Множественная регрессия.

Цель : научиться определению параметров уравнения множественной линейной регрессии методом наименьших квадратов и проведению анализа построенного уравнения.

Методические указания

В этой главе важно абсолютно все. Перед изучением необходимо повторить следующий материал из матричного анализа: умножение матриц, обратная матрица, решение системы линейных уравнений методом обратной матрицы. В этой главе все, что относится к парной линейной регрессии, обобщается на множественную линейную модель. В первой главе приведены функции программы Microsoft Office Excel, позволяющие проводить операции с матрицами. Обратите внимание, что по сравнению с предыдущей главой для определения социально-экономического смысла коэффициентов при объясняющих переменных важно отсутствие мультиколлинеарности (сильной линейной взаимосвязи) этих переменных. Запомните, что формула для расчета коэффициентов уравнения также следует из применения метода наименьших квадратов. Следует изучить рассмотренный ниже пример. Обратите внимание на взаимосвязь модели в исходных и в стандартизованных переменных.

§ 1. Определение параметров уравнения регрессии

На любой экономический показатель чаще всего оказывают влияние не один, а несколько факторов. В этом случае вместо парной рег-

рессии M(Y x) = f(x) рассматривается множественнаярегрессия:

x1 ,x2 ,...,xm ) = f(x1 ,x2 ,...,xm ) .

Задача оценки статистической взаимосвязи

переменных

Y иX = (X 1 , X 2 , ..., X m ) формулируется аналогично

случаю пар-

ной регрессии. Уравнение множественной регрессииможет быть представлено в виде:

Y = f(β ,X) +ε ,

где Y иX = (X 1 , X 2 , ..., X m ) - вектор независимых (объясняющих) переменных;β= (β 0 , β 1 , β 2 ,..., β m ) - вектор параметров

(подлежащих определению); ε - случайная ошибка (отклонение);Y - зависимая (объясняемая) переменная. Предполагается, что для данной генеральной совокупности именно функцияf связывает исследуемую переменнуюY с вектором независимых переменных

Y и X= (X1 , X2 , ..., Xm ) .

Рассмотрим самую употребляемую и наиболее простую из моделей множественной регрессии - модель множественной линейной регрессии.

Теоретическое линейное уравнение регрессии имеет вид:

Здесь β= (β 0 , β 1 , β 2 ,..., β m ) - вектор размерности (т +1) неизвестных параметров.β j , j = (1, 2, ..., m ) называется j -м теоретиче-

ским коэффициентом регрессии (частным коэффициентом регрессии). Он характеризует чувствительность величины Y к изменениюX j . Другими словами, он отражает влияние на условное математи-

ческое ожидание M (Y x 1 ,x 2 ,...,x m ) зависимой переменнойY объяс-

няющей переменной X j при условии, что все другие объясняющие переменные модели остаются постоянными,β 0 -свободный член ,

определяющий значение Y в случае, когда все объясняющие переменныеX j равны нулю.

После выбора линейной функции в качестве модели зависимости необходимо оценить параметры регрессии.

Пусть имеется n наблюдений вектора объясняющих переменныхX = (X 1 , X 2 , ...,X m ) и зависимой переменнойY :

{ xi 1 , xi 2 , ..., xim , yi } , i= 1 ,2 , ..., n.

Для того чтобы однозначно можно было решить задачу отыскания параметров β 0 , β 1 , β 2 ,..., β m , должно выполняться неравенство

n ≥ m + 1 . Еслиn = m + 1, то оценки коэффициентов вектораβ

рассчитываются единственным образом.

Если число наблюдений больше минимально необходимого: n > m + 1 , то возникает необходимость оптимизации, оценивания

параметров β 0 , β 1 , β 2 ,..., β m , при которых формула дает наилучшее

приближение для имеющихся наблюдений.

В данном случае число ν= n − m − 1 называетсячислом степеней свободы . Самым распространенным методом оценки параметров уравнения множественной линейной регрессии являетсяметод наименьших квадратов (МНК). Напомним, что его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений

зависимой переменной Y от ее значенийY , получаемых по уравнению регрессии.

Отметим, что изложенные ранее предпосылки МНК, позволяют проводить анализ в рамках классической линейной регрессионной модели.

Как и в случае парной регрессии, истинные значения параметров β j по выборке получить невозможно. В этом случае вместо

теоретического уравнения регрессии (3.3) оценивается так назы-

ваемое эмпирическое уравнение регрессии:

Y = b0 + b1 X1 + b2 X2 + ...+ bm Xm + e.

b 0 , b 1 , ..., b m - оценки теоретических

значений

β 0 ,β 1 , ...,β m

коэффициентов регрессии (эмпирические коэффици-

енты регрессии, e - оценка случайного отклоненияε ). Для индивидуальных наблюдений имеем:

yi = b0 + b1 xi 1 + b2 xi 2 + ...+ bm xim + ei ,(i= 1 ,2 , ..., n) (3.6)

Оцененное уравнение в первую очередь должно описывать общий тренд (направление) изменения зависимой переменной Y . При этом необходимо иметь возможность рассчитать отклонения от указанного тренда.

По данным выборки объема n:(xi 1 , xi 2 , ..., xim , yi ) , i= 1 ,2 , ..., n

требуется оценить значения параметров β j вектораβ , т. е. провести параметризацию выбранной модели (здесьx ij , j = 1, 2, ..., m

значение переменной X j в i -м наблюдении).

При выполнении предпосылок МНК относительно случайных отклонений ε i , оценкиb 0 , b 1 , ..., b m параметровβ 0 , β 1 , ..., β m множе-

ственной линейной регрессии по МНК являются несмещенными, эффективными и состоятельными.

На основании (3.6) отклонение e i значенияy i зависимой переменной от модельного значенияˆy i , соответствующего уравнению рег- рессиивi -мнаблюдении i = 1, 2, ..., n , рассчитываетсяпоформуле:

ei = yi − ˆyi = yi − b0 − b1 xi 1 − b2 xi 2 − ...− bm xim . (3.7)

§ 2. Расчет коэффициентов множественной линейной регрессии

Представим данные наблюдений и соответствующие коэффициенты в матричной форме.

xn 1

xn 2

X1 m

X2 m

Здесь Y - n -мерный вектор-столбец наблюдений зависимой переменнойY ;X - матрица размерностиn × (m + 1) , в которой i-я строкаi = 1, 2, ..., n представляет i -е наблюдение вектора значений независимых переменныхX 1 ,X 2 , ...,X m , единица соответствует переменной при свободном членеb 0 ;B - вектор-столбец размер-

ности (m + 1) параметров уравнения регрессии (3.5);e - векторстолбец размерностиn отклонений выборочных (реальных) значенийy i зависимой переменной от значенийˆy i , получаемых по

уравнению регрессии:

i= 1

где e T = (e 1 , e 2 , ..., e n ) , т. е. надстрочный значокT означает транс-

понированную матрицу.

Можно показать, что условие (3.10) выполняется, если векторстолбец коэффициентов B найти по формуле:

B = (XT X) − 1 XT Y.

Здесь X T - матрица, транспонированная к матрицеX ,

(X T X ) − 1 - матрица, обратная к(X T X ) . Соотношение (3.11)

справедливо для уравнений регрессии с произвольным количеством m объясняющих переменных.

Пример 3.1. Пусть объем предложения некоторого благаY фирмы линейно зависит от ценыX 1 и заработнойX 2 сотрудников, производящих данное благо (табл. 3.1). Определим коэффициенты уравнения линейной регрессии. (Здесь предполагается знание матричной алгебры).

Таблица 3.1

Данные для множественной линейной регрессии

Матрицы имеют вид:

X T X= 318

7, 310816

− 0, 10049

− 0, 53537

−1

0, 001593

, (XT X)

= − 0, 10049

− 0, 006644,

− 0, 53537

− 0, 006644

0, 043213

X T Y = 23818,

Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. В связи с этим часто возникает задача исследования зависимости переменной у от нескольких объясняющих переменных (х 1, х 2 ,…, х k) которая может быть решена с помощью множественного корреляционно-регрессионного анализа.

При исследовании зависимости методами множественной регрессии задача формируется так же, как и при использовании парной регрессии, т.е. требуется определить аналитическое выражение формы связи между результативным признаком у и факторными признаками х, х 2 , ..., х k , найти функцию , где k – число факторных признаков

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Из-за особенностей метода наименьших квадратов во множественной регрессии, как и в парной, применяются только линейные уравнения и уравнения, приводимые к линейному виду путем преобразования переменных. Чаще всего используется линейное уравнение, которое можно записать следующим образом:

a 0 , a 1, …, a k – параметры модели (коэффициенты регрессии);

ε j – случайная величина (величина остатка).

Коэффициент регрессии а j показывает, на какую величину в среднем изменится результативный признак у, если переменную х j увеличить на единицу измерения при фиксированном (постоянном) значении других факторов, входящих в уравнение регрессии. Параметры при x называются коэффициентами «чистой» регрессии .

Пример.

Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

y – расходы семьи за месяц на продукты питания, тыс. руб.;

x 1 – месячный доход на одного члена семьи, тыс. руб.;

x 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Первый параметр не подлежит экономической интерпретации.

Оценивание достоверности каждого из параметров модели осуществляется при помощи t-критерия Стьюдента. Для любого из параметров модели а j значение t-критерия рассчитывается по формуле , где


S ε – стандартное (среднее квадратическое) отклонение уравнения регрессии)

определяется по формуле

Коэффициент регрессии а j считается достаточно надежным, если расчетное значение t- критерия с (n - k - 1 ) степенями свободы превышает табличное, т.е. t расч > t а jn - k -1 . Если надеж­ность коэффициента регрессии не подтверждается, то следует; вывод о несущественности в модели факторного j признака и необходимости его устранения из модели или замены на другой факторный признак.

Важную роль при оценке влияния факторов играют коэффициенты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставлять факторные признаки по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени колеблемости. Для устранения таких различий применяются частные коэффициенты эластичности Э j и бета-коэффициенты β j .

Формула для расчета коэффициента эластичности

где

a j – коэффициент регрессии фактора j ,

Среднее значение результативного признака

Среднее значение признака j

Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная у при изменении фактора j на 1 %.

Формула определения бета - коэффициента.

, где

S xj – среднее квадратическое отклонение фактора j ;

S y - среднее квадратическое отклонение фактора y.

β - коэффициент показывает, на какую часть величины среднего квадратического отклонения S y из­менится зависимая переменная у с изменением со­ответствующей независимой переменной х j на величину своего среднего квадратического отклонения при фиксированном значении остальных неза­висимых переменных.

Долю влияния определенного фактора в суммарном влиянии всех факторов можно оценить по величине дельта-коэффициентов Δ j .

Указанные коэффициенты позволяют проранжировать факторы по степени влияния факторов на зависимую переменную.

Формула определения дельта - коэффициента.

r yj – коэффициент парной корреляции между фактором j и зависимой переменной;

R 2 – множественный коэффициент детерминации.

Коэффициент множественной детерминации используют для оценки качества множественных регрессионных моделей.

Формула определения коэффициента множественной детерминации.

Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием факторных признаков, т.е. опре­деляет, какая доля вариации признака у учтена в модели и обусловлена влиянием на него факторов, включенных в модель. Чем ближе R 2 к единице, тем выше качество модели

При добавлении независимых переменных значение R 2 уве­личивается, поэтому коэффициент R 2 должен быть скорректи­рован с учетом числа независимых переменных по формуле

Для проверки значимости модели регрессии используется F-критерий Фишера. Он определяется по формуле

Если расчетное значение критерия с γ 1 , = k и γ 2 = (n - k- 1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

В качестве меры точностимодели применяют стандартную ошибку, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n - k -1):

Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК) . Система нормальных уравнений имеет вид:

Решение системы может быть осуществлено по одному из известных способов: Метод Гаусса, метод Крамера и т.д.

Пример15.

По четырем предприятиям региона (таблица 41) изучается зависимость выработки продукции на одного работника y (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%). Требуется написать уравнение множественной регрессии.

Таблица 41 – Зависимость выработки продукции на одного работника

Суть регрессионного анализа : построение математической модели и определение ее статистической надежности.

Вид множественной линейной модели регрессионного анализа: Y = b 0 + b 1 x i1 + ... + b j x ij + ... + b k x ik + e i где e i - случайные ошибки наблюдения, независимые между собой, имеют нулевую среднюю и дисперсию s .

Назначение множественной регрессии : анализ связи между несколькими независимыми переменными и зависимой переменной.

Экономический смысл параметров множественной регрессии
Коэффициент множественной регрессии b j показывает, на какую величину в среднем изменится результативный признак Y , если переменную X j увеличить на единицу измерения, т. е. является нормативным коэффициентом.

Матричная запись множественной линейной модели регрессионного анализа: Y = Xb + e где Y (n x 1) наблюдаемых значений результативного признака (y 1 , y 2 ,..., y n );
X - матрица размерности [n x (k+1) ] наблюдаемых значений аргументов;
b - вектор - столбец размерности [(k+1) x 1 ] неизвестных, подлежащих оценке параметров (коэффициентов регрессии) модели;
e - случайный вектор - столбец размерности (n x 1) ошибок наблюдений (остатков).

Задачи регрессионного анализа
Основная задача регрессионного анализа заключается в нахождении по выборке объемом n оценки неизвестных коэффициентов регрессии b 0 , b 1 ,..., b k . Задачи регрессионного анализа состоят в том, чтобы по имеющимся статистическим данным для переменных X i и Y :

  • получить наилучшие оценки неизвестных параметров b 0 , b 1 ,..., b k ;
  • проверить статистические гипотезы о параметрах модели;
  • проверить, достаточно ли хорошо модель согласуется со статистическими данными (адекватность модели данным наблюдений).

Построение моделей множественной регрессии состоит из следующих этапов:

  1. выбор формы связи (уравнения регрессии);
  2. определение параметров выбранного уравнения;
  3. анализ качества уравнения и поверка адекватности уравнения эмпирическим данным, совершенствование уравнения.
  • Множественная регрессия с одной переменной
  • Множественная регрессия с тремя переменными

Инструкция . Укажите количество данных (количество строк), количество переменных x нажмите Далее.

Количество факторов (x) 1 2 3 4 5 6 7 8 9 10 Количество строк
.");">

Пример решения нахождения модели множественной регрессии

Множественная регрессия с двумя переменными

Модель множественной регрессии вида Y = b 0 +b 1 X 1 + b 2 X 2 ;
1) Найтинеизвестные b 0 , b 1 ,b 2 можно, решим систему трехлинейных уравнений с тремя неизвестными b 0 ,b 1 ,b 2:

Для решения системы можете воспользоваться
2) Или использовав формулы


Для этого строим таблицу вида:

Y x 1 x 2 (y-y ср) 2 (x 1 -x 1ср) 2 (x 2 -x 2ср) 2 (y-y ср)(x 1 -x 1ср) (y-y ср)(x 2 -x 2ср) (x 1 -x 1ср)(x 2 -x 2ср)

Выборочные дисперсии эмпирических коэффициентов множественной регрессии можно определить следующим образом:

Здесь z" jj - j-тый диагональный элемент матрицы Z -1 =(X T X) -1 .

Приэтом:

где m - количество объясняющихпеременных модели.
В частности, для уравнения множественной регрессии Y = b 0 + b 1 X 1 + b 2 X 2 с двумя объясняющими переменными используются следующие формулы:


Или

или
,,.
Здесьr 12 - выборочный коэффициент корреляции между объясняющимипеременными X 1 и X 2 ; Sb j - стандартная ошибкакоэффициента регрессии; S - стандартная ошибка множественной регрессии (несмещенная оценка).
По аналогии с парной регрессией после определения точечных оценокb j коэффициентов β j (j=1,2,…,m) теоретического уравнения множественной регрессии могут быть рассчитаны интервальные оценки указанных коэффициентов.

Доверительный интервал, накрывающий с надежностью (1-α ) неизвестное значение параметра β j, определяется как

Множественная регрессия в Excel

Чтобы найти параметры множественной регресии средствами Excel, используется функция ЛИНЕЙН(Y;X;0;1),
где Y - массив для значений Y
где X - массив для значений X (указывается как единый массив для всех значений Х i)

Проверка статистической значимости коэффициентов уравнения множественной регрессии

Как и в случае множественной регрессии, статистическая значимость коэффициентовмножественной регрессии с m объясняющими переменными проверяется на основе t-статистики:

имеющей в данном случае распределение Стьюдента с числом степеней свободы v = n- m-1. При требуемом уровне значимости наблюдаемое значение t-статистики сравнивается с критической точной распределения Стьюдента.
В случае, если , то статистическая значимость соответствующего коэффициента множественной регрессии подтверждается. Это означает, что фактор Xj линейно связан с зависимой переменной Y. Если же установлен факт незначимости коэффициента b j , то рекомендуется исключить из уравнения переменную Xj. Это не приведет к существенной потере качества модели, но сделает ее более конкретной.

Для этой цели, как и в случае множественной регрессии, используется коэффициентдетерминации R 2:

Справедливо соотношение 0<=R2<=1. Чем ближе этот коэффициент к единице, тем больше уравнение множественной регрессии объясняет поведение Y.
Длямножественной регрессии коэффициент детерминации является неубывающей функциейчисла объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R 2 , так как каждая последующая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведение зависимой переменной.

Соотношение может быть представлено вследующем виде:

для m>1. С ростом значения m


Показатели F и R2 равны или не равен нулю одновременно. Если F=0, то R 2 =0, следовательно, величина Y линейно не зависит от X1,X2,…,Xm..Расчетное значение F сравнивается с критическим Fкр. Fкр, исходя из требуемого уровня значимости α и чисел степеней свободы v1 = m и v2 = n - m - 1, определяется на основе распределения Фишера. Если F>Fкр, то R 2 статистически значим.

Проверка выполнимости предпосылок МНК множественной регрессии. Статистика Дарбина-Уотсона для множественной регрессии

Статистическая значимость коэффициентов множественной регрессии и близкое к единице значение коэффициента детерминации R 2 не гарантируют высокое качество уравнения множественной регрессии. Поэтому следующим этапом проверки качества уравнения множественной регрессии является проверка выполнимости предпосылок МНК. Причины и последствия невыполнимости этих предпосылок, методы корректировки регрессионных моделей будут рассмотрены в последующих главах. В данном параграфе рассмотрим популярную в регрессионном анализе статистику Дарбина-Уотсона.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой.

При этом проверяется некоррелированность соседних величин e i ,i=1,2,…n..
Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:

Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α , числа наблюдений n и количества объясняющих переменных m .

Частные коэффициенты корреляции при множественной регрессии

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора х i при неизменном уровне других факторов определяются по стандартной формуле линейного коэффициента корреляции, т.е. последовательно беруться пары yx 1 ,yx 2 ,... , x 1 x 2 , x 1 x 3 и так далее и для каждой пары находится коэффициент корреляции
Вычисления в MS Excel . Матрицу парных коэффициентов корреляции переменных можно рассчитать, используя инструмент анализа данных Корреляция. Для этого:
1) Выполнить команду Сервис / Анализ данных / Корреляция .
2) Указать диапозон данных;

Проверка общего качества уравнения множественной регрессии

Для этой цели, как и в случае множественной регрессии, используется коэффициентдетерминации R 2 :

Справедливо соотношение 0 < =R 2 < = 1 . Чем ближе этот коэффициент к единице, тем больше уравнение множественной регрессии объясняет поведение Y .
Для множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R 2 , так как каждая последующая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведениезависимой переменной.
Иногда при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе вычитаемой из единицы дроби делается поправка на число степеней свободы, т.е. вводится так называемый скорректированный (исправленный) коэффициент детерминации:

Соотношение может быть представлено в следующем виде:

для m>1. С ростом значения mскорректированный коэффициент детерминации растет медленнее, чем обычный.Очевидно, что только при R 2 = 1. может принимать отрицательные значения.
Доказано, что увеличивается при добавлении новой объясняющей переменной тогда и только тогда, когда t-статистика для этой переменной по модулю больше единицы. Поэтому добавление в модель новых объясняющих переменных осуществляется до тех пор, пока растет скорректированный коэффициент детерминации.
Рекомендуется после проверки общего качества уравнения регрессии провести анализ его статистической значимости. Для этого используется F-статистика:
Показатели F и R 2 равны или не равен нулю одновременно. Если F=0 , то R 2 =0, следовательно, величина Y линейно не зависит от X 1 ,X 2 ,…,X m .Расчетное значение F сравнивается с критическим Fкр. Fкр , исходя из требуемого уровня значимости α и чисел степеней свободы v 1 = m и v 2 = n - m - 1 , определяется на основе распределения Фишера. Если F > Fкр , то R 2 статистически значим.

Задачей множественной линейной регрессии является построение линейной модели связи между набором непрерывных предикторов и непрерывной зависимой переменной. Часто используется следующее регрессионное уравнение:

Здесь а i - регрессионные коэффициенты, b 0 - свободный член(если он используется), е - член, содержащий ошибку - по поводу него делаются различные предположения, которые, однако, чаще сводятся к нормальности распределения с нулевым вектором мат. ожидания и корреляционной матрицей .

Такой линейной моделью хорошо описываются многие задачи в различных предметных областях, например, экономике, промышленности, медицине. Это происходит потому, что некоторые задачи линейны по своей природе.

Приведем простой пример. Пусть требуется предсказать стоимость прокладки дороги по известным ее параметрам. При этом у нас есть данные о уже проложенных дорогах с указанием протяженности, глубины обсыпки, количества рабочего материала, числе рабочих и так далее.

Ясно, что стоимость дороги в итоге станет равной сумме стоимостей всех этих факторов в отдельности. Потребуется некоторое количество, например, щебня, с известной стоимостью за тонну, некоторое количество асфальта также с известной стоимостью.

Возможно, для прокладки придется вырубать лес, что также приведет к дополнительным затратам. Все это вместе даст стоимость создания дороги.

При этом в модель войдет свободный член, который, например, будет отвечать за организационные расходы (которые примерно одинаковы для всех строительно-монтажных работ данного уровня) или налоговые отчисления.

Ошибка будет включать в себя факторы, которые мы не учли при построении модели (например, погоду при строительстве - ее вообще учесть невозможно).

Пример: множественный регрессионный анализ

Для этого примера будут анализироваться несколько возможных корреляций уровня бедности и степень, которая предсказывает процент семей, находящихся за чертой бедности. Следовательно мы будем считать переменную характерезующую процент семей, находящихся за чертой бедности, - зависимой переменной, а остальные переменные непрерывными предикторами.

Коэффициенты регрессии

Чтобы узнать, какая из независимых переменных делает больший вклад в предсказание уровня бедности, изучим стандартизованные коэффициенты (или Бета) регрессии.

Рис. 1. Оценки параметров коэффициентов регрессии.

Коэффициенты Бета это коэффициенты, которые вы бы получили, если бы привели все переменные к среднему 0 и стандартному отклонению 1. Следовательно величина этих Бета коэффициентов позволяет сравнивать относительный вклад каждой независимой переменной в зависимую переменную. Как видно из Таблицы, показанной выше, переменные изменения населения с 1960 года (POP_ CHING), процент населения, проживающего в деревне (PT_RURAL) и число людей, занятых в сельском хозяйстве (N_Empld) являются самыми главными предикторами уровня бедности, т.к. только они статистически значимы (их 95% доверительный интервал не включает в себя 0). Коэффициент регрессии изменения населения с 1960 года (Pop_Chng) отрицательный, следовательно, чем меньше возрастает численность населения, тем больше семей, которые живут за чертой бедности в соответствующем округе. Коэффициент регрессии для населения (%), проживающего в деревне (Pt_Rural) положительный, т.е., чем больше процент сельских жителей, тем больше уровень бедности.

Значимость эффектов предиктора

Просмотрим Таблицу с критериями значимости.

Рис. 2. Одновременные результаты для каждой заданной переменной.

Как показывает эта Таблица, статистически значимы только эффекты 2 переменных: изменение населения с 1960 года (Pop_Chng) и процент населения, проживающего в деревне (Pt_Rural), p < .05.

Анализ остатков. После подгонки уравнения регрессии, почти всегда нужно проверять предсказанные значения и остатки. Например, большие выбросы могут сильно исказить результаты и привести к ошибочным выводам.

Построчный график выбросов

Обычно необходимо проверять исходные или стандартизованные остатки на большие выбросы.

Рис. 3. Номера наблюдений и остатки.

Шкала вертикальной оси этого графика отложена по величине сигма, т.е., стандартного отклонения остатков. Если одно или несколько наблюдений не попадают в интервал ± 3 умноженное на сигма, то, возможно, стоит исключить эти наблюдения (это можно легко сделать через условия выбора наблюдений) и еще раз запустить анализ, чтобы убедится, что результаты не изменяются этими выбросами.

Расстояния Махаланобиса

Большинство статистических учебников уделяют много времени выбросам и остаткам относительно зависимой переменной. Тем не менее роль выбросов в предикторах часто остается не выявленной. На стороне переменной предиктора имеется список переменных, которые участвуют с различными весами (коэффициенты регрессии) в предсказании зависимой переменной. Можно считать независимые переменные многомерным пространством, в котором можно отложить любое наблюдение. Например, если у вас есть две независимых переменных с равными коэффициентами регрессии, то можно было бы построить диаграмму рассеяния этих двух переменных и поместить каждое наблюдение на этот график. Потом можно было отметить на этом графике среднее значение и вычислить расстояния от каждого наблюдения до этого среднего (так называемый центр тяжести) в двумерном пространстве. В этом и заключается основная идея вычисления расстояния Махаланобиса . Теперь посмотрим на гистограмму переменной изменения населения с 1960 года.

Рис. 4. Гистограмма распределения расстояний Махаланобиса.

Из графика следует, что есть один выброс на расстояниях Махаланобиса.

Рис. 5. Наблюдаемые, предсказанные и значения остатков.

Обратите внимание на то, что округ Shelby (в первой строке) выделяется на фоне остальных округов. Если посмотреть на исходные данные, то вы обнаружите, что в действительности округ Shelby имеет самое большое число людей, занятых в сельском хозяйстве (переменная N_Empld). Возможно, было бы разумным выразить в процентах, а не в абсолютных числах, и в этом случае расстояние Махаланобиса округа Shelby, вероятно, не будет таким большим на фоне других округов. Очевидно, что округ Shelby является выбросом .

Удаленные остатки

Другой очень важной статистикой, которая позволяет оценить серьезность проблемы выбросов, являются удаленные остатки . Это стандартизованные остатки для соответствующих наблюдений, которые получаются при удалении этого наблюдения из анализа. Помните, что процедура множественной регрессии подгоняет поверхность регрессии таким образом, чтобы показать взаимосвязь между зависимой и переменной и предиктором. Если одно наблюдение является выбросом (как округ Shelby), то существует тенденция к "оттягиванию" поверхности регрессии к этому выбросу. В результате, если соответствующее наблюдение удалить, будет получена другая поверхность (и Бета коэффициенты). Следовательно, если удаленные остатки очень сильно отличаются от стандартизованных остатков, то у вас будет повод считать, что регрессионный анализа серьезно искажен соответствующим наблюдением. В этом примере удаленные остатки для округа Shelby показывают, что это выброс, который серьезно искажает анализ. На диаграмме рассеяния явно виден выброс.

Рис. 6. Исходные остатки и Удаленные остатки переменной, означающей процент семей, проживающих ниже прожиточного минимума.

Большинство из них имеет более или менее ясные интерпретации, тем не менее обратимся к нормальным вероятностным графикам.

Как уже было упомянуто, множественная регрессия предполагает, что существует линейная взаимосвязь между переменными в уравнении и нормальное распределение остатков. Если эти предположения нарушены, то вывод может оказаться неточным. Нормальный вероятностный график остатков укажет вам, имеются ли серьезные нарушения этих предположений или нет.

Рис. 7. Нормальный вероятностный график; Исходные остатки.

Этот график был построен следующим образом. Вначале стандартизованные остатки ранжируюся по порядку. По этим рангам можно вычислить z значения (т.е. стандартные значения нормального распределения) на основе предположения, что данные подчиняются нормальному распределению. Эти z значения откладываются по оси y на графике.

Если наблюдаемые остатки (откладываемые по оси x) нормально распределены, то все значения легли бы на прямую линию на графике. На нашем графике все точки лежат очень близко относительно кривой. Если остатки не являются нормально распределенными, то они отклоняются от этой линии. Выбросы также становятся заметными на этом графике.

Если имеется потеря согласия и кажется, что данные образуют явную кривую (например, в форме буквы S) относительно линии, то зависимую переменную можно преобразовать некоторым способом (например, логарифмическое преобразование для "уменьшения" хвоста распределения и т.д.). Обсуждение этого метода находится за пределами этого примера (Neter, Wasserman, и Kutner, 1985, pp. 134-141, представлено обсуждение преобразований, убирающих ненормальность и нелинейность данных). Однако исследователи очень часто просто проводят анализ напрямую без проверки соответствующих предположений, что ведет к ошибочным выводам.

1. Основные определения и формулы

Множественная регрессия - регрессия между переменными и т.е. модель вида:

где - зависимая переменная (результативный признак);

- независимые объясняющие переменные;

Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов;

Число параметров при переменных

Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Уравнение множественной линейной регрессии в случае независимых переменных имеет вид а в случае двух независимых переменных - (двухфакторное уравнение).

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов . Строится система нормальных уравнений:

Решение этой системы позволяет получить оценки параметров регрессии с помощью метода определителей

где - определитель системы;

- частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными правой части системы.

Для двухфакторного уравнения коэффициенты множественной линейной регрессии можно вычислить по формулам:

Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности :

Средние коэффициентами эластичности показывают на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%:

Их можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

Тесноту совместного влияния факторов на результат оценивает коэффиц и ент (индекс) множественной корреляции :

Величина индекса множественной корреляции лежит в пределах от 0 до 1 и должна быть больше или равна максимальному парному индексу корреляции:

Чем ближе значение индекса множественной корреляции к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности (величина индекса множественной корреляции существенно отличается от индекса парной корреляции) включения в уравнение регрессии того или иного фактора.

При линейной зависимости совокупный коэффициент множественной ко р реляции определяется через матрицу парных коэффициентов корреляции:

где - определитель матрицы парных коэффициентов корреляции;

- определитель матрицы межфакторной корреляции.

Частны е коэффициент ы корреляции характеризуют тесноту линейной зависимости между результатом и соответствующим фактором при устранении влияния других факторов. Если вычисляется, например, (частный коэффициент корреляции между и при фиксированном влиянии ), это означает, что определяется количественная мера линейной зависимости между и которая будет иметь место, если устранить влияние на эти признаки фактора

Частные коэффициенты корреляции, измеряющие влияние на фактора при неизменном уровне других факторов, можно определить как:

или по рекуррентной формуле:

Для двухфакторного уравнения:

или

Частные коэффициенты корреляции изменяются в пределах от -1 до +1.

Сравнение значений парного и частного коэффициентов корреляции показывает направление воздействия фиксируемого фактора. Если частный коэффициент корреляции получится меньше, чем соответствующий парныйкоэффициент значит взаимосвязь признаков и в некоторой степени обусловлена воздействием на них фиксируемой переменной И наоборот, большее значение частного коэффициента по сравнению с парным свидетельствует о том, что фиксируемая переменная ослабляет своим воздействием связь и

Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, - коэффициент частной корреляции первого порядка.

Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент мн о жественной корреляции :

Качество построенной модели в целом оценивает коэффициент (индекс) множественной детерминации , который рассчитывается как квадрат индекса множественной корреляции: Индекс множественной детерминации фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как

Если число параметров при близко к объему наблюдений, то коэффициент множественной корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможногопреувеличения тесноты связи, используется скорректированный индекс множественной корреляции , который содержит поправку на число степеней свободы:

Чем больше величина тем сильнее различия и

Значимость частных коэффициентов корреляции проверяется аналогично случаю парных коэффициентов корреляции. Единственным отличием является число степеней свободы, которое следует брать равным =--2.

Значимость уравнения множественной регрессии в целом , так же как и в парной регрессии, оценивается с помощью - критерия Фишера :

Мерой для оценки включения фактора в модель служит частный -критерий . В общем виде для фактора частный -критерий определяется как

Для двухфакторного уравнения частные -критерии имеют вид:

Если фактическое значение превышает табличное, то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то фактор нецелесообразно включать в модель, а коэффициент регрессии при данном факторе в этом случае статистически незначим.

Для оценки значимости коэффициентов чистой регрессии по -критерию Стьюдента используется формула:

где - коэффициент чистой регрессии при факторе

- средняя квадратическая (стандартная) ошибка коэффициента регрессии которая может быть определена по формуле:

При дополнительном включении в регрессию нового фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если это не так, то включаемый в анализ новый фактор не улучшает модель и практически является лишним фактором. Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по -критерию Стьюдента.

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Для оценки мультиколлинеарности факторов может использоваться опред е литель матрицы между факторами . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель, тем меньше мультиколлинеарность факторов.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это означает, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность . При нарушении гомоскедастичности выполняются неравенства

Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 9.22).

Рис. 9.22 . Примеры гетероскедастичности:

а) дисперсия остатков растет по мере увеличения

б) дисперсия остатков достигает максимальной величины при средних значениях переменной и уменьшается при минимальных и максимальных значениях

в) максимальная дисперсия остатков при малых значениях и дисперсия остатков однородна по мере увеличения значений

Для проверки выборки на гетероскедастичность можно использовать метод Гольдфельда-Квандта (при малом объеме выборки) или критерий Бартлетта (при большом объеме выборки).

Последовательность применения теста Гольдфельда-Квандта :

1) Упорядочить данные по убыванию той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2) Исключить из рассмотрения центральных наблюдений. При этом где - число оцениваемых параметров. Из экспериментальных расчетов для случая однофакторного уравнения регрессии рекомендовано при =30 принимать =8, а при =60 соответственно =16.

3) Разделить совокупность из наблюдений на две группы (соответственно с малыми и большими значениями фактора ) и определить по каждой из групп уравнение регрессии.

4) Вычислить остаточную сумму квадратов для первой и второй групп и найти их отношение где При выполнении нулевой гипотезы о гомоскедастичности отношение будет удовлетворять -критерию Фишера со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина превышает тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Если необходимо включить в модель факторы, имеющие два или более качественных уровней (пол, профессия, образование, климатические условия, принадлежность к определенному региону и т.д.), то им должны быть присвоены цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные называют фиктивными (и с кусственными) переменными .

К оэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории к другой при неизменных значениях остальных параметров. Значимость влияния фиктивной переменной проверяется с помощью -критерия Стьюдента.

2. Решение типовых задач

Пример 9. 2. По 15 предприятиям отрасли (табл. 9.4) изучается зависимость затрат на выпуск продукции (тыс. ден. ед.) от объема произведенной продукции (тыс. ед.) и расходов на сырье (тыс. ден. ед). Необходимо:

1) Построить уравнение множественной линейной регрессии.

2) Вычислить и интерпретировать:

Средние коэффициенты эластичности;

Парные коэффициенты корреляции, оценить их значимость на уровне 0,05;

Частные коэффициенты корреляции;

Коэффициент множественной корреляции, множественный коэффициент детерминации, скорректированный коэффициент детерминации.

3) Оценить надежность построенного уравнения регрессии и целесообразность включения фактора после фактора и после

Таблица 9.4

x 1

x 2

Решение:

1) В Excel составим вспомогательную таблицу рис. 9.23.

Рис. 9.23 . Расчетная таблица многофакторной регрессии.

С помощью встроенных функций вычислим: =345,5; =13838,89; =8515,78; =219,315; =9,37; =6558,08.

Затем найдем коэффициенты множественной линейной регрессии и оформим вывод результатов как на рис. 9.24.

Рис. 9.24 . Решение задачи в MS Excel

Для вычисления значения коэффициента используем формулы

Формулы для вычисления параметров заносим в ячейки Е 20 , Е 2 1, Е 2 2. Так длявычисления параметра b 1 в Е 20 поместим формулу =(B20*B24-B21*B22)/(B23*B24-B22^2) и получим 29,83. Аналогично получаем значения =0,301 и Коэффициент =-31,25 (рис. 9.25.).

Рис. 9.25 . Вычисление параметров уравнения множественной регрессии (в с т роке формул формула для расчета b 2) .

Уравнение множественной линейной регрессии примет вид:

31,25+29,83+0,301

Таким образом, при увеличении объема произведенной продукции на 1 тыс. ед. затраты на выпуск этой продукции в среднем увеличатся на 29,83 тыс. ден. ед., а при увеличении расходов на сырье на 1 тыс. ден. ед. затраты увеличатся в среднем на 0,301 тыс. ден. ед.

2) Для вычисления средних коэффициентов эластичности воспользуемся формулой: Вычисляем: =0,884 и =0,184. Т.е. увеличение только объема произведенной продукции (от своего среднего значения) или только расходов на сырье на 1% увеличивает в среднем затраты на выпуск продукции на 0,884% или 0,184% соответственно. Таким образом, фактор оказывает большее влияние на результат, чем фактор

Для вычисления парных коэффициентов корреляции воспользуемся функцией «КОРРЕЛ» рис. 9.26.

Рис. 9.26 . Вычисление парных коэффициентов корреляции

Значения парных коэффициентов корреляции указывают на весьма тесную связь с и на тесную связь с В то же время межфакторная связь очень сильная (=0,88>0,7), что говорит о том, что один из факторов является неинформативным, т.е. в модель необходимо включать или или

З начимост ь парных коэффициентов корреляции оценим с помощью -критерия Стьюдента. =2,1604 определяем с помощью встроенной статистической функции СТЬЮДРАСПОБР взяв =0,05 и =-2=13.

Фактическое значение -критерия Стьюдента для каждого парного коэффициента определим по формулам: . Результат расчета представлен на рис. 9.27.

Рис. 9.27 . Результат расчета фактических значений -критерия Стьюдента

Получим =12,278; =7,1896; =6,845.

Так как фактические значения -статистики превосходят табличные, то парные коэффициенты корреляции не случайно отличаются от нуля, а статистически значимы.

Получим =0,81; =0,34; =0,21. Таким образом, фактор оказывает более сильное влияние на результат, чем

При сравнении значений коэффициентов парной и частной корреляции приходим к выводу, что из-за сильной межфакторной связи коэффициенты парной и частной корреляции отличаются довольно значительно.

Коэффициент множественной корреляции

Следовательно, зависимость от и характеризуется как очень тесная, в которой =93% вариации затрат на выпуск продукции определяются вариацией учтенных в модели факторов: объема произведенной продукции и расходов на сырье. Прочие факторы, не включенные в модель, составляют соответственно 7% от общей вариации

Скорректированный коэффициент множественной детерминации =0,9182 указывает на тесную связь между результатом и признаками.

Рис. 9.28 . Результаты расчета частных коэффициентов корреляции и коэфф и циента множественной корреляции

3) Оценим надежность уравнения регрессии в целом с помощью -критерия Фишера. Вычислим . =3,8853 определяем взяв =0,05, =2, =15-2-1=12 помощью встроенной статистической функции FРАСПОБР с такими же параметрами.

Так как фактическое значение больше табличного, то с вероятностью 95% делаем заключение о статистической значимости уравнения множественной линейной регрессии в целом.

Оценим целесообразность включения фактора после фактора и после с помощью частного -критерия Фишера по формулам

; .

Для этого в ячейку B32 заносим формулу для расчета F x 1 «=(B28- H24^2)*(15-3)/(1-B28) », а в ячейку B 33 формулу для расчета F x 2 «=(B28-H23^2)*(15-3)/(1-B28) », результат вычисления F x 1 = 22,4127, F x 2 = 1,5958. Табличное значение критерия Фишера определим с помощью встроенной функции FРАСПОБР с параметрами =0,05, =1, =12 «=FРАСПОБР(0,05; 1 ;12) », результат - =4,747. Так как =22,4127>=4,747, а =1,5958<=4,747, то включение фактора в модель статистически оправдано и коэффициент чистой регрессии статистически значим, а дополнительное включение фактора после того, как уже введен фактор нецелесообразно (рис. 9.29).

Рис. 9.29 . Результаты расчета критерия Фишера

Низкое значение (немногим больше 1) свидетельствует о статистической незначимости прироста за счет включения в модель фактора после фактора Это означает, что парная регрессионная модель зависимости затрат на выпуск продукции от объема произведенной продукции является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор (расходы на сырье).

3. Дополнительные сведения для решения задач с помощью MS Excel

Сводные данные основных характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Опис а тельная статистика . Порядок действий следующий:

1. Необходимо проверить доступ к Пакету анализа . Для этого в ленте выбираем вкладку «Данные», в ней раздел «Анализ» (рис. 9.30.).

Рис. 9.30 . Вкладка данные диалоговое окно «Анализ данных»

2. В диалоговом окне «Анализ данных» выбрать Описательная стат и стика и нажать кнопку «ОК», в появившемся диалоговом окне заполните необходимые поля (рис. 9.31):

Рис. 9.31 . Диалоговое окно ввода параметров инструмента
« Описательная статистика »

Входной интервал - диапазон, содержащий данные результативного и объясняющих признаков;

Группирование - указать, как расположены данные (в столбцах или строках);

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

Для получения информации Итоговой статистики, Уровня наде ж ности, -го наибольшего и наименьшего значений нужно установить соответствующие флажки в диалоговом окне.

Получаем следующую статистику (рис. 2.10).

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека