Вопрос27. Методы исследования цнс

Классификация, строение и функции нейронов. Нейроглия.

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ.

Центральнаянервнаясистема (ЦНС ) – это комплекс различных образований спинного и головного мозга, которые обеспечивают восприятие, переработку, хранение и воспроизведение информации, а также формирование адекватных реакций организма на изменения внешней и внутренней среды.

Структурным и функциональным элементом ЦНС являются нейроны. Это высокоспециализированные клетки организма, чрезвычайно различающиеся по своему строению и функциям. В ЦНС нет двух одинаковых нейронов. Мозг человека содержит 25 млрд. нейронов. В общем плане, все нейроны имеют тело – сому и отростки – дендриты и аксоны. Точной классификации нейронов нет, но их условно разделяют по структуре и функциям на следующие группы:

1. По форме тела.

· Многоугольные.

· Пирамидные.

· Круглые.

· Овальные.

2. По количеству и характеру отростков.

· Униполярные – имеют один отросток.

· Псевдоуниполярные – от тела отходит один отросток, который затем делится на 2 ветви.

· Биполярные – 2 отростка, один дендритоподобный, другой аксон.

· Мультиполярные – имеют 1 аксон и много дендритов.

3. По медиатору, выделяемому нейроном в синапсе.

· Холинэргические.

· Адренегрическим.

· Серотонинергические.

· Пептидергические и т.д.

4. По функциям.

· Афферентные или чувствительные. Служат для восприятия сигнала из внешней и внутренней среды и передачи их в ЦНС.

· Вставочные или интернейроны – промежуточные. Обеспечивают переработку, хранение и передачу информации эфферентным нейронам. Их в ЦНС больше всего.

· Эфферентные или двигательные. Формируют управляющие сигналы и передают их к периферическим нейронам и исполнительным органам.

5. По физиологической роли.

· Возбуждающие.

· Тормозные.

Сома нейронов покрыта многослойной мембраной, обеспечивающей проведение потенциала действия к начальному сегменту аксона – аксонному холмику. В соме расположено ядро, аппарат Гольджи, митохондрии, рибосомы. В рибосомах синтезируется тигроид, содержащий РНК и необходимый для синтеза белков. Особую роль играют микротрубочки и тонкие нити – нейрофиламенты. Они имеются в соме и отростках. Обеспечивают транспорт веществ от сомы по отросткам и обратно. Кроме того, за счет нейрофиламентов происходит движение отростков. На дендритах имеются выступы для синапсов – шипики, через которые в нейрон поступает информация. По аксонам сигнал идет к другим нейронам или исполнительным органам. Таким образом, общими функциями нейронов ЦНС являются прием, кодирование и хранение информации, а также выработка нейромедиаторов. Нейроны, с помощью многочисленных синапсов, получают сигналы в виде постсинаптических потенциалов. Затем перерабатывают эту информацию и формируют определенную ответную реакцию. Следовательно, они выполняют и интегративную, т.е. объединительную функцию.


Кроме нейронов в ЦНС имеются клетки нейроглии . Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой (20 нм) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада. Предполагают, что глия участвует в формирование условных рефлексов и памяти.

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга. Например, удаление мозжечка.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующими патологоанатомическим исследованием.

5. Электрофизиологические методы:

· Электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером.

· Регистрация биопотенциалов различных нервных центров: используется вместе со стереотаксической техникой при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

· Метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков.

6. Метод внутримозгового введения веществ с помощью микроинофореза .

7. Хронорефлексометрия – определение времени рефлексов.

8. Метод моделирования .

В последнее время очень распространенными стали заболевания, связанные с нервной системой. Причин тому масса, и часто больные, приходящие с жалобами к специалистам, долго не смогут получить ответ на вопрос, что с ними.

К сожалению, человеческий мозг до сих пор до конца не исследован, и возможность возникновения тех или иных отклонений в работе нервной системы и ее последствия часто находятся на стадии изучения.

Обычно постановка диагноза и назначение лечения при заболеваниях нервной системы процесс довольно длительный. Именно поэтому было изобретено множество методов, которые направлены на исследование нервной системы. Цель создания таких методов – это в первую очередь помощь специалисту в быстрой и четкой установке диагноза. Ведь множество заболеваний поддаются лечению только на ранних стадиях. Так давайте рассмотрим, в чем состоят современные методы исследования нервной системы.

Методы исследования.

Современная инструментальная диагностика всех видов заболеваний занимает очень важное место в процессе профилактики и лечения различных заболеваний, в том числе и нервной системы. Как известно болезнь легче предупредить, чем лечить, именно поэтому, разрабатываются приборы которые способны выявить малейшие отклонения и дать возможность не допустить прогрессирование и развитие болезни.

Что касается методов исследования нервной системы, то принято подразделять их на следующие разделы:

Нейровизуализационные методы;

Нейрофизиологические методы;

Методы исследования деятельности головного мозга;

Исследование сосудистой системы человека;

Другие методы.

К нейровизуальным методам принято относить: МРТ головного мозга, компьютерную томографию, эхоэнцефалоскопию. Такие, методы предназначены для исследования структуры головного мозга, диагностике при образовании гематом, объемных образованиях головного мозга или внутричерепной гипертензии.

Нейрофизиологические методы исследований – направлены на определения работы и полноценного выполнения функций нервных клеток (нейронов), нервов, нервных центров, спинного и головного мозга. К ним относятся:

ЭНМГ(электронейромиография) – определяет уровень поражения нервно-мышечного аппарата;

Термография – определяет болезни Коновалова – Вильсона, а так же Паркинсона;

Магнитная стимуляция (МС) – направлена, на исследования потенциалов головного мозгла, выявить отклонения, и оценить эффективность применения лечения при некоторых заболеваниях.

Методы лечения с помощью электродов.

К таким методам можно отнести методы исследования головного мозга, которые основываются на наружном применении электродов, для регистрации электрической активности. Такие процедуры являются безболезненными и не длительными, а так же безвредными для пациента. В процессе исследования больной обычно находится в расслабленном состоянии, и выполняет определенные задания, данные врачом, соответственно тому какие исследования проводятся. Это могут быть простые реакции на световые сигналы, глубокое дыхание или его задержка, пребывание пациента с открытыми или закрытыми глазами и другие дополнительные пробы. Обычно причиной для направления пациента на подобные исследования стают частые судороги, потери сознания, обмороки, вариации кризисов. Это единственный метод точного определения причины заболеваний. Соответственно результатам исследований дальше подбирается правильное лечение, выписывается курс медикаментов, выявляются противопоказания к определенным методам лечения. Также данный способ исследования помогает определить сохранность функций структур головного мозга у больных находящихся в реанимации в коматозном состоянии.

При подозрении на эпилепсию и тики обычно для исследования очага патологии применяется видео ЭЭГ. Это метод, основанный на синхронной записи видеоизображения пациента и проведении ЭЭГ. Таким образом, можно выявить методом сопоставления двигательную активность пациента и электродную активность мозга, что помогает поставить точный диагноз.

Множественная запись сна.

Множественная запись сна или как ее еще называют полисомнография – это метод, основанный на наблюдении за состоянием и деятельностью головного мозга в период сна. Обычно сон занимает больше третьей части нашей жизни, и очень часто патологии сна вызывают проблемы со здоровьем. Обычно такими становятся бессонница, головная боль, храп, раздражительность, дневная сонливость и другие. Результаты данных исследований в комплексе всех факторов определяют первопричину патологии, и соответственно дают возможность правильно установить лечение.

Для определений патологий функций нервной системы также применяется метод, который называется вызывание потенциалов головного мозга. Метод основывается на записи мозговой активности, которая вызвана различными раздражителями. Таким способом обычно исследуются зрительная система, и слух, а также вестибулярная система. Это дает возможность исследовать , ретробульбарный неврит, травматическое поражение зрительных нервов, а также нарушения утреннего уха, слуховой нерв, нарушения в стволе головного мозга. Обычно таким методом также определяется причина тугоухости, степень поражения ствола головного мозга при травмах, а также деформации шейного отдела позвоночника. Данное исследование применяется к пациентам, у которых выявлены такие симптомы как частое головокружение, посторонние звуки в ушах, такие как шум или звон, а также диагностирование отита.

Существует еще множество методов, которые помогают определить заболевание на ранних стадиях, и своевременно принять соответствующие меры. Современная медицина постоянно развивается и не стоит на месте. Это дает возможность надеяться, что вскоре у людей появится возможность надеяться на полное выздоровление даже при самых сложных заболеваниях. А пока нашей основной задачей остается эти заболевания не допустить. Не бойтесь проходить обследование, и обращаться к врачу, при каких-либо симптомах. Ведь ваше здоровье одно, и его намного легче сберечь, чем восстановить.

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

в. метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. метод внутримозгового введения веществ с помощью микроинофореза;

7. хронорефлексометрия - определение времени рефлексов.

Свойства нервных центров

Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

Для проведения возбуждения через нервные центры характерны следующие особенности:

1. Одностороннее проведение. Оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2. Центральная задержка проведение возбуждения. Т.е. по НЦ возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой. Так как больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса, это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Это объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются и в мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне (рис). Второе, генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы,. выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие, это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. Автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

Торможение в ЦНС

Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус, т.е. зрительные бугры накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса. Сеченов сделал вывод, что вышележащие Н.Ц. при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне действия другого более сильного раздражителя.

Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон - один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.

В ЦНС выделяют следующие механизмы торможения:

1. Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов. Т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксо-соматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия ГЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается. Алкалоид стрихнин может связываться с глициновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.

2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.

3. Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.


Похожая информация.


Наибольшее распространение получили методы регистрации биоэлектрической активности отдельных нейронов, суммарной активности нейронного пула или головного мозга в целом (электроэнцефалография), компьютерная томография (позитронно-эмиссионная томография, магнитно-резонансная томография) и др.

Электроэнцефалография - это регистрация с поверхности кожи головы или с поверхности коры (последнее - в эксперименте) суммарного электрического поля нейронов мозга при их возбуждении (рис. 82).

Рис. 82. Ритмы электроэнцефалограммы: А – основные ритмы: 1 – α-ритм, 2 – β-ритм, 3 - θ-ритм, 4 – σ-ритм; Б – реакция десинхронизации ЭЭГ затылочной области коры большого мозга при открывании глаз () и восстановление α-ритма при закрывании глаз (↓)

Происхождение волн ЭЭГ изучено недостаточно. Полагают, что ЭЭГ отражает ЛП множества нейронов - ВПСП, ТПСП, следовые - гиперполяризацию и деполяризацию, способные к алгебраической, пространственной и временной суммации.

Эта точка зрения является общепризнанной, при этом участие ПД в формировании ЭЭГ отрицается. Так, например, W. Willes (2004) пишет: «Что касается потенциалов действия, то возникающие их ионные токи слишком слабы, быстры и несинхронизированны, чтобы их можно было зарегистрировать в виде ЭЭГ». Однако это утверждение не подкреплено экспериментальными фактами. Для его доказательства необходимо предотвратить возникновение ПД всех нейронов ЦНС и регистрировать ЭЭГ в условиях возникновения только ВПСП и ТПСП. Но это невозможно. Кроме того, в натуральных условиях ВПСП обычно являются начальной частью ПД, поэтому утверждать, что ПД не участвуют в формировании ЭЭГ, оснований нет.

Таким образом, ЭЭГ - это регистрация суммарного электрического поля ПД, ВПСП, ТПСП, следовых гиперполяризации и деполяризации нейронов .

На ЭЭГ регистрируется четыре основных физиологических ритма: α-, β-, θ- и δ-ритмы, частота и амплитуда которых отражают степень активности ЦНС.



При исследовании ЭЭГ описывают частоту и амплитуду ритма (рис. 83).

Рис. 83. Частота и амплитуда ритма электроэнцефалограммы. Т 1 , Т 2 , Т 3 – период (время) колебания; количество колебаний в 1 сек – частота ритма; А 1 , А 2 – амплитуда колебания (Кирой, 2003).

Метод вызванных потенциалов (ВП) заключается в регистрации изменений электрической активности мозга (электрического поля) (рис. 84), возникающих в ответ на раздражение сенсорных рецепторов, (обычный вариант).

Рис. 84. Вызванные потенциалы у человека на вспышку света: П – позитивные, Н – негативные компоненты ВП; цифровые индексы означают порядок следования позитивных и негативных компонентов в составе ВП. Начало записи совпадает с моментом включения вспышки света (стрелка)

Позитронно-эмиссионная томография - метод функционального изотопного картирования мозга, основанный на введении в кровоток изотопов (13 М, 18 Р, 15 О) в соединении с дезоксиглюкозой. Чем активнее участок мозга, тем он больше поглощает меченой глюкозы. Радиоактивное излучение послед­ней регистрируется специальными детекторами. Информация от детекторов поступает на компьютер, который создает «срезы» мозга на регистрируемом уровне, отражающие неравномерность распределения изотопа в связи с метаболической активностью мозговых структур, что позволяет судить о возможных поражениях ЦНС.

Магнитно-резонансная томография позволяет выявить активно работающие участки мозга. Методика основана на том, что после диссоциации оксигемоглобина гемоглобин приобретает парамагнитные свойства. Чем выше метаболическая активность мозга, тем больше объемный и линейный кровоток в данном участке мозга и тем меньше отношение парамагнитного дезоксигемоглобина к оксигемоглобину. В мозге существует много очагов активации, что отражается в неоднородности магнитного поля.

Стереотаксический метод . Метод позволяет вводить макро- и микроэлектроды, термопару в различные структуры головного мозга. Координаты структур мозга приведены в стереотаксических атласах. Посредством введенных электродов можно регистрировать биоэлектрическую активность данной структуры, раздражать или разрушать ее; через микроканюли можно вводить химические вещества в нервные центры или желудочки мозга; с помощью микроэлектродов (их диаметр менее 1 мкм), подведенных вплотную к клетке, можно регистрировать импульсную активность отдельных нейронов и судить об участии последних в рефлекторных, регуляторных и поведенческих реакциях, а также о возможных патологических процессах и применении соответствующих лечебных воздействий фармакологическими препаратами.

Данные о функциях головного мозга можно получить при проведении операций на мозге. В частности, при электрической стимуляции коры во время нейрохирургических операций.

Вопросы для самоконтроля

1. Какие три отдела мозжечка и их составные элементы выделяют в структурно-функциональном отношении? От каких рецепторов поступают импульсы в мозжечок?

2. С какими отделами ЦНС мозжечок связан с помощью нижних, средних и верхних ножек?

3. С помощью каких ядер и структур ствола мозга мозжечок реализует свое регулирующее влияние на тонус скелетной мускулатуры и двигательную активность организма? Возбуждающим или тормозным оно является?

4. Какие структуры мозжечка участвуют в регуляции мышечного тонуса, позы и равновесия?

5. Какая структура мозжечка участвует в программировании целенаправленных движений?

6. Какое влияние оказывает мозжечок на гомеостазис, как изменяется гомеостазис при повреждении мозжечка?

7. Перечислите отделы ЦНС и структурные элементы, составляющие передний мозг.

8. Назовите образования промежуточного мозга. Какой тонус скелетных мышц наблюдается у диэнцефального животного (удалены полушария большого мозга), в чем он выражается?

9. На какие группы и подгруппы делят ядра таламуса и как они связаны с корой больших полушарий?

10. Как называют нейроны, посылающие информацию к специфическим (проекционным) ядрам таламуса? Как называют пути, которые образуют их аксоны?

11. Какова роль таламуса?

12. Какие функции выполняют неспецифические ядра таламуса?

13. Назовите функциональное значение ассоциативных зон таламуса.

14. Какие ядра среднего и промежуточного мозга образуют подкорковые зрительные и слуховые центры?

15. В осуществлении каких реакций, кроме регуляции функций внутренних органов, принимает участие гипоталамус?

16. Какой отдел головного мозга называют высшим вегетативным центром? Что называют тепловым уколом Клода Бернара?

17. Какие группы химических веществ (нейросекретов) поступают от гипоталамуса к передней доле гипофиза и каково их значение? Какие гормоны поступают в заднюю долю гипофиза?

18. Какие рецепторы, воспринимающие отклонения от нормы параметров внутренней среды организма, обнаружены в гипоталамусе?

19. Центры регуляции каких биологических потребностей обнаружены в гипоталамусе

20. Какие структуры головного мозга составляют стриопаллидарную систему? Какие реакции возникают в ответ на стимуляцию ее структур?

21. Перечислите основные функции, в выполнении которых важную роль играет полосатое тело.

22. Каковы функциональные взаимоотношения полосатого тела и бледного шара? Какие двигательные расстройства возникают при повреждении полосатого тела?

23. Какие двигательные расстройства возникают при повреждении бледного шара?

24. Назовите структурные образования, составляющие лимбическую систему.

25. Что характерно для распространения возбуждения между отдельными ядрами лимбической системы, а также между лимбической системой и ретикулярной формацией? Чем это обеспечивается?

26. От каких рецепторов и отделов ЦНС поступают афферентные импульсы к различным образованиям лимбической системы, куда посылает импульсы лимбическая система?

27. Какие влияния оказывает лимбическая система на сердечно-сосудистую, дыхательную и пищеварительную системы? Посредством каких структур осуществляются эти влияния?

28. В процессах кратковременной или долговременной памяти играет важную роль гиппокамп? Какой экспериментальный факт об этом свидетельствует?

29. Приведите экспериментальные доказательства, свидетельствующие о важной роли лимбической системы в видоспецифическом поведении животного и его эмоциональных реакциях.

30. Перечислите основные функции лимбической системы.

31. Функции круга Пейпеца и круга через миндалину.

32. Кора больших полушарий: древняя, старая и новая кора. Локализация и функции.

33.Серое и белое вещество КПБ. Функции?

34.Перечислите слои новой коры и их функции.

35.Поля Бродмана.

36.Колончатая организация КБП по Маунткаслу.

37.Функциональное деление коры: первичные, вторичные и третичные зоны.

38.Сенсорные, моторные и ассоциативные зоны КБП.

39.Что означает проекции общей чувствительности в коре (Чувствительный гомункулус по Пенфилду). Где в коре находятся эти проекции?

40.Что означает проекции двигательной системы в коре (Двигательный гомункулус по Пенфилду). Где в коре находятся эти проекции?

50. Назовите соматосенсорные зоны коры больших полушарий, укажите места их расположения и назначение.

51. Назовите основные моторные зоны коры больших полушарий и места их расположения.

52.Что собой представляют зоны Вернике и Брока? Где они располагаются? Какие последствия наблюдаются при их нарушении?

53. Что понимают под пирамидной системой? Какова ее функция?

54. Что понимают под экстрапирамидной системой?

55. Каковы функции экстрапирамидной системы?

56. Какова последовательность взаимодействия сенсорной, моторной и ассоциативной зон коры при решении задач на узнавание предмета и произнесения его названия?

57.Что такое межполушарная ассиметрия?

58.Какие функции выполняет мозолистое тело и почему его перерезают при эпилепсии?

59.Приведите примеры нарушения межполушарной ассиметрии?

60.Сравните функции левого и правого полушарий.

61.Перечислите функции различных долей коры.

62.Где в коре осуществляется праксис и гнозис?

63.Нейроны какой модальности находятся в первичных, вторичных и ассоциативных зонах коры?

64.Какие зоны занимают наибольшую площадь в коре? Почему?

66.В каких зонах коры формируются зрительны ощущения?

67.В каких зонах коры формируются слуховые ощущения?

68.В каких зонах коры формируются тактильные и болевые ощущения?

69.Какие функции выпадут у человека при нарушении лобных долей?

70.Какие функции выпадут у человека при нарушении затылочных долей?

71.Какие функции выпадут у человека при нарушении височных долей?

72.Какие функции выпадут у человека при нарушении теменных долей?

73. Функции ассоциативных областей КБП.

74.Методы изучения работы головного мозга: ЭЭГ, МРТ, ПЭТ, метод вызванных потенциалов, стереотаксический и другие.

75.Перечислите основные функции КБП.

76. Что понимают под пластичностью нервной системы? Объясните на примере головного мозга.

77. Какие функции голвного мозга выпадут, если удалить кору больших полушарий у разных животных?

2.3.15 . Общая характеристика вегетативной нервной системы

Вегетативная нервная система - это часть нервной системы, регулирующая работу внутренних органов, просвет сосудов, обмен веществ и энергии, гомеостазис.

Отделы ВНС. В настоящее время общепризнанными являются два отдела ВНС: симпатический и парасимпатический. На рис. 85 представлены отделы ВНС и иннервация ее отделами (симпатическим и парасимпатическим) различных органов.

Рис. 85. Анатомия вегетативной нервной системы. Показаны органы и их симпатическая и парасимпатическая иннервация. T 1 -L 2 – нервные центры симпатического отдела ВНС; S 2 -S 4 - нервные центры парасимпатического отдела ВНС в крестцовом отделе спинного мозга, III–глазодвигательный нерв, VII–лицевой нерв, IX–языкоглоточный нерв, X–блуждающий нерв – нервные центры парасимпатического отдела ВНС в стволе мозга

В таблице 10 приводятся эффекты симпатической и парасимпатической отделов ВНС на эффекторные органы с указанием типа рецептора на клетках эффекторных органов (Чеснокова, 2007) (табл. 10).

Таблица 10. Влияние симпатической и парасимпатической отделов вегетативной нервной системы на некоторые эффекторные органы

Орган Симпатический отдел ВНС Рецептор Парасимпатический отдел ВНС Рецептор
Глаз (радужная оболочка)
Радиальная мышца Сокращение α 1
Сфинктер Сокращение -
Сердце
Синусный узел Учащение β 1 Замедление М 2
Миокард Повышение β 1 Понижение М 2
Сосуды (гладкие мышцы)
В коже, во внутренних органах Сокращение α 1
В скелетных мышцах Расслабление β 2 М 2
Бронхиальные мышцы (дыхание) Расслабление β 2 Сокращение М 3
Пищеварительный тракт
Гладкие мышцы Расслабление β 2 Сокращение М 2
Сфинктеры Сокращение α 1 Расслабление М 3
Секреция Снижение α 1 Повышение М 3
Кожа
Мышцы волосков Сокращение α 1 М 2
Потовые железы Повышенная секреция М 2

В последние годы получены убедительные факты, доказывающие наличие серотонинергических нервных волокон, идущих в составе симпатических стволов и усиливающих сокращения гладких мышц ЖКТ.

Дуга вегетативного рефлекса имеет те же звенья, что и дуга соматического рефлекса (рис. 83).

Рис. 83. Рефлекторная дуга вегетативного рефлекса: 1 – рецептор; 2 – афферентное звено; 3 – центральное звено; 4 – эфферентное звено; 5 - эффектор

Но имеются особенности ее организации:

1. Главное отличие заключается в том, что рефлекторная дуга ВНС может замыкаться вне ЦНС - интра- или экстраорганно.

2. Афферентное звено дуги вегетативного рефлекса может быть образовано как собственными - вегетативными, так и соматическими афферентными волокнами.

3. В дуге вегетативного рефлекса слабее выражена сегментированность , что повышает надежность вегетативной иннервации.

Классификация вегетативных рефлексов (по структурно-функциональной организации):

1. Выделяют центральные (различного уровня) и периферические рефлексы , которые подразделяют на интра- и экстраорганные.

2. Висцеро-висцеральные рефлексы - изменение деятельности желудка при наполнении тонкой кишки, торможение деятельности сердца при раздражении Р-рецепторов желудка (рефлекс Гольца) и др. Рецептивные поля этих рефлексов локализуются в разных органах.

3. Висцеросоматические рефлексы - изменение соматической деятельности при возбуждении сенсорных рецепторов ВНС, например, сокращение мышц, движение конечностей при сильном раздражении рецепторов ЖКТ.

4. Соматовисцеральные рефлексы . Примером может служить рефлекс Даньини-Ашнера - уменьшение частоты сердцебиений при надавливании на глазные яблоки, уменьшение мочеобразования при болевом раздражении кожи.

5. Интероцептивные, проприоцептивные и экстероцептивные рефлексы - по рецепторам рефлексогенных зон.

Функциональные отличия ВНС от соматической нервной системы. Они связаны со структурными особенностями ВНС и степенью выраженности влияния на нее коры большого мозга. Регуляция функций внутренних органов с помощью ВНС может осуществляться при полном нарушении ее связи с ЦНС, однако менее совершенно. Эффекторный нейрон ВНС находится за пределами ЦНС : либо в экстра-, либо в интраорганных вегетативных ганглиях, образующих периферические экстра- и интраорганные рефлекторные дуги. При нарушении же связи мышц с ЦНС соматические рефлексы устраняются, поскольку все мотонейроны находятся в ЦНС.

Влияние ВНС на органы и ткани организма не контролируется непосредственно сознанием (человек не может произвольно управлять частотой и силой сердечных сокращений, сокращений желудка и т.д.).

Генерализованный (диффузный) характер влияния в симпатическом отделе ВНС объясняется двумя основными факторами.

Во-первых , большинство адренергических нейронов имеет длинные постганглионарные тонкие аксоны, многократно ветвящиеся в органах и образующие так называемые адренергические сплетения. Общая длина конечных ветвей адренергического нейрона может достигать 10-30 см. На этих ветвях по их ходу имеются многочисленные (250-300 на 1 мм) расширения, в которых синтезируется, запасается и обратно ими захватывается норадреналин. При возбуждении адренергического нейрона норадреналин высвобождается из большого числа этих расширений во внеклеточное пространство, при этом он действует не на отдельные клетки, а на множество клеток (например, гладкомышечных), поскольку расстояние до постсинаптических рецепторов достигает 1-2 тыс. нм. Одно нервное волокно может иннервировать до 10 тыс. клеток рабочего органа. У соматической нервной системы сегментарный характер иннервации обеспечивает более точную посылку импульсов к определенной мышце, к группе мышечных волокон. Один мотонейрон может иннервировать всего несколько мышечных волокон (например, в мышцах глаза - 3-6, пальцев - 10-25).

Во-вторых , постганглионарных волокон в 50-100 раз больше, чем преганглионарных (в ганглиях нейронов больше, чем преганглионарных волокон). В парасимпатических узлах каждое преганглионарное волокно контактирует только с 1-2 ганглионарными клетками. Небольшие лабильность нейронов вегетативных ганглиев (10-15 имп./с) и скорость проведения возбуждения в вегетативных нервах: 3-14 м/с в преганглионарных волокнах и 0,5-3 м/с в постганглионарных; в соматических нервных волокнах - до 120 м/с.

В органах с двойной иннервацией эффекторные клетки получают симпатическую и парасимпатическую иннервацию (рис. 81).

Каждая мышечная клетка ЖКТ, по-видимому, имеет тройную экстраорганную иннервацию - симпатическую (адренергическую), парасимпатическую (холинергическую) и серотонинергическую, а также иннервацию от нейронов интраорганной нервной системы. Однако некоторые из них, например мочевой пузырь, получают в основном парасимпатическую иннервацию, а ряд органов (потовые железы, мышцы, поднимающие волосы, селезенка, надпочечники) - только симпатическую.

Преганглионарные волокна симпатической и парасимпатической нервной системы являются холинергическими (рис. 86) и образуют синапсы с ганглионарными нейронами с помощью ионотропных N-холинорецепторов (медиатор - ацетилхолин).

Рис. 86. Нейроны и рецепторы симпатической и парасимпатической нервной системы: А – адренергические нейроны, Х – холинергческие нейроны; сплошная линия – преганглионарные волокна; пунктирная линия - постганглионарные

Рецепторы получили свое название (Д. Ленгли) из-за чувствительности к никотину: малые его дозы возбуждают нейроны ганглия, большие - блокируют. Симпатические ганглии расположены экстраорганно , Парасимпатические - как правило, интраорганно . В вегетативных ганглиях, кроме ацетилхолина, имеются нейропептиды : метэнкефалин, нейротензин, ХЦК, вещество Р. Они выполняют моделирующую роль . N-холинорецепторы локализованы также на клетках скелетных мышц, каротидных клубочков и мозгового слоя надпочечников. N-холинорецепторы нервно-мышечных соединений и вегетативных ганглиев блокируются различными фармакологическими препаратами. В ганглиях имеются вставочные адренергические клетки, регулирующие возбудимость ганглионарных клеток.

Медиаторы постганглионарных волокон симпатической и парасимпатической нервной системы разные .

БИП - ИНСТИТУТ ПРАВОВЕДЕНИЯ

М. В. ПИВОВАРЧИК

АНАТОМИЯ И ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Минск


БИП - ИНСТИТУТ ПРАВОВЕДЕНИЯ

М. В. ПИВОВАРЧИК

АНАТОМИЯ И ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Учебно-методическое пособие

Белорусского института правоведения

Рецнзенты: канд. биол. наук доцент Леднева И. В.,

канд. мед. наук, доцент Авдей Г. М.

Пивоварчик М. В.

Анатомия и физиология ЦНС: Учеб.-метод. пособие/ М. В. Пивоварчик. Мн.: ООО «БИП-С Плюс», 2005. – 88 с.

Пособие соответствует структуре курса «Анатомия и физиология центральной нервной системы», в нем рассматриваются основные темы, составляющие содержание курса. Подробно изложено общее строение нервной системы, спинного и головного мозга, описаны особенности строения и функционирования вегетативного и соматического отделов нервной системы человека, общие принципы ее функционирования. В конце каждой из девяти тем пособия содержатся вопросы для самоконтроля. Предназначено для студентов дневного и заочного отделений специальности психология.

© Пивоварчик М. В., 2005

ТЕМА 1. Методы исследования нервной системы.. 4

ТЕМА 2. Строение и функции нервной ткани. 7

ТЕМА 3. Физиология синаптической передачи. 19

ТЕМА 4. Общее строение нервной системы.. 26

ТЕМА 5. Строение и функции спинного мозга. 31

ТЕМА 6. Строение и функции головного мозга. 35

Тема 7. Двигательная функция центральной нервной системы.. 57

ТЕМА 8. Вегетативная нервная система. 70

Тема 9. Ощие принципы функционирования нервной системы.. 78

ОСНОВНАЯ ЛИТЕРАТУРА.. 87

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА.. 87


ТЕМА 1. Методы исследования нервной системы

Нейробиологические методы.

Метод магнитно-резонансной томографии.

Нейропсихологические методы.

Нейробиологические методы. В теоретических исследованиях физиологии нервной системы человека большую роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Строение нервных клеток, а также протекающие в них процессы остаются неизменными как у примитивных животных, так и у человека. Исключение представляют большие полушария головного мозга. Поэтому нейробиолог всегда может изучать тот или иной вопрос физиологии головного мозга человека на более простых, дешевых и доступных объектах. Такими объектами могут быть беспозвоночные животные. В последние годы для этих целей все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Такой материал может быть использован для исследования механизмов функционирования отдельных нервных клеток и их отростков. Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500 – 1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии. Молекулярные механизмы возбуждения исследуются на этом объекте. У многих моллюсков в нервных ганглиях, заменяющих у них головной мозг, есть очень большие нейроны – диаметром до 1000 мкм. Эти нейроны используются при изучении работы ионных каналов, открытие и закрытие которых управляется химическими веществами.

Для регистрации биоэлектрической активности нейронов и их отростков применяют микроэлектродную технику, которая в зависимости от задач исследования имеет много особенностей. Обычно применяют два типа микроэлектродов – металлические и стеклянные. Для регистрации активности одиночных нейронов микроэлектрод закрепляют в специальном манипуляторе, который позволяет продвигать его в мозге животного с высокой точностью. В зависимости от задач исследования манипулятор может крепиться на черепе животного или отдельно. Характер регистрируемой биоэлектрической активности определяется диаметром кончика микроэлектрода. Например, при диаметре кончика микроэлектрода не более 5 мкм можно зарегистрировать потенциалы действия одиночных нейронов. При диаметре кончика микроэлектрода больше 10 мкм одновременно регистрируется активность десятков, а иногда и сотен нейронов.

Метод магнитно-резонансной томографии . Современные методы позволяют увидеть строение головного мозга человека, не повреждая его. Метод магнитно-резонансной томографии дает возможность на экране монитора наблюдать серию последовательных «срезов» головного мозга, не нанося ему никакого вреда. Этот метод позволяет исследовать, например, злокачественные образования головного мозга. Головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем это эхо обрабатывается с помощью мощного компьютера и методами компь-ютерной графики отображается на экране монитора.

Позитронно-эмиссионная томография. Еще более высоким разрешением обладает метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение определенного времени сканирования и затем реконструируются в трехмерный образ.

Электрофизиологические методы. Еще в XVIII в. итальянский врач Луиджи Гальвани заметил, что отпрепарированные лапки лягушки сокращаются при соприкосновении с металлом. Он пришел к выводу, что мышцы и нервные клетки животных производят электричество. В России подобные исследования проводил И. М. Сеченов: ему впервые удалось зарегистрировать биоэлектрические колебания от продолговатого мозга лягушки. В начале XX в., используя уже значительно более совершенные приборы, шведский исследователь Г. Бергер зарегистрировал биоэлектрические потенциалы головного мозга человека, которые теперь называют электроэнцефалограммой (ЭЭГ). В этих исследованиях впервые был зарегистрирован основной ритм биотоков мозга человека – синусоидальные колебания с частотой 8 – 12 Гц, который получил название альфа-ритма. Современные методы клинической и экспериментальной электроэнцефалографии сделали значительный шаг вперед благодаря применению компь-ютеров. Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков чашечковых электродов. Далее эти электроды соединяют с многоканальным усилителем. Современные усилители очень чувствительны и позволяют записывать электрические колебания от мозга амплитудой всего в несколько микровольт, затем компьютер обрабатывает ЭЭГ по каждому каналу.

При исследовании фоновой ЭЭГ ведущим показателем является альфа-ритм, который регистрируется преимущественно в задних отделах коры в состоянии спокойного бодрствования. При предъявлении сенсорных стимулов происходит подавление, или «блокада», альфа-ритма, продолжительность которой тем больше, чем сложнее изображение. Важным направлением в использовании ЭЭГ являются исследования пространственно-временных отношений потенциалов мозга при восприятии сенсорной информации, т. е. учет времени восприятия и его мозговой организации. Для этих целей производится синхронная многоканальная регистрация ЭЭГ в процессе восприятия. Кроме регистрации фоновой ЭЭГ для изучения работы мозга используют методы регистрации вызванных (ВП) или событийно-связанных (ССП) потенциаловмозга . Эти методы основаны на представлении о том, что вызванный или событийно-связанный, потенциал представляет собой реакцию мозга на сенсорное раздражение, по длительности сопоставимую со временем обработки стимула. Связанные с событиями потенциалы мозга представляют собой широкий класс электрофизиологических феноменов, которые специальными методами выделяются из «фоновой», или «сырой», электроэнцефалограммы. Популярность методов ВП и ССП объясняется простотой регистрации и возможностью наблюдать активность многих областей мозга в динамике в течение длительного времени при выполнении любых по сложности задач.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека