Распределение пирсона при k равном 19. Критерий согласия пирсона

Задача 1.

Используя критерий Пирсона, при уровне значимости a = 0,05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.

Решение.

1. Вычислим и выборочное среднее квадратическое отклонение .
2. Вычислим теоретические частоты учитывая, что n = 200, h = 2, = 4,695, по формуле
.

Составим расчетную таблицу (значения функции j (x ) приведены в приложении 1).


i

3. Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия :


i
Сумма

По таблице критических точек распределения (приложение 6), по уровню значимости a = 0,05 и числу степеней свободы k = s – 3 = 9 – 3 = 6 находим критическую точку правосторонней критической области (0,05; 6) = 12,6.
Так как =22,2 > = 12,6, гипотезу о нормальном распределении генеральной совокупности отвергаем. Другими словами, эмпирические и теоретические частоты различаются значимо.

Задача2

Представлены статистические данные.

Результаты измерений диаметров n = 200 валков после шлифовки обобщены в табл. (мм):
Таблица Частотный вариационный ряд диаметров валков

i

xi , мм

xi , мм

Требуется:

1) составить дискретный вариационный ряд, при необходимости упорядочив его;

2) определить основные числовые характеристики ряда;

3) дать графическое представление ряда в виде полигона (гистограммы) распределения;

4) построить теоретическую кривую нормального распределения и проверить соответствие эмпирического и теоретического распределений по критерию Пирсона. При проверке статистической гипотезы о виде распределения принять уровень значимости a = 0,05

Решение: Основные числовые характеристики данного вариационного ряда найдем по определению. Средний диаметр валков равен (мм):
x ср = = 6,753;
исправленная дисперсия (мм2):
D = = 0,0009166;
исправленное среднее квадратическое (стандартное) отклонение (мм):
s = = 0,03028.


Рис. Частотное распределение диаметров валков

Исходное («сырое») частотное распределение вариационного ряда, т.е. соответствие ni (xi ), отличается довольное большим разбросом значений ni относительно некоторой гипотетической «усредняющей» кривой (рис.). В этом случае предпочтительно построить и анализировать интервальный вариационный ряд, объединяя частоты для диаметров, попадающих в соответствующие интервалы.
Число интервальных групп K определим по формуле Стерджесса:
K = 1 + log2n = 1 + 3,322lgn ,
где n = 200 – объем выборки. В нашем случае
K = 1 + 3,322×lg200 = 1 + 3,322×2,301 = 8,644 » 8.
Ширина интервала равна (6,83 – 6,68)/8 = 0,01875 » 0,02 мм.
Интервальный вариационный ряд представлен в табл.

Таблица Частотный интервальный вариационный ряд диаметров валков.

k

xk , мм

Интервальный ряд может быть наглядно представлен в виде гистограммы частотного распределения.


Рис . Частотное распределение диаметров валков. Сплошная линия – сглаживающая нормальная кривая.

Вид гистограммы позволяет сделать предположение о том, что распределение диаметров валков подчиняется нормальному закону, согласно которому теоретические частоты могут быть найдены как
nk , теор = n ×N (a ; s; xk )×Dxk ,
где, в свою очередь, сглаживающая гауссова кривая нормального распределения определяется выражением:
N (a ; s; xk ) = .
В этих выражениях xk – центры интервалов в частотном интервальном вариационном ряде.

Например, x 1 = (6,68 + 6,70)/2 = 6,69. В качестве оценок центра a и параметра s гауссовой кривой можно принять:
a = x ср.
Из рис. видно, что гауссова кривая нормального распределения в целом соответствует эмпирическому интервальному распределению. Однако следует удостовериться в статистической значимости этого соответствия. Используем для проверки соответствия эмпирического распределения эмпирическому критерий согласия Пирсона c2 . Для этого следует вычислить эмпирическое значение критерия как сумму
= ,
где nk и nk ,теор – эмпирические и теоретические (нормальные) частоты, соответственно. Результаты расчетов удобно представить в табличном виде:
Таблица Вычисления критерия Пирсона


[xk , xk+ 1), мм

xk , мм

nk ,теор

Критическое значение критерия найдем по таблице Пирсона для уровня значимости a = 0,05 и числа степеней свободы d .f . = K – 1 – r , где K = 8 – число интервалов интервального вариационного ряда; r = 2 – число параметров теоретического распределения, оцененных на основании данных выборки (в данном случае, – параметры a и s). Таким образом, d .f . = 5. Критическое значение критерия Пирсона есть крит(a; d .f .) = 11,1. Так как c2эмп < c2крит, заключаем, что согласие между эмпирическим и теоретическим нормальным распределением является статистическим значимым. Иными словами, теоретическое нормальное распределение удовлетворительно описывает эмпирические данные.

Задача3

Коробки с шоколадом упаковываются автоматически. По схеме собственно-случайной бесповторной выборки взято 130 из 2000 упаковок, содержащихся в партии, и получены следующие данные об их весе:

Требуется используя критерий Пирсона при уровне значимости a=0,05 проверить гипотезу о том, что случайная величина X – вес упаковок – распределена по нормальному закону. Построить на одном графике гистограмму эмпирического распределения и соответствующую нормальную кривую.

Решение

1012,5
= 615,3846

Примечание:

В принципе в качестве дисперсии нормального закона распределения следует взять исправленную выборочную дисперсию. Но т.к. количество наблюдений – 130 достаточно велико, то подойдет и “обычная” .
Таким образом, теоретическое нормальное распределение имеет вид:

Интервал

[xi ; xi+1 ]

Эмпирические частоты

ni

Вероятности
pi

Теоретические частоты
npi

(ni-npi)2

Статистический критерий

Правило, по которому гипотеза Я 0 отвергается или принимается, называется статистическим критерием. В названии критерия, как правило, содержится буква, которой обозначается специально составленная характеристика из п. 2 алгоритма проверки статистической гипотезы (см. п. 4.1), рассчитываемая в критерии. В условиях данного алгоритма критерий назывался бы «в -критерий».

При проверке статистических гипотез возможны два типа ошибок:

  • - ошибка первого рода (можно отвергнуть гипотезу Я 0 , когда она на самом деле верна);
  • - ошибка второго рода (можно принять гипотезу Я 0 , когда она на самом деле не верна).

Вероятность а допустить ошибку первого рода называется уровнем значимости критерия.

Если за р обозначить вероятность допустить ошибку второго рода, то (l - р) - вероятность не допустить ошибку второго рода, которая называется мощностью критерия.

Критерий согласия х 2 Пирсона

Существует несколько типов статистических гипотез:

  • - о законе распределения;
  • - однородности выборок;
  • - численных значениях параметров распределения и т.д.

Мы будем рассматривать гипотезу о законе распределения на примере критерия согласия х 2 Пирсона.

Критерием согласия называют статистический критерий проверки нулевой гипотезы о предполагаемом законе неизвестного распределения.

В основе критерия согласия Пирсона лежит сравнение эмпирических (наблюдаемых) и теоретических частот наблюдений, вычисленных в предположении определенного закона распределения. Гипотеза # 0 здесь формулируется так: по исследуемому признаку генеральная совокупность распределена нормально.

Алгоритм проверки статистической гипотезы # 0 для критерия х 1 Пирсона:

  • 1) выдвигаем гипотезу Я 0 - по исследуемому признаку генеральная совокупность распределена нормально;
  • 2) вычисляем выборочную среднюю и выборочное среднее квадратическое отклонение о в;

3) по имеющейся выборке объема п рассчитываем специально составленную характеристику ,

где: я, - эмпирические частоты, - теоретические частоты,

п - объем выборки,

h - величина интервала (разность между двумя соседними вариантами),

Нормализованные значения наблюдаемого признака,

- табличная функция. Также теоретические частоты

могут быть вычислены с помощью стандартной функции MS Excel НОРМРАСП по формуле ;

4) по выборочному распределению определяем критическое значение специально составленной характеристики xl P

5) при гипотеза # 0 отвергается, при гипотеза # 0 принимается.

Пример. Рассмотрим признак X - величину показателей тестирования осужденных в одной из исправительных колоний по некоторой психологической характеристике, представленный в виде вариационного ряда:

На уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности.

1. На основе эмпирического распределения можно выдвинуть гипотезу Н 0 : по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осу-

жденных распределена нормально. Альтернативная гипотеза 1: по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных не распределена нормально.

2. Вычислим числовые выборочные характеристики:

Интервалы

х г щ

х} щ

3. Вычислим специально составленную характеристику j 2 . Для этого в предпоследнем столбце предыдущей таблицы найдем теоретические частоты по формуле , а в последнем столбце

проведем расчет характеристики % 2 . Получаем х 2 = 0,185.

Для наглядности построим полигон эмпирического распределения и нормальную кривую по теоретическим частотам (рис. 6).

Рис. 6.

4. Определим число степеней свободы s : к = 5, т = 2, s = 5-2-1 = 2.

По таблице или с помощью стандартной функции MS Excel «ХИ20БР» для числа степеней свободы 5 = 2 и уровня значимости а = 0,05 найдем критическое значение критерия xl P . =5,99. Для уровня значимости а = 0,01 критическое значение критерия х%. = 9,2.

5. Наблюдаемое значение критерия х =0,185 меньше всех найденных значений Хк Р.-> поэтому гипотеза Я 0 принимается на обоих уровнях значимости. Расхождение эмпирических и теоретических частот незначимое. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности. Таким образом, по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных распределена нормально.

  • 1. Корячко А.В., Куличенко А.Г. Высшая математика и математические методы в психологии: руководство к практическим занятиям для слушателей психологического факультета. Рязань, 1994.
  • 2. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных: Учеб, пособие. СПб., 2008.
  • 3. Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2010.
  • 4. Сошникова Л.А. и др. Многомерный статистический анализ в экономике: Учеб, пособие для вузов. М., 1999.
  • 5. Суходольский Е.В. Математические методы в психологии. Харьков, 2004.
  • 6. Шмойлова Р.А., Минашкин В.Е., Садовникова Н.А. Практикум по теории статистики: Учеб, пособие. М., 2009.
  • Гмурман В.Е. Теория вероятностей и математическая статистика. С. 465.
Назначение критерия χ 2 - критерия Пирсона Критерий χ 2 применяется в двух целях: 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака. Описание критерия Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ 2 . Автоматический расчет χ 2 - критерия Пирсона Чтобы произвести автоматический расчет χ 2 - критерия Пирсона, необходимо выполнить действия в два шага: Шаг 1 . Указать количество эмпирических распределений (от 1 до 10); Шаг 2 . Занести в таблицу эмпирические частоты; Шаг 3 . Получить ответ.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты).



По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(20.2)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

Критерий согласия для проверки гипотезы о законе распределения исследуемой случайной величины.Во многих практических задачах точный закон распределения неизвестен.Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому.Данная гипотеза требует статистической проверки, по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X – исследуемая случайная величина. Требуется проверить гипотезу H 0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия.Одним из популярных является критерий согласия хи-квадрат К. Пирсона.

В нем вычисляется статистика хи-квадрат:

,

где N – число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i – номер интервала, p t i - вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, p e i – вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H 0 отвергается.В противном случае она принимается на заданном уровне значимости.Здесь k – число наблюдений, p – число оцениваемых параметров закона распределения.

Пирсона позволяет осуществлять проверку эмпирического и теоретического (либо другого эмпирического) распределений одного признака. Данный критерий применяется, в основном, в двух случаях:

Для сопоставления эмпирического распределения признака с теоретическим распределением (нормальным, показательным, равномерным либо каким-то иным законом);

Для сопоставления двух эмпирических распределений одного и того же признака.

Идея метода – определение степени расхождения соответствующих частот n i и ; чем больше это расхождение, тем больше значение

Объемы выборок должны быть не меньше 50 и необходимо равенство сумм частот

Нулевая гипотеза H 0 ={два распределения практически не различаются между собой}; альтернативная гипотеза – H 1 ={расхождение между распределениями существенно}.

Приведем схему применения критерия для сопоставления двух эмпирических распределений:

Критерий - статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.


В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:

§ , гипотеза выполняется.

§ (попадает в левый "хвост" распределения). Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка и гипотеза : выборка распределена равномерно на , тогда генератор нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза выполняется.

§ (попадает в правый "хвост" распределения) гипотеза отвергается.

Определение: пусть дана случайная величина X .

Гипотеза : с. в. X подчиняется закону распределения .

Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X: . По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения (предполагаемого в гипотезе) производится с помощью специально подобранной функции -критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):

Гипотеза : Х n порождается функцией .

Разделим на k непересекающихся интервалов ;

Пусть - количество наблюдений в j-м интервале: ;

Вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;

- ожидаемое число попаданий в j-ый интервал;

Статистика: - Распределение хи-квадрат с k-1 степенью свободы.

Критерий ошибается на выборках с низкочастотными (редкими) событиями.Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями.Этот способ называется коррекцией Йетса (Yates" correction).

Критерий согласия Пирсона (χ 2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

Использование критерия χ 2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) n j для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой n j ≥ 2.

Статистикой критерия Пирсона служит величина
, (3.91)
где p j - вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности p j нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины.Например, при нормальном распределении первый интервал простирается до -∞, а последний - до +∞.

Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ 2 α , найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e 1 - m - 1. Здесь e 1 - число интервалов после объединения; m - число параметров, оцениваемых по рассматриваемой выборке.Если выполняется неравенство
χ 2 ≤ χ 2 α (3.92)
то нулевую гипотезу не отвергают.При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений.В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ 2 другими критериями.Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В таблице приведены критические значения хи-квадрат распределения с заданным числом степеней свободы.Искомое значение находится на пересечении столбца с соответствующим значением вероятности и строки с числом степеней свободы. Например, критическое значение хи-квадрат распределения с 4-мя степенями свободы для вероятности 0.25 составляет 5.38527. Это означает, что площадь под кривой плотности хи-квадрат распределения с 4-мя степенями свободы справа от значения 5.38527 равна 0.25.

Опр Критерий проверки гипотезы о предполагаемом законе неизвестного распределения называется критерием согласия.

Имеется несколько критериев согласия: $\chi ^2$ { хи-квадрат } К. Пирсона, Колмогорова, Смирнова и др.

Обычно теоретические и эмпирические частоты различаются. Случай расхождения может быть не случайным, значит и объясняется тем, что не верно выбрана гипотеза. Критерий Пирсона отвечает на поставленный вопрос, но как любой критерий он ничего не доказывает, а лишь устанавливает на принятом уровне значимости её согласие или несогласие с данными наблюдений.

Опр Достаточно малую вероятность, при которой событие можно считать практически невозможным называют уровнем значимости.

На практике обычно принимают уровни значимости, заключённые между 0,01 и 0,05, $\alpha =0,05$ - это $5 { \% } $ уровень значимости.

В качестве критерия проверки гипотезы примем величину \begin{equation} \label { eq1 } \chi ^2=\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } \qquad (1) \end{equation}

здесь $n_i -$ эмпирические частоты, полученные из выборки, $n_i" -$ теоретические частоты, найденные теоретическим путём.

Доказано, что при $n\to \infty $ закон распределения случайной величины { 1 } независимо от того, по какому закону распределена генеральная совокупность, стремится к закону $\chi ^2$ { хи-квадрат } с $k$ степенями свободы.

Опр Число степеней свободы находят по равенству $k=S-1-r$ где $S-$ число групп интервалов, $r-$ число параметров.

1) равномерное распределение: $r=2, k=S-3 $

2) нормальное распределение: $r=2, k=S-3 $

3) показательное распределение: $r=1, k=S-2$.

Правило . Проверка гипотезы по критерию Пирсона.

  1. Для проверки гипотезы вычисляют теоретические частоты и находят $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $
  2. По таблице критических точек распределения $\chi ^2$ по заданному уровню значимости $\alpha $ и числу степеней свободы $k$ находят $\chi _ { кр } ^2 ({ \alpha ,k })$.
  3. Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 $ то нет оснований отвергать гипотезу, если не выполняется данное условие - то отвергают.

Замечание Для контроля вычислений применяют формулу для $\chi ^2$ в виде $\chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } $

Проверка гипотезы о равномерном распределении

Функция плотности равномерного распределения величины $X$ имеет вид $f(x)=\frac { 1 } { b-a } x\in \left[ { a,b }\right]$.

Для того, чтобы при уровне значимости $\alpha $ проверить гипотезу о том, что непрерывная случайная величина распределена по равномерному закону, требуется:

1) Найти по заданному эмпирическому распределению выборочное среднее $\overline { x_b } $ и $\sigma _b =\sqrt { D_b } $. Принять в качестве оценки параметров $a$ и $b$ величины

$a = \overline x _b -\sqrt 3 \sigma _b $, $b = \overline x _b +\sqrt 3 \sigma _b $

2) Найти вероятность попадания случайной величины $X$ в частичные интервалы $({ x_i ,x_ { i+1 } })$ по формуле $ P_i =P({ x_i

3) Найти теоретические { выравнивающие } частоты по формуле $n_i" =np_i $.

4) Приняв число степеней свободы $k=S-3$ и уровень значимости $\alpha =0,05$ по таблицам $\chi ^2$ найдём $\chi _ { кр } ^2 $ по заданным $\alpha $ и $k$, $\chi _ { кр } ^2 ({ \alpha ,k })$.

5) По формуле $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ где $n_i -$ эмпирические частоты, находим наблюдаемое значение $\chi _ { набл } ^2 $.

6) Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 -$ нет оснований, отвергать гипотезу.

Проверим гипотезу на нашем примере.

1) $\overline x _b =13,00\,\,\sigma _b =\sqrt { D_b } = 6,51$

2) $a=13,00-\sqrt 3 \cdot 6,51=13,00-1,732\cdot 6,51=1,72468$

$b=13,00+1,732\cdot 6,51=24,27532$

$b-a=24,27532-1,72468=22,55064$

3) $P_i =P({ x_i

$ P_2 =({ 3

$ P_3 =({ 7

$ P_4 =({ 11

$ P_5 =({ 15

$ P_6 =({ 19

В равномерном распределении если одинакова длина интервала, то $P_i -$ одинаковы.

4) Найдём $n_i" =np_i $.

5) Найдём $\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ и найдём $\chi _ { набл } ^2 $.

Занесём все полученные значения в таблицу

\begin{array} { |l|l|l|l|l|l|l| } \hline i& n_i & n_i" =np_i & n_i -n_i" & ({ n_i -n_i" })^2& \frac { ({ n_i -n_i" })^2 } { n_i" } & Контроль~ \frac { n_i^2 } { n_i" } \\ \hline 1& 1& 4,43438& -3.43438& 11,7950& 2,659898& 0,22551 \\ \hline 2& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 3& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 4& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 5& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 6& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline & & & & & \sum = \chi _ { набл } ^2 =3,261119& \chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } =3,63985 \\ \hline \end{array}

$\chi _ { кр } ^2 ({ 0,05,3 })=7,8$

$\chi _ { набл } ^2 <\chi _ { кр } ^2 =3,26<7,8$

Вывод отвергать гипотезу нет оснований.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека