндотелина 3 опосредуется через ЭтС-рецепторы. При этом они способны стимулировать синтез оксида азота. Следовательно, при помощи одного и того же фактора регулируются 2 противоположные сосудистые реакции – сокращение и расслабление, реализуемые различными механизмами. Следует, однако, заметить, что в естественных условиях, когда происходит медленное накопление концентрации эндотелинов, наблюдается вазоконстрикторный эффект, обусловленный сокращением гладкой мускулатуры сосудов.

Эндотелин, безусловно, причастен к ишемической болезни сердца, острому инфаркту миокарда, нарушениям ритма сердца, атеросклеротическим повреждениям сосудов, легочной и сердечной гипертензии, ишемическим повреждениям мозга, диабету и другим патологическим процессам.

Тромбогенные и тромборезистентные свойства эндотелия. Эндотелий играет чрезвычайно важную роль в сохранении жидкого состояния крови. Повреждение эндотелия неминуемо ведет к адгезии (прилипанию) тромбоцитов и лейкоцитов, благодаря чему образуются белые (состоящие из тромбоцитов и лейкоцитов) или красные (включающие в сгусток эритроциты) тромбы. В связи со сказанным можно считать, что эндокринная функция эндотелия сводится, с одной стороны, к поддержанию жидкого состояния крови, а с другой – к синтезу и высвобождению факторов, способных приводить к остановке кровотечения.

К факторам, способствующим остановке кровотечения, следует отнести комплекс соединений, приводящих к адгезии и агрегации тромбоцитов, образованию и сохранению фибринового сгустка. К соединениям, обеспечивающим жидкое состояние крови, принадлежат ингибиторы агрегации и адгезии тромбоцитов, естественные антикоагулянты и факторы, приводящие к растворению фибринового сгустка. Остановимся на характеристике перечисленных соединений.

Известно, что к веществам, индуцирующим адгезию и агрегацию тромбоцитов и образуемым эндотелием, относятся тромбоксан А 2 (ТхА 2), фактор фон Виллебранда (vWF), фактор активации тромбоцитов (PAF), аденозиндифосфорная кислота (ADP).

ТхА 2 , в основном, синтезируется в самих тромбоцитах, однако это соединение способно также образовываться и из арахидоновой кислоты, входящей в состав эндотелиальных клеток. Действие ТхА 2 проявляется в случае повреждения эндотелия, благодаря чему возникает необратимая агрегация тромбоцитов. Следует заметить, что ТхА 2 обладает довольно сильным сосудосуживающим действием и играет немаловажную роль в возникновении коронароспазма.

vWF синтезируется неповрежденным эндотелием и необходим как для адгезии, так и агрегации тромбоцитов. Различные сосуды в неодинаковой степени способны синтезировать этот фактор. Высокий уровень транспортной РНК vWF обнаружен в эндотелии сосудов легких, сердца, скелетных мышц, тогда как в печени и почках его концентрация сравнительно невысока.

PAF образуется многими клетками, в том числе и эндотелиоцитами. Это соединение способствует экспрессии основных интегринов, принимающих участие в процессах адгезии и агрегации тромбоцитов. PAF обладает широким спектром действия и играет важную роль в регуляции физиологических функций организма, а также в патогенезе многих патологических состояний.

Одним из соединений, принимающих участие в агрегации тромбоцитов, является AДФ. При повреждении эндотелия выделяется, главным образом, аденозинтрифосфат (ATФ), который под действием клеточной АТФ-азы быстро переходит в АДФ. Последняя запускает процесс агрегации тромбоцитов, который на первых этапах носит обратимый характер.

Действию соединений, способствующих адгезии и агрегации тромбоцитов, противостоят факторы, ингибирующие эти процессы. К ним в первую очередь относится простациклин или простагландин I 2 (PgI 2). Синтез простациклина неповрежденным эндотелием происходит постоянно, однако его освобождение наблюдается лишь в случае действия стимулирующих агентов. PgI 2 ингибирует агрегацию тромбоцитов за счет образования цАМФ. Кроме того, ингибиторами адгезии и агрегации тромбоцитов являются оксид азота (см. выше) и экто-АДФ-аза, расщепляющая AДФ до аденозина, служащего ингибитором агрегации.

Факторы, способствующие свертыванию крови. Сюда следует отнести тканевой фактор , который под воздействием различных агонистов (IL-1, IL-6, TNFa, адреналин, липополисахарид (ЛПС) грамотрицательных бактерий, гипоксия, кровопотеря) усиленно синтезируется эндотелиальными клетками и поступает в кровоток. Тканевой фактор (FIII) запускает так называемый внешний путь свертывания крови. В условиях нормы тканевой фактор эндотелиальными клетками не образуется. Однако любые стрессовые ситуации, мышечная активность, развитие воспалительных и инфекционных заболеваний приводят к его образованию и стимуляции процесса свертывания крови.

К факторам, препятствующим свертыванию крови, относятся естественные антикоагулянты . Следует заметить, что поверхность эндотелия покрыта комплексом гликозамингликанов, обладающих противосвертывающей активностью. К ним причисляют гепаран-сульфат, дерматан-сульфат, способные связываться с антитромбином III, а также повышать активность кофактора II гепарина и тем самым увеличивать антитромбогенный потенциал.

Эндотелиальные клетки синтезируют и секретируют 2 ингибитора внешнего пути свертывания крови (TFPI-1 иTFPI-2 ), блокирующие образование протромбиназы. TFPI-1 способен связывать факторы VIIa и Ха на поверхности тканевого фактора. TFPI-2, являясь ингибитором сериновых протеаз, нейтрализует факторы свертывания, принимающие участие во внешнем и внутреннем пути образования протромбиназы. В то же время он является более слабым антикоагулянтом, чем TFPI-1.

Эндотелиальные клетки синтезируют антитромбин III (А-III), который при взаимодействии с гепарином нейтрализует тромбин, факторы Ха, IХa, калликреин и др.

Наконец, к естественным антикоагулянтам, синтезируемым эндотелием, относится система тромбомодулин–протеин С (PtC), куда входит также протеин S (PtS). Этот комплекс естественных антикоагулянтов нейтрализует факторы Va и VIIIa.

Факторы, влияющие на фибринолитическую активность крови. В эндотелии содержится комплекс соединений, способствующих и препятствующих растворению фибринового сгустка. В первую очередь следует указать на тканевой активатор плазминогена (ТАП, TPA) – основной фактор, переводящий плазминоген в плазмин. Кроме того, эндотелий синтезирует и секретирует урокиназный активатор плазминогена. Известно, что последнее соединение синтезируется также в почках и выделяется вместе с мочой.

В то же время в эндотелии синтезируются и ингибиторы тканевого активатора плазминогена (ИТАП, ITPA) I, II и III типов . Все они отличаются по своей молекулярной массе и биологической активности. Наиболее изученным из них является ИТАП I типа. Он постоянно синтезируется и секретируется эндотелиоцитами. Другие ИТАП играют менее заметную роль в регуляции фибринолитической активности крови.

Следует заметить, что в физиологических условиях действие активаторов фибринолиза преобладает над влиянием ингибиторов. При стрессе, гипоксии, физической нагрузке наряду с ускорением свертывания крови отмечается активация фибринолиза, что связано с выбросом ТАП из эндотелиальных клеток. Между тем, ингибиторы ТАП содержатся в эндотелиоцитах в избытке. Их концентрация и активность преобладают над действием ТАП, хотя поступление в кровоток в естественных условиях значительно ограничен. При истощении же запасов ТАП, что наблюдается при развитии воспалительных, инфекционных и онкологических заболеваний, при патологии сердечно-сосудистой системы, при нормальной и особенно патологической беременности, а также при генетически обусловленной недостаточности, начинает преобладать действие ИТАП, благодаря чему наряду с ускорением свертывания крови развивается торможение фибринолиза.

Факторы, регулирующие рост и развитие сосудистой стенки. Известно, что эндотелий синтезирует фактор роста сосудов. В то же время в эндотелии содержится соединение, ингибирующее ангиогенез.

Одним из основных факторов ангиогенеза является так называемый сосудистый фактор роста эндотелия или VGEF (от слов vascular growth endothelial cell factor), который обладает способностью индуцировать хемотаксис и митогенез ЭК и моноцитов и играет важную роль не только в неоангиогенезе, но и васкулогенезе (раннее формирование кровеносных сосудов у плода). Под его воздействием усиливается развитие колатералей и сохраняется целостность эндотелиального слоя.

Фактор роста фибробластов (FGF) имеет отношение не только кразвитию и росту фибробластов, но и участвует в контроле за тонусом гладкомышечных элементов.

Одним из главных ингибиторов ангиогенеза, влияющих на адгезию, рост и развитие эндотелиальных клеток, является тромбоспондин. Это гликопротеин целлюлярного матрикса, синтезируемый различными типами клеток, в том числе эндотелиальными. Синтез тромбоспондина контролируется онкогеном Р53.

Факторы, принимающие участие в иммунитете. Известно, что эндотелиальные клетки играют чрезвычайно важную роль в осуществлении как клеточного, так и гуморального иммунитета. Установлено, что эндотелиоциты являются антигенпрезентирующими клетками (АПК), то есть способны перерабатывать антиген (Аг) в иммуногенную форму и «преподносить» его Т- и В-лимфоцитам. На поверхности эндотелиальных клеток содержатся HLA как I, так и II классов, что служит необходимым условием для презентации антигена. Из сосудистой стенки и, в частности, из эндотелия выделен комплекс полипептидов, усиливающих экспрессию рецепторов на Т- и В-лимфоцитах. В то же время эндотелиальные клетки способны продуцировать ряд цитокинов, способствующих развитию воспалительного процесса. К подобным соединениям относятся IL-1 a и b, TNFa, IL-6, a- и b-хемокины и другие. Кроме того, эндотелиальные клетки выделяют ростовые факторы, оказывающие влияние на гемопоэз. К ним относятся гранулоцитарный колониестимулирующий фактор (Г-КСФ, G-СSF), макрофагальный колониестимулирующий фактор (М-КСФ, M-СSF), гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, G-MСSF) и другие. Недавно из сосудистой стенки выделено соединение полипептидной природы, резко усиливающее процессы эритропоэза и способствующее в эксперименте ликвидации гемолитической анемии, вызванной введением четыреххлористого углерода.

Цитомедины. Эндотелий сосудов, как и другие клетки и ткани, является источником клеточных медиаторов – цитомединов. Под воздействием этих соединений, представляющих комплекс полипептидов с молекулярной массой от 300 до 10000 Д, нормализуется сократительная деятельность гладкомышечных элементов сосудистой стенки, благодаря чему кровяное давление сохраняется в пределах нормы. Цитомедины из сосудов способствуют процессам регенерации и репарации тканей и, возможно, обеспечивают рост сосудов при их повреждении.

Многочисленными исследованиями установлено, что все биологически активные соединения, синтезируемые эндотелием или возникающие в процессе частичного протеолиза, при определенных условиях способны поступать в сосудистое русло и таким образом оказывать влияние на состав и функции крови.

Разумеется, мы представили далеко не полный перечень факторов, синтезируемых и выделяемых эндотелием. Однако и этих сведений достаточно для вывода, что эндотелий является мощной эндокринной сетью, обеспечивающей регуляцию многочисленных физиологических функций.

…"здоровье человека определяется здоровьем его сосудов".

Эндотелий – однослойный пласт специализированных клеток мезенхимного происхождения, выстилающих кровеносные, лимфатические сосуды и полости сердца .

Эндотелиальные клетки, выстилающие кровеносные сосуды, обладают удивительной способностью изменять свою численность и расположение в соответствии с локальными требованиями. Почти все ткани нуждаются в кровоснабжении, а оно в свою очередь зависит от эндотелиальных клеток. Эти клетки создают способную к гибкой адаптации систему жизнеобеспечения с разветвлениями во всех областях тела. Если бы не эта способность эндотелиальных клеток расширять и восстанавливать сеть кровеносных сосудов, рост тканей и процессы заживления были бы невозможны.

Эндотелиальные клетки выстилают всю сосудистую систему - от сердца до мельчайших капилляров - и управляют переходом веществ из тканей в кровь и обратно. Более того, изучение эмбрионов показало, что сами артерии и вены развиваются из простых малых сосудов, построенных исключительно из эндотелиальных клеток и базальной мембраны: соединительная ткань и гладкая мускулатура там, где это нужно, добавляются позднее под действием сигналов от эндотелиальных клеток.

В привычном человеческому сознанию виде эндотелий представляет собой орган весом 1,5-1,8 кг (сопоставимо с весом, например, печени) или непрерывный монослой эндотелиальных клеток длиной 7 км, или занимающий площадь футбольного поля, либо шести теннисных кортов. Без этих пространственных аналогий было бы трудно представить, что тонкая полупроницаемая мембрана, отделяющая кровоток от глубинных cтруктур сосуда, непрерывно вырабатывает огромное количество важнейших биологически активных веществ, являясь таким образом гигантским паракринным органом, распределенным по всей территории человеческого организма.

Гистология . Эндотелий в морфологическом отношении напоминает однослойный плоский эпителий и в спокойном состоянии представляется пластом, состоящим из отдельных клеток. По своей форме эндотелиальные клетки имеют вид очень тонких пластинок неправильной формы и различной длины. Наряду с клетками вытянутыми, веретенообразными часто можно видеть клетки с закругленными концами. В центральной части эндотелиальной клетки расположено ядро овальной формы. Обычно большинство клеток имеет одно ядро. Кроме того, встречаются клетки, у которых ядра нет. Оно распадается в протоплазме подобно тому, как это имеет место у эритроцитов. Эти безъядерные клетки, несомненно, представляют клетки отмирающие, закончившие свой жизненный цикл. В протоплазме эндотелиальных клеток можно видеть все типичные включения (аппарат Гольджи, хондриосомы, мелкие зерна липоидов, иногда зернышки пигмента и т. д.). В момент сокращения в протоплазме клеток очень часто появляются тончайшие фибриллы, образующиеся в экзоплазматическом слое и весьма напоминающие миофибриллы гладких мышечных клеток. Соединение эндотелиальных клеток друг с другом и образование ими пласта послужили основанием для сопоставления эндотелия сосудов с настоящим эпителием, что, однако, неправильно. Эпителиоидное расположение клеток эндотелия сохраняется только в нормальных условиях; при различных же раздражениях клетки резко изменяют свой характер и приобретают вид клеток, почти совершенно не отличимых от фибробластов. В эпителиоидном своем состоянии тела эндотелиальных клеток синцитиально связаны при помощи коротких отростков, которые часто бывают заметны в базальной части клеток. На свободной поверхности у них, вероятно, имеется тонкий слой экзоплазмы, образующей покровные пластинки. Многие исследования допускают, что между клетками эндотелия выделяется особое цементирующее вещество, которое и склеивает клетки. За последние годы получены интересные данные, позволяющие допустить, что легкая проницаемость эндотелиальной стенки мелких сосудов как раз зависит от свойств этого вещества. Подобные указания весьма ценны, но они нуждаются в дальнейшем подтверждении. Изучая судьбу и превращения возбужденного эндотелия, можно прийти к выводу, что в различных сосудах клетки эндотелия находятся на различных этапах диференцировки. Так, эндотелий синусных капилляров кроветворных органов непосредственно связан с окружающей его ретикулярной тканью и по своим способностям к дальнейшим превращениям не отличается заметно от клеток этой последней,- другими словами, описываемый эндотелий мало диференцирован и обладает некоторыми потенциями. Эндотелий крупных сосудов состоит, по всей вероятности, уже из клеток более высокоспециализированных, утративших способность к каким-либо превращениям, и поэтому его вполне можно сравнивать с фиброцитами соединительной ткани.

Эндотелий - это не пассивный барьер между кровью и тканями, а активный орган, дисфункция которого является обязательным компонентом патогенеза практически всех сердечно-сосудистых заболеваний, включая атеросклероз, гипертонию, ишемическую болезнь сердца, хроническую сердечную недостаточность, а также участвует в воспалительных реакциях, аутоиммунных процессах, диабете, тромбозе, сепсисе, росте злокачественных опухолей и т.д.

Основные функции сосудистого эндотелия :
высвобождение вазоактивных агентов : оксид азота (NO), эндотелин, ангиотензин I-AI (и, возможно, ангиотензин II-AII, простациклин, тромбоксан
препятствие коагуляции (свертыванию крови) и участие в фибринолизисе - тромборезистентная поверхность эндотелия (одинаковый заряд поверхности эндотелия и тромбоцитов препятствует "прилипанию" - адгезии - тромбоцитов к стенке сосуда; также препятствует коагуляции образование простациклина, NO (естественных дезагрегантов) и образование t-PA (тканевого активатора плазминогена); не мене важна экспрессия на поверхности клеток эндотелия тромбомодулина - белка, способного связывать тромбин и гепариноподобные гликозаминогликаны
иммунные функции - представление антигенов иммунокомпетентным клеткам; секреция интерлейкина-I (стимулятора T-лимфоцитов)
ферментативная активность - экспрессия на поверхности эндотелиальных клеток ангиотензинпревращающего фермента - АПФ (конверсия АI в АII)
участие в регуляции роста гладкомышечных клеток посредством секреции эндотелиального фактора роста и гепариноподобных ингибиторов роста
защита гладкомышечных клеток от вазоконстрикторных влияний

Эндокринная активность эндотелия зависит от его функционального состояния, которое в значительной мере определяется поступающей информацией, им воспринимаемой. На эндотелии находятся многочисленные рецепторы к различным биологически активным веществам, он воспринимает также давление и объем движущейся крови - так называемое напряжение сдвига, стимулирующее синтез противосвертывающих и сосудорасширяющих веществ. Поэтому чем больше давление и скорость движущейся крови (артерии), тем реже образуются тромбы.

Секреторную активность эндотелия стимулирует :
изменение скорости кровотока , например повышение артериального давления
выделение нейрогормонов - катехоламинов, вазопрессина, ацетилхолина, брадикинина, аденозина, гистамина и др.
факторы, выделяющиеся из тромбоцитов при их активации – серотонин, АДФ, тромбин

Наличие чувствительности эндотелиоцитов к скорости кровотока, выражающееся в выделении ими расслабляющего гладкие мышцы сосудов фактора, приводящего к увеличению просвета артерий, обнаружено у всех изученных магистральных артерий млекопитающих, включая человека. Выделяемый эндотелием фактор расслабления в ответ на механический стимул – высоколабильное вещество, принципиально не отличающееся по своим свойствам от медиатора эндотелий-зависимых дилататорных реакций, вызываемых фармакологическими веществами. Последнее положение утверждает «химическую» природу передачи сигнала от эндотелиальных клеток к гладкомышечным образованиям сосудов при дилататорной реакции артерий в ответ на увеличение кровотока. Таким образом, артерии непрерывно регулируют свой просвет соответственно скорости течения по ним крови, что обеспечивает стабилизацию давления в артериях в физиологическом диапазоне изменений величин кровотока. Этот феномен имеет большое значение в условиях развития рабочей гиперемии органов и тканей, когда происходит значительное увеличение кровотока; при повышении вязкости крови, вызывающей рост сопротивления кровотоку в сосудистой сети. В указанных ситуациях механизм эндотелиальной вазодилатации может компенсировать чрезмерное возрастание сопротивления кровотоку, ведущее к уменьшению кровоснабжения тканей, увеличению нагрузки на сердце и уменьшению минутного объема кровообращения. Высказывается мнение, что повреждение механочувствительности сосудистых эндотелиоцитов может быть одним из этиологических (патогенетических) факторов развития облитерирующего эндоартериита и гипертонической болезни.

Дисфункция эндотелия , наступающая при воздействии повреждающих агентов (механических, инфекционных, обменных, иммуннокомплексных и т.п.), резко меняет направление его эндокринной активности на противоположную: образуются вазоконстрикторы, коагулянты.

Биологически активные вещества, вырабатываемые эндотелием , действуют в основном паракринно (на соседние клетки) и аутокринно-паракринно (на эндотелий), но сосудистая стенка - структура динамичная. Ее эндотелий постоянно обновляется, отжившие фрагменты вместе с биологически активными веществами попадают в кровь, разносятся по всему организму и могут оказывать влияние на системный кровоток. Об активности эндотелия можно судить по содержанию его биологически активных веществ в крови.

Вещества, синтезируемые эндотелиоцитами, можно разделить на следующие группы :
факторы, регулирующие тонус гладкой мускулатуры сосудов :
- констрикторы - эндотелин, ангиотензин ІІ, тромбоксан А2
- дилататоры - оксид азота, простациклин, эндотелиальный фактор деполяризации
факторы гемостаза :
- антитромбогенные - оксид азота, тканевый активатор плазминогена, простациклин
- протромбогенные - тромбоцитарный фактор роста, ингибитор активатора плазминогена, фактор Виллебранда, ангиотензин IV, эндотелин-1
факторы, влияющие на рост и пролиферацию клеток :
- стимуляторы - эндотелин-1, ангиотензин II
- ингибиторы - простациклин
факторы, влияющие на воспаление - фактор некроза опухоли, супероксидные радикалы

В норме в ответ на стимуляцию эндотелий реагирует усилением синтеза веществ, вызывающих расслабление гладкомышечных клеток сосудистой стенки, в первую очередь оксида азота.

!!! основным вазодилататором, препятствующим тоническому сокращению сосудов нейронального, эндокринного или локального происхождени является NO

Механизм действия NO . NO является основным стимулятором образования цГМФ. Увеличивая количество цГМФ, он уменьшает содержание кальция в тромбоцитах и гладких мышцах. Ионы кальция - обязательные участники всех фаз гемостаза и сокращения мышц. цГМФ, активизируя цГМФ-зависимую протеиназу, создает условия для открытия многочисленных калиевых и кальциевых каналов. Особенно большую роль играют белки – К-Са-каналы. Открытие этих каналов для калия приводит к расслаблению гладких мышц благодаря выходу калия и кальция из мышц при реполяризации (затухание биотока действия). Активирование К-Са-каналов, плотность которых на мембранах очень велика, является основным механизмом действия оксида азота. Поэтому конечный эффект NO - антиагрегирующий, противосвертывающий и вазодилататорный. NO предупреждает также рост и миграцию гладких мышц сосудов, тормозит выработку адгезивных молекул, препятствует развитию спазма в сосудах. Оксид азота выполняет функции нейромедиатора, транслятора нервных импульсов, участвует в механизмах памяти, обеспечивает бактерицидный эффект. Основным стимулятором активности оксида азота является напряжение сдвига. Образование NO увеличивается также под действием ацетилхолина, кининов, серотонина, катехоламинов и др. При интактном эндотелии многие вазодилататоры (гистамин, брадикинин, ацетилхолин и др.) оказывают сосудорасширяющий эффект через оксид азота. Особенно сильно NO расширяет мозговые сосуды. Если функции эндотелия нарушены, ацетилхолин вызывает либо ослабленную, либо извращенную реакцию. Поэтому реакция сосудов на ацетилхолин является показателем состояния эндотелия сосудов и используется в качестве теста его функционального состояния. Оксид азота легко окисляется, превращаясь в пероксинитрат - ONOO-. Этот очень активный окислительный радикал, способствующий окислению липидов низкой плотности, оказывает цитоксическое и иммунногенное действия, повреждает ДНК, вызывает мутацию, подавляет функции ферментов, может разрушать клеточные мембраны. Образуется пероксинитрат при стрессах, нарушениях липидного обмена, тяжелых травмах. Высокие дозы ONOO- усиливают повреждающие эффекты продуктов свободного радикального окисления. Снижение уровня оксида азота проходит под влиянием глюкокортикоидов, подавляющих активность синтазы оксида азота. Ангиотензин II является главным антагонистом NO, способствуя превращению оксида азота в пероксинитрат. Следовательно, состояние эндотелия устанавливает соотношение между оксидом азота (антиагрегантом, антикоагулянтом, вазодилятатором) и пероксинитратом, увеличивающим уровень окислительного стресса, что приводит к тяжелым последствиям.

В настоящее время под дисфункцией эндотелия понимают - дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

Функциональная перестройка эндотелия при воздействии патологических факторов проходит несколько стадий :
первая стадия – повышенная синтетическая активность клеток эндотелия
вторая стадия – нарушение сбалансированной секреции факторов, регулирующих тонус сосудов, систему гемостаза, процессы межклеточного взаимодействия; на этой стадии нарушается естественная барьерная функция эндотелия, повышается его проницаемость для различных компонентов плазмы.
третья стадия – истощение эндотелия, сопровождающееся гибелью клеток и замедленными процессами регенерации эндотелия.

Пока эндотелий цел, не поврежден , он синтезирует главным образом факторы противосвертывания, являющиеся также вазодилататорами. Эти биологически активные вещества препятствуют росту гладких мышц - стенки сосуда не утолщаются, диаметр его не меняется. Кроме того, эндотелий адсорбирует из плазмы крови многочисленные противосвертывающие вещества. Сочетание на эндотелии антикоагулянтов и вазодилататоров в физиологических условиях является основой для адекватного кровотока, особенно в сосудах микроциркуляции.

Повреждение эндотелия сосудов и обнажение субэндотелиальных слоев запускает реакции агрегации, свертывания, препятствующие кровопотере, вызывает спазм сосуда, который может быть очень сильным и не устраняется денервацией сосуда. Прекращается образование антиагрегантов. При кратковременном действии повреждающих агентов эндотелий продолжает выполнять защитную функцию, препятствуя кровопотере. Но при продолжительном повреждении эндотелия, по мнению многих исследователей, эндотелий начинает играть ключевую роль в патогенезе ряда системных патологий (атеросклероз, гипертония, инсульты, инфаркты, легочная гипертензия, сердечная недостаточность, дилатационная кардиомиопатия, ожирение, гиперлипидемия, сахарный диабет, гипергомоцистеинемия и др.). Это объясняется участием эндотелия в активизации ренин-ангиотензиновой и симпатической систем, переключением активности эндотелия на синтез оксидантов, вазоконстрикторов, агрегантов и тромбогенных факторов, а также уменьшением деактивации эндотелиальных биологически активных веществ из-за повреждения эндотелия некоторых сосудистых областей (в частности, в легких). Этому способствуют такие модифицируемые факторы риска сердечно-сосудистых заболеваний, как курение, гипокинезия, солевая нагрузка, различные интоксикации, нарушения углеводного, липидного, белкового обменов, инфекция и др.

Врачи, как правило, сталкиваются с пациентами, у которых последствия эндотелиальной дисфункции стали уже симптомами сердечно-сосудистых заболеваний. Рациональная терапия должна быть направлена на устранение этих симптомов (клиническими проявлениями эндотелиальной дисфункции могут быть вазоспазм и тромбоз). Лечение эндотелиальной дисфункции направлено на восстановление дилататорного ответа сосудов.

Лекарственные препараты, потенциально способные воздействовать на функцию эндотелия, можно разделить на четыре основные категории :
замещающие естественные проективные эндотелиальные субстанции - стабильные аналоги PGI2, нитровазодилататоры, r-tPA
ингибиторы или антагонисты эндотелиальных констрикторных факторов - ингибиторы ангиотензинпревращающего фермента (АПФ), антагонисты ангиотензин II-рецепторов, ингибиторы TxA2-синтетазы и антагонисты ТxФ2-рецепторов
цитопротективные вещества : свободнорадикальные скавенгеры супероксиддисмутазы и пробукол, лазароидный ингибитор продукции свободных радикалов
гиполипидемические препараты

В последнее время установлена важная роль магния в развитии эндотелиальной дисфункции . Было показано, что назначение препаратов магния способно через 6 месяцев существенно улучшить (почти в 3,5 раза больше по сравнению с плацебо) эндотелийзависимую дилятацию плечевой артерии . При этом также была выявлена прямая линейная корреляция - зависимость между степенью эндотелийзависимой вазодилятации и концентрацией внутриклеточного магния. Одним из возможных механизмов, объясняющих благоприятное влияние магния на эндотелиальную функцию, может быть его антиатерогенный потенциал.

Catad_tema Артериальная гипертензия - статьи

Дисфункция эндотелия как новая концепция профилактики и лечения сердечно-сосудистых заболеваний

Конец XX века ознаменовался не только интенсивным развитием фундаментальных понятий патогенеза артериальной гипертонии (АГ), но и критическим пересмотром многих представлений о причинах, механизмах развития и лечении этого заболевания.

В настоящее время АГ рассматривается как сложнейший комплекс нейро-гуморальных, гемодинамических и метаболических факторов, взаимоотношение которых трансформируется во времени, что определяет не только возможность перехода одного варианта течения АГ в другой у одного и того же больного, но и заведомую упрощенность представлений о монотерапевтическом подходе, и даже о применении как минимум двух лекарственных препаратов с конкретным механизмом действия.

Так называемая "мозаичная" теория Пейджа, будучи отражением сложившегося традиционного концептуального подхода к изучению АГ, ставившего в основу АГ частные нарушения механизмов регуляции АД, может быть отчасти аргументацией против применения одного гипотензивного средства для лечения АГ. При этом, редко принимается во внимание такой немаловажный факт, что в своей стабильной фазе АГ протекает при нормальной или даже сниженной активности большинства систем, регулирующих АД .

В настоящее время серьезное внимание во взглядах на АГ стало уделяться метаболическим факторам, число которых, однако, увеличивается по мере накопления знаний и возможностей лабораторной диагностики (глюкоза, липопротеиды, С-реактивный белок, тканевой активатор плазминогена, инсулин, гомоцистеин и другие).

Возможности суточного мониторирования АД, пик внедрения которого в клиническую практику пришелся на 80-е годы, показали существенный патологический вклад нарушенной суточной вариабельности АД и особенностей суточных ритмов АД, в частности, выраженного предутреннего подъема, высоких суточных градиентов АД и отсутствия ночного снижения АД, что во многом связывалось с колебаниями сосудистого тонуса.

Тем не менее, к началу наступившего века отчетливо выкристаллизовалось направление, которое во многом включило в себя накопленный опыт фундаментальных разработок с одной стороны, и сосредоточило внимание клиницистов на новом объекте - эндотелии - как органе-мишени АГ, первым подвергающимся контакту с биологически активными веществами и наиболее рано повреждающимся при АГ.

С другой же стороны, эндотелий реализует многие звенья патогенеза АГ, непосредственно участвуя в повышении АД.

Роль эндотелия в сердечно-сосудистой патологии

В привычном человеческому сознанию виде эндотелий представляет собой орган весом 1,5-1,8 кг (сопоставимо с весом, например, печени) или непрерывный монослой эндотелиальных клеток длиной 7 км, или занимающий площадь футбольного поля, либо шести теннисных кортов. Без этих пространственных аналогий было бы трудно представить, что тонкая полупроницаемая мембрана, отделяющая кровоток от глубинных cтруктур сосуда, непрерывно вырабатывает огромное количество важнейших биологически активных веществ, являясь таким образом гигантским паракринным органом, распределенным по всей территории человеческого организма.

Барьерная роль эндотелия сосудов как активного органа определяет его главную роль в организме человека: поддержание гомеостаза путем регуляции равновесного состояния противоположных процессов - а) тонуса сосудов (вазодилатация/вазоконстрикция); б) анатомического строения сосудов (синтез/ингибирование факторов пролиферации); в) гемостаза (синтез и ингибирование факторов фибринолиза и агрегации тромбоцитов); г) местного воспаления (выработка про- и противовоспалительных факторов) .

Необходимо заметить, что каждая из четырех функций эндотелия, определяющая тромбогенность сосудистой стенки, воспалительные изменения, вазореактивность и стабильность атеросклеротической бляшки, напрямую или косвенно связана с развитием, прогрессированием атеросклероза, АГ и ее осложнений . Действительно недавние исследования показали, что надрывы бляшек, приводящих к инфаркту миокарда, отнюдь не всегда происходят в зоне максимального стенозирования коронарной артерии, напротив, зачастую случаются в местах небольших сужений - менее 50% по данным ангиографии .

Таким образом, изучение роли эндотелия в патогенезе сердечно-сосудистых заболеваний (ССЗ) привело к пониманию, что эндотелий регулирует не только периферический кровоток, но и другие важные функции. Именно поэтому объединяющей стала концепция об эндотелии как о мишени для профилактики и лечения патологических процессов, приводящих или реализующих ССЗ.

Понимание многоплановой роли эндотелия уже на качественно новом уровне вновь приводит к достаточно известной, но хорошо забытой формуле "здоровье человека определяется здоровьем его сосудов".

Фактически, к концу XX века, а именно в 1998 году, после получения Нобелевской Премии в области, медицины Ф. Мурадом, Робертом Фуршготом и Луисом Игнарро, была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований в области АГ и других ССЗ - разработке участия эндотелия в патогенезе АГ и других ССЗ, а также способов эффективной коррекции его дисфункции.

Считается, что медикаментозное или немедикаментозное воздействие на ранних стадиях (предболезнь или ранние стадии болезни) способно отсрочить ее наступление или предотвратить прогрессирование и осложнения. Ведущая концепция превентивной кардиологии основана на оценке и коррекции так называемых факторов сердечно-сосудистого риска. Объединяющим началом для всех таких факторов является то, что рано или поздно, прямо или косвенно, все они вызывают повреждение сосудистой стенки, и прежде всего, в ее эндотелиальном слое.

Поэтому можно полагать, что одновременно они же являются факторами риска дисфункции эндотелия (ДЭ) как наиболее ранней фазы повреждения сосудистой стенки, атеросклероза и АГ, в частности.

ДЭ - это, прежде всего, дисбаланс между продукцией вазодилатирующих, ангиопротективных, антипролиферативных факторов с одной стороны (NO, простациклин, тканевой активатор плазминогена, С-тип натрийуретического пептида, эндотелиального гиперполяризующего фактора) и вазоконстриктивных, протромботических, пролиферативных факторов, с другой стороны (эндотелин, супероксид-анион, тромбоксан А2, ингибитор тканевого активатора плазминогена) . При этом, механизм их окончательной реализации неясен.

Очевидно одно - рано или поздно, факторы сердечно-сосудистого риска нарушают тонкий баланс между важнейшими функциями эндотелия, что в конечном итоге, реализуется в прогрессировании атеросклероза и сердечно-сосудистых инцидентах. Поэтому основой одного из нового клинического направлений стал тезис о необходимости коррекции дисфункции эндотелия (т.е. нормализации функции эндотелия) как показателе адекватности антигипертензивной терапии. Эволюция задач гипотензивной терапии конкретизировалась не только до необходимости нормализации уровня АД, но и нормализации функции эндотелия. Фактически это означает, что снижение АД без коррекции дисфункции эндотелия (ДЭ) не может считаться успешно решенной клинической задачей.

Данный вывод является принципиальным, еще и потому, что главные факторы риска атеросклероза, такие как, гиперхолестеринемия , АГ , сахарный диабет , курение , гипергомоцистеинемия сопровождаются нарушением эндотелий-зависимой вазодилатации - как в коронарном, так и в периферическом кровотоке. И хотя вклад каждого из этих факторов в развитие атеросклероза до конца не определен, это пока не меняет сложившихся представлений.

Среди изобилия биологически активных веществ, вырабатываемых эндотелием, важнейшим является оксид азота - NO. Открытие ключевой роли NO в сердечно-сосудистом гомеостазе было удостоено Нобелевской премии в 1998 году. Сегодня - это самая изучаемая молекула, вовлеченная в патогенез АГ и ССЗ в целом. Достаточно сказать, что нарушенное взаимоотношение ангиотензина-II и NO вполне способно определять развитие АГ .

Нормально функционирующий эндотелий отличает непрерывная базальная выработка NO с помощью эндотелиальной NO-синтетазы (eNOS) из L-аргинина. Это необходимо для поддержания нормального базального тонуса сосудов . В то же время, NO обладает ангиопротективными свойствами, подавляя пролиферацию гладкой мускулатуры сосудов и моноцитов , и предотвращая тем самым патологическую перестройку сосудистой стенки (ремоделирование), прогрессирование атеросклероза.

NO обладает антиоксидантным действием, ингибирует агрегацию и адгезию тромбоцитов, эндотелиально-лейкоцитарные взаимодействия и миграцию моноцитов . Таким образом, NO является универсальным ключевым ангиопротективным фактором.

При хронических ССЗ, как правило, наблюдается снижение синтеза NO. Причин тому достаточно много. Если суммировать все, то очевидно - снижение синтеза NO обычно связано с нарушением экспрессии или транскрипции eNOS , в том числе метаболического происхождения, снижением доступности запасов L-аргинина для эндотелиальной NOS , ускоренным метаболизмом NO (при повышенном образовании свободных радикалов ) или их комбинацией.

При всей многогранности эффектов NO Dzau et Gibbons удалось схематически сформулировать основные клинические последствия хронического дефицита NO в эндотелии сосудов , показав тем самым, на модели ишемичeской болезни сердца реальные следствия ДЭ и обратив внимание на исключительную важность ее коррекции на возможно ранних этапах.

Из схемы 1. следует важный вывод: NO играет ключевую ангиопротективную роль еще на ранних стадиях атеросклероза.

Схема 1. МЕХАНИЗМЫ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ
ПРИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЯХ

Так, доказано, что NO уменьшает адгезию лейкоцитов к эндотелию , тормозит трансэндотелиальную миграцию моноцитов , поддерживает нормальную проницаемость эндотелия для липопротеидов и моноцитов , ингибирует окисление ЛПНП в субэндотелии . NO способен тормозить пролиферацию и миграцию гладко-мышечных клеток сосуда , а также синтез ими коллагена . Назначение ингибиторов NOS после сосудистой баллонной ангиопластики или в условиях гиперхолестеринемии приводило к гиперплазии интимы , и напротив, применение L-apгинина или доноров NO уменьшало выраженность индуцированной гиперплазии .

NO обладает антитромботическими свойствами, ингибируя адгeзию тромбоцитов , их активацию и агрегацию , активируя тканевой активатор плазминогена . Появляются убедительные основания полагать, что NO - важный фактор, модулирующий тромботический ответ на надрыв бляшки .

И безусловно, NO является мощным вазодилататором, модулирующим тонус сосудов, приводя к вазорелаксации опосредованно через повышение уровня цГМФ , поддерживая базальный тонус сосудов и осуществляя вазодилатацию в ответ на различные стимулы - напряжение сдвига крови , ацетилхолин , серотонин .

Нарушенная NO - зависимая вазодилатация и парадоксальная вазоконстрикция эпикардиальных сосудов приобретает особое клиническое значение для развития ишемии миокарда в условиях умственного и физического стресса, или холодовой нагрузки . А учитывая, что перфузия миокарда регулируется резистивными коронарными артериями , тонус которых зависит от вазодилататорной способности коронарного эндотелия , даже при отсутствии атеросклеротическнх бляшек, дефицит NO в коронарном эндотелии способен привести к миокардиальной ишемии .

Оценка функции эндотелия

Снижение синтеза NO является главным в развитии ДЭ. Поэтому, казалось бы, нет ничего более простого, чем измерение NO в качестве маркера функции эндотелия. Однако, нестабильность и короткий период жизни молекулы резко ограничивают применение этого подхода. Изучение же стабильных метаболитов NO в плазме или моче (нитратов и нитритов) не может рутинно применяться в клинике в связи с чрезвычайно высокими требованиями к подготовке больного к исследованию.

Кроме того, изучение одних метаболитов оксида азота вряд ли позволит получить ценную информацию о состоянии нитрат-продуцирующих систем. Поэтому, при невозможности одновременного изучения активности NO-синтетаз, наряду с тщательно контролируемым процессом подготовки пациента, наиболее реальным способом оценки состояния эндотелия in vivo является исследование эндотелий-зависимой вазодилатации плечевой артерии с помощью инфузии ацетилхолина или серотонина, либо с использованием венозно-окклюзионной плетизмографии, а также с помощью новейших методик - пробы с реактивной гиперемией и применением ультразвука высокого разрешения.

Кроме указанных методик, в качестве потенциальных маркеров ДЭ рассматривается несколько субстанций, продукция которых может отражать функцию эндотелия: тканевой активатор плазминогена и его ингибитор, тромбомодулин, фактор Виллебрандта .

Терапевтические стратегии

Оценка ДЭ как нарушения эндотелий-зависимой вазодилатации вследствие снижения синтеза NO, в свою очередь, требует пересмотра терапевтических стратегий воздействия на эндотелий с целью профилактики или уменьшения повреждений сосудистой стенки.

Уже показано, что улучшение функции эндотелия предшествует регрессу структурных атеросклеротических изменений . Влияние на вредные привычки - отказ от курения - приводит к улучшению функции эндотелия . Жирная еда способствует ухудшению функции эндотелия у практически здоровых лиц . Прием антиоксидантов (витамин Е, С) способствует коррекции функции эндотелия и тормозит утолщение интимы сонной артерии . Физические нагрузки улучшают состояние эндотелия даже при сердечной недостаточности .

Улучшение контроля гликемии у больных с сахарным диабетом само по себе уже является фактором коррекции ДЭ , а нормализация липидного профиля у пациентов с гиперхолестеринемией приводила к нормализации функции эндотелия , что значительно уменьшало частоту острых сердечно-сосудистых инцидентов .

При этом, такое "специфическое" воздействие, направленное на улучшение синтеза NO, у больных с ИБС или гиперхолестеринемией, как например, заместительная терапия L-аргинином - субстрата NOS - синтетазы, - также приводит к коррекции ДЭ . Аналогичные данные получены и при применении важнейшего кофактора NO-синтетазы - тетрагидробиоптерина - у больных с гиперхолестеринемией .

С целью снижения деградации NO применение витамина С в качестве антиоксиданта также улучшало функцию эндотелия у больных с гиперхолестеринемией , сахарным диабетом , курением , артериальной гипертонией , ИБС . Эти данные свидетельствуют о реальной возможности воздействовать на систему синтеза NO вне зависимости от причин, вызвавших его дефицит.

В настоящее время практически все группы лекарственных препаратов подвергаются проверке на предмет их активности в отношении системы синтеза NO. Косвенное влияние на ДЭ при ИБС , уже показано для ингибиторов АПФ, улучшающих функцию эндотелия опосредованно через косвенное увеличение синтеза и снижения деградации NO .

Позитивные результаты воздействия на эндотелий были получены также при клинических испытаниях антагонистов кальция , однако, механизм этого воздействия неясен.

Новым направлением развития фармацевтики, по-видимому, следует считать создание особого класса эффективных лекарственных препаратов, напрямую регулирующих синтез эндотелиальиого NO и тем самым, напрямую улучшающих функцию эндотелия.

В заключение, хотелось бы внопь подчеркнуть, что нарушения сосудистого тонуса и сердечно-сосудистое ремоделирование приводят к поражению органов - мишеней и осложнениям АГ. Становится очевидным, что биологически активные субстанции, регулирующие сосудистый тонус, одновременно модулируют и ряд важнейших клеточных процессов, таких как пролиферация и рост гладкой мускулатуры сосудов, рост мезангинальных структур, состояние экстрацеллюлярного матрикса , определяя тем самым скорость прогрессирования АГ и ее осложнений. Дисфункция эндотелия, как наиболее ранняя фаза повреждения сосуда, связана прежде всегo, с дефицитом синтеза NO - важнейшего фактора-регулятора сосудистого тонуса, но еще более важного фактора, от которого зависят структурные изменения сосудистой стенки .

Поэтому коррекция ДЭ при АГ и атеросклерозе должна быть рутинной и обязательной частью терапевтических и профилактических программ, а также жестким критерием оценки их эффективности.

Литература

1. Ю.В. Постнов. К истокам первичной гипертензии: подход с позиций биоэнергетики. Кардиология, 1998, N 12, С. 11-48.
2. Furchgott R.F., Zawadszki J.V. The obligatoryrole of endotnelial cells in the relazation of arterial smooth muscle by acetylcholine. Nature. 1980: 288: 373-376.
3. Vane J.R., Anggard E.E., Batting R.M. Regulatory functions of the vascular endotnelium. New England Journal of Medicine, 1990: 323: 27-36.
4. Hahn A.W., Resink T.J., Scott-Burden T. et al. Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regulation. 1990; 1: 649-659.
5. Lusher T.F., Barton M. Biology of the endothelium. Clin. Cardiol, 1997; 10 (suppl 11), II - 3-II-10.
6. Vaughan D.E., Rouleau J-L., Ridker P.M. et al. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. Circulation, 1997; 96: 442-447.
7. Cooke J.P, Tsao P.S. Is NO an endogenous antiathero-genic molecule? Arterioscler. Thromb. 1994; 14: 653-655.
8. Davies M.J., Thomas А.С. Plaque fissuring - the cause of acute myocardial infarction, sudden ischemic death, and creshendo angina. Brit. Heart Journ., 1985: 53: 363-373.
9. Fuster V., Lewis A. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation, 1994: 90: 2126-2146.
10. Falk E., Shah PK, Faster V. Coronary plaque disruption. Circulation, 1995; 92: 657-671.
11. Ambrose JA, Tannenhaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease ana the development of myocardial infarction. J. Amer. Coll. Cardiol. 1988; 92: 657-671.
12. Hacket D., Davies G., Maseri A. Pre-existing coronary stenosis in patients with first myocardial infarction are not necessary severe. Europ. Heart J. 1988, 9: 1317-1323.
13. Little WC, Constantinescu M., Applegate RG et al. Can coronary angiography predict the site of subsequent myocardial infarction in patients with mils-to-moderatecoronary disease? Circulation 1988: 78: 1157-1166.
14. Giroud D., Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Amer. J. Cardiol. 1992; 69: 729-732.
15. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989; 3: 2007-2018.
16. Vane JR. Anggard ЕЕ, Batting RM. Regulatory functions of the vascular endothelium. New Engl. J. Med. 1990; 323: 27-36.
17. Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Prog. Cardiovase. Dis., 1996; 39: 229-238.
18. Stroes ES, Koomans НА, de Bmin TWA, Rabelink TJ. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet, 1995; 346: 467-471.
19. Chowienczyk PJ, Watts, GF, Cockroft JR, Ritter JM. Impaired endothelium - dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet, 1992; 340: 1430-1432.
20. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role ot nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients, Circulation, 1993, 88: 2541-2547.
21. Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl. J. Med. 1990; 323: 22-27.
22. Treasure CB, Manoukian SV, Klem JL. et al. Epicardial coronary artery response to acetylclioline are impared in hypertensive patients. Circ. Research 1992; 71: 776-781.
23. Johnstone MT, Creager SL, Scales KM et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 1993; 88: 2510-2516.
24. Ting HH, Timini FK, Boles KS el al. Vitamin С improves enoothelium-dependent vasodilatiiin in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996: 97: 22-28.
25. Zeiher AM, Schachinger V., Minnenf. Long-term cigarette smoking impairs endotheliu in-dependent coronary arterial vasodilator function. Circulation, 1995: 92: 1094-1100.
26. Heitzer Т., Via Herttuala S., Luoma J. et al. Cigarette smoking potentiates endothelial dislunction of forearm resistance vessels in patients with hypercholes-terolemia. Role of oxidized LDL. Circulation. 1996, 93: 1346-1353.
27. Tawakol A., Ornland T, Gerhard M. et al. Hyperhomocysteinemia is associated with impaired enaothcliurn - dependent vasodilation function in humans. Circulation, 1997: 95: 1119-1121.
28. Vallence P., Coller J., Moncada S. Infects of endothelium-derived nitric oxide on peripheial arteriolar tone in man. Lancet. 1989; 2: 997-999.
29. Mayer В., Werner ER. In search of a function for tetrahydrobioptcrin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995: 351: 453-463.
30. Drexler H., Zeiher AM, Meinzer К, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
31. Ohara Y, Peterson ТЕ, Harnson DG. Hypercholesterolemia increases eiidothelial superoxide anion production. J. Clin. Invest. 1993, 91: 2546-2551.
32. Harnson DG, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: Implications for impaired vasomotion. Amer. J. Cardiol. 1995, 75: 75B-81B.
33. Dzau VJ, Gibbons GH. Endothelium and growth factors in vascular remodelling of hypertension. Hypertension, 1991: 18 suppl. III: III-115-III-121.
34. Gibbons GH., Dzau VJ. The emerging concept of vascular remodelling. New Engl. J. Med., 1994, 330: 1431-1438.
35. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium derived relaxing factor from pulmonary artery and vein possesses pharmaciilogical and chemical properties identical to those of nitric oxide radical. Circul. Research. 1987; 61: 866-879.
36. Palmer RMJ, Femge AG, Moncaila S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987, 327: 524-526.
37. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholin in athero-sclerotic coronary arteries. New Engl. J. Med. 1986, 315: 1046-1051.
38. Esther CRJr, Marino EM, Howard ТЕ et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 1997: 99: 2375-2385.
39. Lasher TF. Angiotensin, ACE-inhibitors and endothelial control of vasomotor tone. Basic Research. Cardiol. 1993; 88(SI): 15-24.
40. Vaughan DE. Endothelial function, fibrinolysis, and angiotensyn-converting enzym inhibition. Clin. Cardiology. 1997; 20 (SII): II-34-II-37.
41. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expresiion of plasminogen activator inhibitor-1 in cultured endothelial cells. J. Clin. Invest. 1995; 95: 995-1001.
42. Ridker PM, Gaboury CL, Conlin PR et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Circulation. 1993; 87: 1969-1973.
43. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994; 74: 1141-1148.
44. Griendling KK, Alexander RW. Oxidative stress and cardiovascular discase. Circulation. 1997; 96: 3264-3265.
45. Hamson DG. Endothelial function and oxidant stress. Clin. Cardiol. 1997; 20 (SII): II-11-II-17.
46. Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA., 1991; 88: 4651-4655.
47. Lefer AM. Nitric oxide: Nature"s naturally occuring leukocyte inhibitor. Circulation, 1997; 95: 553-554.
48. Zeiker AM, Fisslthaler В, Schray Utz B, Basse R. Nitric oxide modulates the expression of monocyte chemoat-tractant protein I in cultured human endothelial cells. Circ. Res. 1995; 76: 980-986.
49. Tsao PS, Wang B, Buitrago R., Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation. 1997; 97: 934-940.
50. Hogg N, Kalyanamman B, Joseph J. Inhibition of low-density lipoprotein oxidation by nitric oxide: potential role in atherogenesis. FEBS Lett, 1993; 334: 170-174.
51. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Amer. J. Physiol. 1992; 262: H611-H615.
52. Austin MA. Plasma triglyceride and coronary heart disease. Artcrioscler. Thromb. 1991; 11: 2-14.
53. Sarkar R., Meinberg EG, Stanley JС et al. Nitric oxide reversibility inhibits the migration of cultured vascular smooth muscle cells. Circ. Res. 1996: 78: 225-230.
54. Comwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Amer. J. Physiol. 1994; 267: C1405-1413.
55. Kolpakov V, Gordon D, Kulik TJ. Nitric oxide-generating compounds inhibit total protein and collgen synthesis in cultured vascular smooth cells. Circul. Res. 1995; 76: 305-309.
56. McNamara DB, Bedi B, Aurora H et al. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem. Biophys. Res. Commun. 1993; 1993: 291-296.
57. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994; 14: 753-759.
58. Tarry WC, Makhoul RG. L-arginine improves endothelium-dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscler. Thromb. 1994: 14: 938-943.
59. De Graaf JC, Banga JD, Moncada S et al. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation, 1992; 85: 2284-2290.
60. Azurna H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Brit. J. Pharmacol. 1986; 88: 411-415.
61. Stamler JS. Redox signaling: nitrosylation and related target interactions oi nitric oxide. Cell, 1994; 74: 931-938.
62. Shah PK. New insights inio the pathogenesis and prevention of acute coronary symptoms. Amer. J. Cardiol. 1997: 79: 17-23.
63. Rapoport RM, Draznin MB, Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMO-depcndent protein phosphorviation Nature, 1983: 306: 174-176.
64. Joannides R, Haefeli WE, Linder L et al. Nitric oxide is responsible for flow-dependent dilation of human peripheral conduit arteries in vivo. Circulation, 1995: 91: 1314-1319.
65. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atlierosclerotic coronary arteries. New Engl. J. Mod. 1986, 315: 1046-1051.
66. Bruning ТА, van Zwiete PA, Blauw GJ, Chang PC. No functional involvement of 5-hydroxytryptainine la receptors in nitric oxide dependent dilation caused by serotonin in the human forearm vascular bed. J. Cardiovascular Pharmacol. 1994; 24: 454-461.
67. Meredith IT, Yeung AC, Weidinger FF et al. Role of impaired endotheliuin-dependent vasodilatioii in iscnemic manifestations ot coronary artery disease. Circulation, 1993, 87 (S.V): V56-V66.
68. Egashira K, Inou T, Hirooka Y, Yamada A. et al. Evidence of impaired endothclium-dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograins. New Engl. J. Mod. 1993; 328: 1659-1664.
69. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Amer. J. Physiol. 1986; 251: 11779-11788.
70. Zeiher AM, Krause T, Schachinger V et al. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation. 1995, 91: 2345-2352.
71. Blann AD, Tarberner DA. A reliable marker of endothelial cell disfunction: does it exist? Brit. J. Haematol. 1995; 90: 244-248.
72. Benzuly KH, Padgett RC, Koul S et al. Functional improvement precedes structural regression of atherosclerosis. Circulation, 1994; 89: 1810-1818.
73. Davis SF, Yeung AC, Meridith IT et al. Early endothelial dysfunction predicts the development ottransplant coronary artery disease at I year posttransplant. Circulation 1996; 93: 457-462.
74. Celemajer DS, Sorensen KE, Georgakopoulos D et al. Cigarette smoking is associated witn dose-related and potentially reversible iinpairement of endothelium-dependent dilation in healthy young adults. Circulation, 1993; 88: 2140-2155.
75. Vogel RA, Coretti MC, Ploinic GD. Effect of single high-fat meal on endothelial hinction in healthy subject. Amer. J. Cardiol. 1997; 79: 350-354.
76. Azen SP, Qian D, Mack WJ et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation, 1996: 94: 2369-2372.
77. Levine GV, Erei B, Koulouris SN et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery discase. Circulation 1996; 93: 1107-1113.
78. Homing B., Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation, 1996; 93: 210-214.
79. Jensen-Urstad KJ, Reichard PG, Rosfors JS et al. Early atherosclerosis is retarded by improved long-term blood-glucose control in patients with IDDM. Diabetes, 1996; 45: 1253-1258.
80. Scandinavian Simvastatin Sunnval Study Investigators. Randomiseci trial cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Sinivastatin Survival Study (4S). Lancet, 1994; 344: 1383-1389.
81. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial disfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
82. Crcager MA, Gallagher SJ, Girerd XJ et al. L-arginine improves endothelium-dependent vasodilation in hypercholcsterolcrnic humans. J. Clin. Invest., 1992: 90: 1242-1253.
83. Tienfenhacher CP, Chilian WM, Mitchel M, DeFily DV. Restoration of endothclium-dependent vasodilation after reperliision injury by tetrahydrobiopterin. Circulation, 1996: 94: 1423-1429.
84. Ting HH, Timimi FK, Haley EA, Roddy MA et al. Vitamin С improves endothelium-dependent vasodilation in forearm vessels of humans with hypercholes-terolemia. Circulation, 1997: 95: 2617-2622.
85. Ting HH, Timimi FK, Boles KS et al. Vitamin С improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1996: 97: 22-28.
86. Heilzer T, Just H, Munzel T. Antioxidant vitamin С improves endothelial dysfunction in chronic smokers. Circulation, 1996: 94: 6-9.
87. Solzbach U., Hornig B, Jeserich M, Just H. Vitamin С improves endothelial ctysfubction of epicardial coronary arteries in hypertensive patients. Circulation, 1997: 96: 1513-1519.
88. Mancini GBJ, Henry GC, Macaya C. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dystunction in patients with coronary artery disease, the TREND study. Circulation, 1996: 94: 258-265.
89. Rajagopalan S, Harrison DG. Reversing endothelial dysfunction with ACE-inhibitors. A new TREND? Circulation, 1996, 94: 240-243.
90. Willix AL, Nagel B, Churchill V el al. Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 1985: 5: 250-255.
91. Berk ВС, Alexander RW. Biology of the vascular wall in hypertension. In: Renner RM, ed. The Kidney. Philadelphia: WB Saunders, 1996: 2049-2070.
92. Kagami S., Border WA, Miller DA, Nohle NA. Angiotensin II stimulates extracellular matrix protein syntliesis through induction ot transforming growth factor В in rat glomerular mesangial cells. J. Clin. Invest, 1994: 93: 2431-2437.
93. Frohlich ED, Tarazi RC. Is arterial pressure the sole factor responsible for hypertensive cardiac hypertropliy ? Amer. J. Cardiol. 1979: 44: 959-963.
94. Frohlich ED. Overview of hemoilynamic factors associated with left ventricular hypertrophy. J. Mol. Cell. Cardiol., 1989: 21: 3-10.
95. Cockcroft JR, Chowienczyk PJ, Urett SE, Chen CP et al. Nebivolol vasodilated human forearm vasculature, evidence for an L-arginine/NO-dependent mccahanism. J. Pharmacol. Exper. Ther. 1995, Sep; 274(3): 1067-1071.
96. Brehm BR, Bertsch D, von Falhis J, Wolf SC. Beta-blockers of the third generation inhibit endothelium-I liberation mRNA production and proliferation of human coronary smooth muscle and endothelial cells. J. Cardiovasc. Pharmacol. 2000, Nov: 36 (5 Suppl.): S401-403.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека