Виды и методы определения автокорреляции остатков. Сущность и последствия автокорреляции

Вернемся еще раз к предположению (3.3). Из него, в частности, следует, что ковариации случайной ошибки для разных наблюдений равны нулю. Если к тому же случайные ошибки распределены нормально, то это означает их попарную независимость.

Однако регрессионные модели в экономике часто содержат стохастические зависимости между значениями случайных ошибок – автокорреляцию ошибок . Ее причинами являются: во-первых, влияние некоторых случайных факторов или опущенных в уравнении регрессии важных объясняющих переменных, которое не является однократным, а действует в разные периоды времени; во-вторых, случайный член может содержать составляющую, учитывающую ошибку измерения объясняющей переменной.

Применение к модели с автокорреляцией остатков обыкновенного МНК приведет к следующим последствиям :

1. Выборочные дисперсии полученных оценок коэффициентов будут больше по сравнению с дисперсиями по альтернативным методам оценивания, т.е. оценки коэффициентов будут неэффективны.

2. Стандартные ошибки коэффициентов будут оценены неправильно, чаще всего занижены, иногда настолько, что нет возможности воспользоваться для проверки гипотез соответствующими точными критериями – мы будем чаще отвергать гипотезу о незначимости регрессии, чем это следовало бы делать в действительности.

3. Прогнозы по модели получаются неэффективными.

На практике исследователь в этом случае поставлен перед проблемой тестирования наличия в модели автокорреляции, а также выявления причины автокорреляции при ее обнаружении: или в модели опущена существенная переменная, или структура ошибок зависит от времени. То есть, исследование остатков позволяет судить о правильности модели и ее пригодности для прогнозирования.

Простейшим способом проверки наличия автокорреляции является графическое изображение остатков e i . Возможно построение:

· графика временной последовательности, если остатки получены в разные моменты времени;

· графика зависимости остатков от значений , полученных по регрессии;



· графиков зависимости остатков от объясняющих переменных.

Если изображение остатков представляет собой горизонтальную полосу, это указывает на отсутствие каких-либо проблем, связанных с моделью. В противном случае в зависимости от вида и типа графика можно получить информацию о: неадекватности модели, ошибочности расчетов, необходимости включения в модель линейного или квадратичного члена от времени; наконец о непостоянстве дисперсии.

Ясно, что ошибки могут коррелировать по-разному, однако без нарушения общности можно рассматривать так называемую сериальную корреляцию (автокорреляцию), когда зависимость между ошибками, отстоящими на некоторое количество шагов s , называемое порядком корреляции (в частности, на один шаг, s =1), остается одинаковой, что хорошо проявляется визуально на графике в системе координат (e i ; e i - s ). Например, для s =1 на рис. 4.2 показаны отрицательная (слева) и положительная (справа) автокорреляция остатков. В экономических исследованиях чаще всего встречается положительная автокорреляция.


Рис. 4.2. Автокорреляция остатков

Более достоверным способом проверки существования автокорреляции является применение статистических критериев. Хорошо известны два – критерий знаков (относится к непараметрическим критериям) и критерий Дарбина-Уотсона .

Для проведения проверки по критерию знаков необходимо расположить остатки e i во временной последовательности, выписать их знаки, подсчитать число образующихся при этом серий n u из одинаковых знаков, а также n 1 – число остатков со знаком плюс и n 2 – число остатков со знаком минус. Далее определяется вероятность Pr (n u ) появления n u групп при нулевой гипотезе – последовательность остатков полностью случайна (автокорреляция отсутствует). Если Pr (n u ) < 1–a , где a – уровень доверия, то нулевая гипотеза отвергается.

Для ускорения расчетов для выборок с n 1 , n 2 не больше 20 составлены таблицы с критическими значениями n u при уровне доверия a =0,05.

Для больших выборок истинное распределение ошибок достаточно точно аппроксимируется нормальным со средним m =2n 1 n 2 /(n 1 +n 2)+1 и дисперсией s 2 =2n 1 n 2 (2n 1 n 2 – n 1 – n 2)/(n 1 + n 2) 2 /(n 1 + n 2 – 1), а величина z =(u m + 0,5)/s подчиняется нормированному нормальному распределению, следовательно, критические значения n u могут быть вычислены по формулам (m + z a s ) и (m z a s ), где z a определяется из условия F 0 (z a )=(1–a )/2 (значения даны в справочниках).

Пример . Получены остатки 0,6; 1,9; –1,8; –2,7; –2,9; 1,4; 3,3; 0,3; 0,8; 2,3; –1,4; –1,1, которые обнаруживают следующую последовательность знаков + + – – – + + + + + – –. Имеем n u =4, n 1 =7, n 2 =5. По таблице находим критические значения для n u : 3 и 11. Так как 3 < n u < 11, то нулевая гипотеза принимается, то есть остатки независимы и автокорреляция отсутствует.Ñ

Критерий знаков достаточно прост и не использует информацию о величине e i , и поэтому недостаточно эффективен.

Для проверки гипотезы о существовании линейной автокорреляции первого порядка, которая чаще всего имеет место на практике, предпочтителен критерий Дарбина-Уотсона , основанный на статистике:

(4.9)

Значения первых разностей ошибки в (4.9) будут обнаруживать тенденцию к уменьшению по абсолютной величине по сравнению с абсолютными значениями e i при положительной автокорреляции и к увеличению при отрицательной автокорреляции.

Для статистики d имеются верхний d U и нижний d L пределы уровня значимости. Различные статистические решения для нулевой гипотезы H 0: автокорреляция равна нулю, даны в табл. 4.3. При этом появляются области неопределенности, так как величина e i зависит не только от значений u , но и от значений последовательных X .

Следует отметить, что критерий Дарбина-Уотсона предназначен для моделей с детерминированными (нестохастическими) регрессорами X и не применим, например, в случаях, когда среди объясняющих переменных есть лаговые значения переменной Y .

Таблица 4.3

Области статистических решений для критерия Дарбина-Уотсона

Пример . Для примера 1 из п. 3.2 n =20, k =2 имеем табл. 4.4.

Значения d L и d U при уровне значимости 5% получим из справочника при n =20 и k =2: d L =1,10, d U =1,54.

Так как d >2, то вычисляем 4–d U =2,46 и 4–d L =2,90 и 2<d <4–d U .

Согласно табл. 4.3 гипотеза о равенстве нулю автокорреляции принимается. Ñ

Какой бы тест на автокорреляцию не использовался, необходимо помнить, что рекомендуется в случаях неопределенности (см. табл. 4.3) принимать гипотезу о наличии автокорреляции, поскольку это гарантирует от отрицательных последствий автокорреляции. В случаях же некорректного принятия гипотезы о равенстве нулю автокорреляции получаем модель, которая не может иметь удовлетворительного применения, хотя формально проходит все проверки.

Таблица 4.4

Вычисление значения статистики d

Ошибка e i e i 2 e i-1 ( e i -e i-1 ) 2 Ошибка e i e i 2 e i -1 (e i -e i -1) 2
-2,49 6,20 -0,68 0,46 -8,72 64,64
-1,86 3,46 -2,49 0,40 5,27 27,72 -0,68 35,40
31,93 1019,21 -1,86 1141,76 -5,29 27,93 5,27 111,51
-3,18 10,11 31,93 1232,71 -16,74 280,23 -5,29 131,10
-2,17 4,71 -3,18 1,02 8,94 79,87 -16,74 659,46
-18,38 337,64 -2,17 262,76 -3,57 12,74 8,94 156,50
-3,45 11,90 -18,38 222,90 5,18 26,79 -3,57 76,56
5,58 31,14 -3,45 81,54 7,72 59,60 5,18 6,45
-3,11 9,67 5,58 75,52 -0,85 0,72 7,72 73,44
-8,72 76,04 -3,11 31,47 4,85 23,47 -0,85 32,49
Сумма 2050,37 4397,66

Рассмотрим методы оценивания уравнения регрессии при наличии автокорреляции остатков.

Пусть имеем обобщенную линейную модель множественной регрессии в виде (4.3)-(4.7) с гомоскедастичными остатками .

Предположим, что остатки u i удовлетворяют следующему уравнению:

u i =ru i -1 +e i , i =2,...,n , (4.10)

E (e i )=0; (4.11)

Тогда несложно показать, что будет выполняться:

. (4.12)

Условие (4.12) является аналогом (4.5) и фактически означает гомоскедастичность дисперсии случайного члена (первая строчка) и автокорреляцию первого порядка (вторая строчка). Ясно, что если бы было известно значение r в (4.10) и затем в (4.12), то можно было бы применить ОМНК (элементы матрицы W в этом случае вычисляются согласно (4.12)) и получить эффективные оценки коэффициентов регрессии. Однако на практике значение r в большинстве случаев не известно, поэтому используются следующие методы оценивания регрессионной модели.

Метод 1 . Отказавшись от определения величины r , являющейся узким местом модели, статистически, можно положить r =0,5; 1 или -1. Однако даже грубая статистическая оценка будет, видимо, более эффективной, поэтому другой способ определения r с помощью статистики Дарбина-Уотсона r»1–0,5d . Применяя затем непосредственно ОМНК, получим оценки коэффициентов.

Метод 2 . Если значение r в (4.12) задано, то альтернативная схема отыскания оценок коэффициентов модели множественной регрессии суть (в целях упрощения, не нарушая общности, иллюстрация метода дана для случая парной регрессии):

а) Запишем уравнение модели для случая i и i –1:

Вычтем из обеих частей первого уравнения умноженное на r второе уравнение:

Метод 3 . Итеративная процедура Кохрейна-Оркатта.

а) Оценивается регрессия с исходными не преобразованными данными с помощью обыкновенного МНК.

б) Вычисляются остатки e i .

в) Оценивается регрессия e i =re i -1 +e i , и коэффициент при e i -1 дает оценку r .

г) С учетом полученной оценки r уравнение преобразовывается к виду (4.13), оценивание которого позволяет получить пересмотренные оценки коэффициентов b 0 и b 1 .

д) Вычисляются остатки регрессии (4.13) и процесс выполняется снова, начиная с этапа в).

Итерации заканчиваются, когда абсолютные разности последовательных значений оценок коэффициентов b 0 , b 1 и r будут меньше заданного числа (точности).

Подобная процедура оценивания порождает проблемы, касающиеся сходимости итерационного процесса и характера найденного минимума: локальный или глобальный.

Метод 4. Метод Хилдрета-Лу основан на тех же принципах, что и рассмотренный метод 3, но использует другой алгоритм вычислений. Здесь регрессия (4.13) оценивается МНК для каждого значения r из диапазона [-1, 1] с некоторым шагом внутри него. Значение, которое дает минимальную стандартную ошибку для преобразованного уравнения (4.13), принимается в качестве оценки r , а коэффициенты регрессии определяются при оценивании уравнения (4.13) с использованием этого значения.

Метод 5. Дарбиным была предложена простая схема, дающая эффективные оценки коэффициентов:

а). Подставляя (4.10) в модель Y i =b 0 +b 1 X i +u i , получим с учетом u i - 1 = Y i -1 - b 0 - b 1 X i -1:

Y i =b 0 (1-r )+rY i -1 +b 1 (X i - rX i -1) + e i ,

где ошибка e i удовлетворяет (4.11). Применяя обыкновенный МНК к последней модели, получаем оценку r как коэффициента при Y i -1 .

б). Вычисляем значения преобразованных переменных и применяем к ним обыкновенный МНК. Получаем искомые оценки коэффициентов регрессии.

Достоинством метода является простота его распространения на случай автокорреляции более высокого порядка.

Как показывают эксперименты, проведенные для малых выборок, лучшим является двухшаговый метод 2, использующий оценку r , полученную по методу, предложенному Дарбиным (метод 5 шаг а)).

В эконометрических исследованиях часто возникают ситуации, когда дисперсия остатков постоянна, но наблюдается статистическая зависимость остатков эконометрической модели между собой. Это явление называют автокорреляцией остатков .

В общем случае автокорреляция (последовательная корреляция) – это взаимосвязь упорядоченных во времени или в пространстве последовательных элементов соответственно временного или пространственного ряда данных.

На рис.5.5 показана зависимость Y от X , а также линия оцененного по этим данным уравнения парной линейной регрессии. Уже по рисунку видно, что оцененная регрессия не очень хороша: зависимость Y от X явно нелинейна. Если использовать проведенную регрессионную прямую, скажем, для прогнозирования дальнейшей динамики Y , результат будет неудовлетворительным.

Рис.5.5. К вопросу об автокорреляции остатков

Как же можно выразить формально неудовлетворительность полученного уравнения регрессии?

Мы видим, например, на рис.5.5, что в этом случае отклонения от линии регрессии не случайно распределены вокруг нее, а обладают определенной закономерностью. Эта закономерность, в частности, выражается в одинаковом, как правило, знаке каждых двух соседних отклонений . Это может являться следствием:

Неверной спецификации модели (ввиду нелинейного характера связи переменных);

Воздействием какого-то фактора, не включенного в модель в качестве объясняющей переменной. Величина такого неучтенного фактора может менять свою динамику в рассматриваемый период, отклоняясь в достаточно длительные промежутки времени в ту или иную сторону от своего среднего значения. Это, очевидно, может служить причиной длительных устойчивых отклонений зависимой переменной от линии регрессии.

Обе указанные причины свидетельствуют о том, что существует возможность улучшить уравнение регрессии путем оценивания какой-то новой нелинейной формулы или включения некоторой новой объясняющей переменной.

Зависимость, показанная на рис.5.5, очевидно, нелинейна. Но это – крайний случай. Далеко не всегда бывает столь же очевидно, что отклонения от регрессионной прямой имеют неслучайный, закономерный характер. Для оценки степени такой неслучайности необходимо ввести количественную меру .

Итак, одним из основных предполагаемых свойств отклонений наблюдаемых значений от регрессионной формулы является их статистическая независимость между собой .

Мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка , т.е. когда ошибки зависят только от ошибок предыдущего периода. Применение обычного метода наименьших квадратов в этом случае дает несмещенные и состоятельные оценки параметров, однако можно показать, что оценка дисперсии оказывается смещенной вниз , что может отрицательно сказаться при проверке гипотез о значимости оценок параметров. Образно говоря, МНК рисует более оптимистичную картину, чем есть на самом деле.



Следовательно, последствия автокорреляции состоят в том, что:

- оценка дисперсии при использовании МНК является заниженной .

Большинство тестов на наличие автокорреляции в ошибках модели (наиболее широко используется тест Дарбина-Уотсона ) используют следующую идею: если корреляция есть у ошибок , то она присутствует и в остатках , получаемых после применения к модели обычного метода наименьших квадратов.

То есть, поскольку значения ошибок остаются неизвестными ввиду неизвестности истинных значений параметров модели, то проверяется статистическая независимость их аналогов – отклонений . При этом проверяется обычно их некоррелированность (являющаяся необходимым, но недостаточным атрибутом независимости ), причем некоррелированность не любых, а соседних величин .

- соседние во времени значения (в случае временных рядов);

- соседние по возрастанию переменной Х значения (в случае перекрестных выборок).

Первого порядка ” означает, что остатки зависят только от остатков предыдущего периода.



Практически, однако, используют тесно связанную с статистику Дарбина-Уотсона, обозначаемую как DW-статистика или как d‑статистика , и рассчитываемую по формуле:

. (5.13)

.




Определение автокорреляции Автокорреляция (последовательная корреляция) – это корреляция между наблюдаемыми показателями во времени (временные ряды) или в пространстве (перекрестные данные). Автокорреляция остатков характеризуется тем, что не выполняется предпосылка 3 0 использования МНК:




Причины чистой автокорреляции 1. Инерция. Трансформация, изменение многих экономических показателей обладает инерционностью. 2. Эффект паутины. Многие экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом) 3. Сглаживание данных. Усреднение данных по некоторому продолжительному интервалу времени.














Пример влияния автокорреляции на случайную выборку Рассмотрим выборку из 50 независимых нормально распределенных с нулевым средним значений i. С целью ознакомления с влиянием автокорреляции будем вводить в нее положительную, а затем отрицательную автокорреляцию.


















Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations: 45 ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ АВТОКОРРЕЛЯЦИЯ ПРИМЕР Зависимость расходов на жилье от располагаемого дохода и индекса цен на жилье











Последствия автокорреляции 1. Истинная автокорреляция не приводит к смещению оценок регрессии, но оценки перестают быть эффективными. 2. Автокорреляция (особенно положительная) часто приводит к уменьшению стандартных ошибок коэффициентов, что влечет за собой увеличение t-статистик. 3. Оценка дисперсии остатков S e 2 является смещенной оценкой истинного значения e 2, во многих случаях занижая его. 4. В силу вышесказанного выводы по оценке качества коэффициентов и модели в целом, возможно, будут неверными. Это приводит к ухудшению прогнозных качеств модели.






Автокорреляционная функция AutocorrelationPartial CorrelationAC PAC Q-Stat Prob. |*******. |******* |******|. |. | |******|. |. | |***** |. |. | |***** |. |. | |**** |. |. | |**** |. |. | |*** |. |. | |*** |. |. | |*** |. |. | |** |. |. | |** |. |. | |*. |. |. | |*. |. |. | |. |. |. | |. |. |. | |. |. |. | *|. |. |. | *|. |. |. | *|. |. |. |





Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations: 45 ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ 3 Расходы на жилье в зависимости от доходов и реальных цен














14 Противоположный эффект в 1960 to Расходы на жилье в зависимости от доходов и реальных цен




Критерий знаков Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Приписать каждому остатку знак (+/-) 3.Построить ряд знаков При истинности гипотезы ряд должен носить случайный характер распределения 4.Подсчитать общее количество серий (последовательностей постоянного знака) - (n) 5.Подсчитать длину самой длинной серии - (n) 6.Сравнить полученные значения с критическими


Критерий знаков Проверяемая гипотеза: H0: автокорреляция отсутствует Приблизительный критерий проверки гипотезы на уровне значимости 2,5% 5,0% : При истинности гипотезы должна выполняться система неравенств: подробности см. в учебнике Айвазян, Мхитарян «Прикладная статистика и основы эконометрики»




Критерий восходящих и нисходящих серий Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить разницу между соседними остатками, t =e t+1 -e t 3.Приписать каждой разнице у знак (+/-) 4.Построить ряд знаков При отсутствии автокорреляции ряд должен носить случайный характер 5.Подсчитать общее количество серий (последовательностей постоянного знака) - (n) 6.Подсчитать длину самой длинной серии - (n) 7.Сравнить полученные значения с критическими






Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить следующие статистики: 3.Сравнить полученные значения (n) с критическим – при нулевой гипотезе (n)> * При n> * При n>60 кр"> * При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> * При n>60 кр" title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить следующие статистики: 3.Сравнить полученные значения (n) с критическим – при нулевой гипотезе (n)> * При n>60 кр"> title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует Последовательность проведения критерия 1.Вычислить остатки 2.Вычислить следующие статистики: 3.Сравнить полученные значения (n) с критическим – при нулевой гипотезе (n)> * При n>60 кр">


60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):" title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):" class="link_thumb"> 56 Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона): 60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> 60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> 60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):" title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):"> title="Критерий Аббе Проверяемая гипотеза: H0: автокорреляция отсутствует 3.Сравнить полученные значения с критическими При n>60 критическая точка уровня рассчитывается по формуле (u - критическая точка стандартного нормального закона):">




Тест Дарбина-Уотсона. Ограничения Ограничения: 1. Тест не предназначен для обнаружения других видов автокорреляции (более чем первого) и не обнаруживает ее. 2. В модели должен присутствовать свободный член. 3. Данные должны иметь одинаковую периодичность (недолжно быть пропусков в наблюдениях). 4. Тест не применим к авторегрессионным моделям, содержащих в качестве объясняющей переменной зависимую переменную с единичным лагом:






Критические точки распределения Дарбина-Уотсона Для более точного определения, какое значение DW свидетельствует об отсутствии автокорреляции, а какое – о ее наличии, построена таблица критических точек распределения Дарбина-Уотсона. По этой таблице для заданного уровня значимости, числа наблюдений n и количества объясняющих переменных m определяются два значения: d l – нижняя граница, d u – верхняя граница




Расположение критических точек распределения Дарбина-Уотсона При положительной корреляции: При отрицательной корреляции: При отсутствии корреляции: 24 0 dLdL dUdU d crit Положительная автокорреляция Отрицательная автокорреляция Отсутствие автокорреляции d crit 4-d L 4-d U






Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations: 45 ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ Как и следовало ожидать- имеем положительную автокорреляцию остатков ТЕСТ ДАРБИНА-УОТСОНА ДЛЯ ПРОЦЕССА AR(1) dLdL dUdU (n = 45, k = 3, 1% level)




Устранение автокорреляции первого порядка. Обобщения Рассмотренное авторегрессионное преобразование может быть обобщено на: 1) Произвольное число объясняющих переменных 2) Преобразования более высоких порядков AR(2), AR(3) и т.д.: Однако на практике значения коэффициента автокорреляции обычно неизвестны и его необходимо оценить. Существует несколько методов оценивания.






Итеративная процедура Кохрейна-Оркатта (на примере парной регрессии) 1. Определение уравнения регрессии и вектора остатков: 2. В качестве приближенного значения берется его МНК-оценка: 3. Для найденного * оцениваются коэффициенты 0 1: 4. Подставляем в (*) и вычисляем Возвращаемся к этапу 2. Критерий остановки: разность между текущей и предыдущей оценками * стала меньще заданной точности.


Итеративная процедура Хилдрета-Лу (поиск по сетке) 1. Определение уравнения регрессии и вектора остатков: 2. Оцениваем регрессию для каждого возможного значения [ 1,1] с некоторым достаточно малым шагом, например 0,001; 0,01 и т.д. 3. Величина *, обеспечивающая минимум стандартной ошибки регрессии принимается в качестве оценки автокорреляции остатков.


Итеративные процедуры оценивания коэффициента. Выводы 1. Сходимость процедур достаточно хорошая. 2. Метод Кохрейна-Оркатта может «попасть» в локальный (а не глобальный) минимум. 3. Время работы процедуры Хилдрета-Лу значительно сокращается при наличии априорной информации об области возможных значений. Процедура Дарбина представляет собой традиционный МНК снелинейными ограничениями типа равенств: Способы решения: 1. Решать задачу нелинейного программирования. 2. Двухшаговый МНК Дарбина (полученный коэффициент автокорреляции используется в поправке Прайса-Винстена). 3. Итеративная процедура расчета. Процедура Дарбина (на примере парной регрессии)


Процедура Дарбина Ограничения на коэффициенты записываются в явном виде ============================================================ Dependent Variable: LGHOUS Method: Least Squares Sample(adjusted): LGHOUS=C(1)*(1-C(2))+C(2)*LGHOUS(-1)+C(3)*LGDPI-C(2)*C(3) *LGDPI(-1)+C(4)*LGPRHOUS-C(2)*C(4)*LGPRHOUS(-1) ============================================================ Coefficient Std. Error t-Statistic Prob. ============================================================ C(1) C(2) C(3) C(4) ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat ============================================================


Dependent Variable: LGHOUS Method: Least Squares Sample(adjusted): Included observations: 44 after adjusting endpoints Convergence achieved after 21 iterations ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS AR(1) ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criter Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ Либо в список регрессоров включается авторегриссионный член 1 порядка AR(1) Процедура Дарбина


Dependent Variable: LGHOUS LGHOUS=C(1)*(1-C(2))+C(2)*LGHOUS(-1)+C(3)*LGDPI-C(2)*C(3) *LGDPI(-1)+C(4)*LGPRHOUS-C(2)*C(4)*LGPRHOUS(-1) ============================================================ Coefficient Std. Error t-Statistic Prob. ============================================================ C(1) C(2) C(3) C(4) ============================================================ Variable Coefficient Std. Error t-Statistic Prob. ============================================================ C LGDPI LGPRHOUS AR(1) ============================================================ Процедура Дарбина


Итеративная процедура метода Дарбина 1. Считается регрессия и находятся остатки. 2. По остаткам находят оценку коэффициента автокорреляции остатков. 3. Оценка коэффициента автокорреляции используется для пересчета данных и цикл повторяется. Процесс останавливается, как только обеспечивается достаточная точность (результаты перестают существенно улучшаться).


Обобщенный метод наименьших квадратов. Замечания 1. Значимый коэффициент DW может указывать просто на ошибочную спецификацию. 2. Последствия автокорреляции остатков иногда бывают незначительными. 3. Качество оценок может снизиться из-за уменьшения числа степеней свободы (нужно оценивать дополнительный параметр). 4. Значительно возрастает трудоемкость расчетов. Не следует применять обобщенный МНК автоматически




В силу неизвестности значений параметров регрессии неизвестными будут также и истинные значения отклонений , поэтому выводы об их независимости осуществляются на основе оценок , полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

Графический метод . Существует несколько вариантов графического определения автокорреляции. Один из них состоит в анализе последовательно-временных графиков. По оси абсцисс откладывают время, либо порядковый номер наблюдения, а по оси ординат – отклонения (Рис. 1).

Естественно предположить, что на рис. 1, а - г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. 1, д скорее всего свидетельствует об отсутствии автокорреляции.

Например, на рис. 1, б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости. Более того, можно утверждать, что в этом случае имеет место положительная автокорреляция остатков. Она становится весьма наглядной, если график 1, б дополнить графиком зависимости от (рис. 2).

Подавляющее большинство точек на этом графике расположено в I и III четвертях декартовой системы координат, подтверждая положительную зависимость между соседними отклонениями.

Современные ППП решение задач построения регрессии дополняют графическим представлением результатов: график реальных колебаний зависимой переменной накладывается на график колебаний переменной по уравнению регрессии. Сопоставление этих графиков часто дает возможность выдвинуть гипотезу о наличии автокорреляции.

Метод рядов . Последовательно определяются знаки отклонений . Например,

(-----)(+++++++)(---)(++++)(-), т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называют длиной ряда. Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если рядов слишком много, то вероятна отрицательная автокорреляция. Пусть n – объем выборки, n1 и n2 – общее количество, соответственно, знаков «+» и «-», k – количество рядов.

При достаточно большом количестве наблюдений (n1 > 10,

n2 > 10) и отсутствии автокорреляции случайная величина k имеет асимптотически нормальное распределение с

; .

Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется.

Число определяется по таблице функции стандартного нормального распределения из равенства F() = . Например, при , =1,96 и при , =2,58.

Для небольшого числа наблюдений (n1 < 20, n2 < 20) разработаны таблицы критических значений количества рядов при n наблюдениях. Суть таблиц в следующем.

На пересечении строки n1 и столбца n2 определяются нижнее k1 и верхнее k2 значения при уровне значимости (Рис.3).

автокорреляция > 0 автокорреляция = 0 автокорреляция < 0

Kk1_________k1

Пример 1. Пусть изучается зависимость среднедушевых расходов на конечное потребление y от среднедушевого дохода х по данным некоторой страны за 16 лет.

Исходные (и расчетные для примера 3) данные (усл.ед.) представлены в следующей таблице:

Пусть исходная модель имеет вид: .

По исходным данным с использованием МНК получено следующее оцененное уравнение регрессии:


ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Автокорреляция в остатках обычно встречается при регрессионном анализе временных рядов, и почти не встречается при анализе пространственных выборок. Чаще встречается положительная автокорреляция. Она в большинстве случаев вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. При положительной автокорреляции остатки изменяются монотонно с течением времени наблюдения, а при отрицательной - следует частое изменение знака остатка.

Среди основных причин автокорреляции можно выделить следующие:

а) ошибки спецификации - неучет в модели какой-то важной объясняющей переменной или неверный выбор вида функции, что ведет к систематическим отклонениям точек наблюдения от линии регрессии,

б) инерция - запаздывание реакции экономической системы на изменение факторов,

в) сглаживание данных.

Последствия автокорреляции в остатках такие же, как и в случае гетероскедастичности (потеря эффективности, смещение дисперсий оценок параметров, занижение стандартных ошибок и завышение t -статистик параметров), а это может повлечь признание незначимых факторов значимыми. Вследствие перечисленных обстоятельств, прогнозные качества модели ухудшаются.

При анализе временных рядов вместо индекса i часто будем использовать время t , а вместо числа наблюдений n будем писать - продолжительность интервала наблюдения временного ряда.

Мы будем рассматривать автокорреляцию первого порядка, так как в большинстве практических случаев автокорреляционная функция быстро убывает.

Коэффициент автокорреляции 1-го порядка в остатках:

Если этот коэффициент корреляции существенно отличен от 0, то можно говорить о наличии автокорреляции.

Обнаружение автокорреляции в остатках

1. Графический метод - при использовании этого метода строится график: ε t есть функция от ε t - 1 . Если в графике прослеживается отчетливая положительная или отрицательная тенденция, то, скорее всего, имеет место соответствующая автокорреляция в остатках.

2. Метод рядов

В моменты времени определяются знаки отклонений, например:

- для 20-ти наблюдений.

Рядом называют непрерывную последовательность одинаковых знаков (ряд ограничен скобками, в примере приведено 5 рядов). Количество знаков называют длиной ряда. Если рядов мало по сравнению с числом наблюдений, то вполне вероятна положительная автокорреляция, если рядов много, - то отрицательная.

Для более детального анализа используется следующая процедура:

Пусть - число знаков «+»,

Число знаков «-»,

Количество рядов.


При достаточном количестве наблюдений и при отсутствии автокорреляции в остатках случайная величина имеет асимптотически нормальное распределение со следующими параметрами:

Тогда, если k лежит внутри интервала

то гипотеза об отсутствии автокорреляции не отклоняется; если лежит левее данного интервала, то есть положительная автокорреляция, а если правее - то отрицательная автокорреляция. Здесь γ - уровень значимости гипотезы об отсутствии автокорреляции. Для небольших и существует таблица Сведа-Эйзенхарта, в которой по значениям и находятся и .

Если k 1 < k < k 2 , то автокорреляция отсутствует, если k < k 1 - есть положительная автокорреляция, если k > k 2 - есть отрицательная автокорреляция.

учитывая, что и , получим:

Процедура обнаружения автокорреляции по критерию DW такова:

1. Вычисляется критерий DW , для чего должна быть выполнена регрессия y на x и определены остатки. Затем выдвигается гипотеза об отсутствии автокорреляции в остатках.

2. По таблице критических значений теста Дарбина-Уотсона для назначенного уровня значимости γ , числа наблюдений n и числа факторов p определяются верхняя du и нижняя dl критические точки

3. Строятся области: I-от 0 до dl ; II-от dl до du; III-от du до 4-du ; IV- от 4-ul до 4-dl и V-от 4-dl до 4.

Это поясняется табл. 9.1.

таблица 9.1

При использовании критерия следует учитывать следующие ограничения:

а) он применим лишь для модели с ненулевым свободным членом,

в) временной ряд должен иметь одинаковую периодичность, то есть не должно быть пропусков наблюдений,

Поясним это:

где - коэффициент авторегрессии, - количество наблюдений, - дисперсия коэффициента c 1 в уравнении авторегрессии y t = a + bx t + c 1 y t - 1 +…+ ε t , c 1 - коэффициент при в упомянутом уравнении.

Как использовать h- статистику?

Для назначенного уровня значимости γ выдвигают гипотезу об отсутствии автокорреляции в остатках, т.е. полагают, что в модели AR(1) остатков и статистика h имеет стандартное нормальное распределение: .

По таблице функции Лапласа определяют критическую точку такую, что . Если , то отклоняется. В противном случае не отклоняется и автокорреляция не признается.

Методы устранения автокорреляции

1. Обобщенный МНК (ОМНК)

Рассмотрим исходную модель в моменты времени t и t -1:

Есть случайная величина, так как и - случайные величины,

Так как и .

Остаток не коррелирует ни с одним регрессором, следовательно, можно применить классический МНК. Оценка параметра b вычисляется непосредственно, а оценка параметра a вычисляется так: .

ОМНК может применяться для данных, начиная с момента , т.е. первое наблюдение теряется; его можно восстановить для и , используя поправку Прайса-Уинстена:

Если наше предположение о том, что остатки описанные - моделью первого порядка соответствуют действительности, то можно показать, что .

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека