Как правильно рассчитать объем выборки.

Необходимое количество респондентов зависит от целей опроса и того, насколько важна достоверность результатов. Чем выше достоверность Вы хотите получить, тем ниже должен быть допустимый предел погрешности.

Определения

Численность совокупности

Численность совокупности - это размер всей группы, которую Вы хотите представить в опросе.

  • Совокупность : вся группа, о которой Вы хотите сделать выводы.
  • Выборка : группа, которую Вы опрашиваете.

Подумайте о потенциальном размере Вашей целевой совокупности. Например, если Вы отправляете опрос пользователям iPhone мужского пола, проживающим в определенном регионе, Вам может потребоваться провести небольшое исследование с целью определить, сколько всего мужчин соответствует этим критериям.

Предел погрешности

Предел погрешности указывает, насколько результаты отклоняются от фактических значений. Это процентное значение, означающее, с какой вероятностью мнения и поведение выборки опроса отклоняются от мнения и поведения общей совокупности. Чтобы рассчитать предел погрешности, используйте наш калькулятор предела погрешности .

Чем меньше предел погрешности, тем точнее будет ответ при определенном уровне доверия.

В общем случае, чем больше размер выборки, тем меньше предел погрешности. Чем ближе размер выборки к численности совокупности, тем более репрезентативными будут результаты. И именно поэтому, посмотрев на таблицу ниже, Вы можете заметить, что с уменьшением рекомендованного размера выборки увеличивается допустимая погрешность.

Допустим, мы опросили 400 человек о том, поддерживают ли они президента своей страны, и 55% ответило утвердительно. Если уровень доверия равен 95%, а пределы погрешности составляют ±5%, то при стократном повторении опроса в одних и тех же условиях 95 раз из 100 ответ находился бы в пределах между 50% и 60%.

Уровень доверия

Уровень доверия указывает, насколько достоверными являются полученные результаты. Общепринятые стандарты, используемые исследователями: 90%, 95% и 99%.

Уровень доверия 95% означает, что, если повторить один и тот же опрос при одинаковых условиях 100 раз, 95 раз из 100 результаты будут приблизительно находиться в пределах погрешности.

При определении размера выборки используется z-оценка уровня доверия. Z-оценка - это мера стандартного отклонения определенной доли от средней величины.

Уровень доверия

90% 1,65
95% 1,96
99% 2,58

Процентное значение

Требования к размеру выборки могут меняться в зависимости от процентной доли выборки, которая дает определенный ответ. Например, если в предыдущем опросе было обнаружено, что 75% клиентов выражают удовлетворенность Вашим продуктом, и Вы хотите провести такой опрос снова, можно использовать p = 0,75 для расчета требуемого размера выборки.

Если опрос проводится в первый раз, то, поскольку опросы обычно содержат более одного вопроса (и поэтому оценивать требуется более одного процентного значения), мы рекомендуем использовать p = 0,5 для расчета оптимального размера выборки. Это дает нам примерный размер выборки, который не будет ни слишком консервативным ни слишком свободным.

Ниже приведена таблица, в которой указаны рекомендованные значения численности совокупности* для предела погрешности при уровне доверия 95%.

Численность совокупности Размер выборки для предела погрешности

100 000 и более

* Мы рассчитали рекомендованные размеры выборки по указанной выше формуле. В некоторых случаях размеры выборки были округлены вверх до 5 или 10. Для более точного расчета используйте наш калькулятор размера выборки .

Вы отправляете родителям детей Вашей школы опрос с вопросом о том, поддерживают ли они продление учебного дня. Вопрос имеет варианты ответа «Да» и «Нет».

Общее количество родителей (численность совокупности) - 10 000, и Вас устраивает предел погрешности ±10%. По таблице выше Вы можете определить, что в опросе должно принять участие не менее 100 человек.

70% из 100 опрошенных родителей ответили, что согласны на продление учебного дня. Таким образом, можно предположить, что если бы в опросе участвовали все 10 000 родителей, 60-80% людей поддержало бы продление учебного дня.

Сколько людей следует попросить пройти опрос?

Может определять, какому количеству людей нужно отправить опрос. Чем выше процентная доля ответивших, тем меньше людей необходимо попросить пройти опрос.

Например, если Вам нужно 100 респондентов и Вы ожидаете, что 25% людей, приглашенных принять участие в опросе, ответят на него, Вам необходимо пригласить 400 человек.

СОВЕТ. Если Вам требуется гарантированное количество респондентов, приобретите ответы на опрос в SurveyMonkey Audience. Вы укажете необходимое количество ответов, и мы найдем респондентов, соответствующих Вашим критериям целевой аудитории.

Интервальное оценивание вероятности события. Формулы расчета численности выборки при собственно-случайном способе отбора.

Для определения вероятностей интересующих нас событий мы применяем выборочный метод : проводим n независимых экспериментов, в каждом из которых может произойти (или не произойти) событие А (вероятность р появления события А в каждом эксперименте постоянна). Тогда относительная частота p* появлений событий А в серии из n испытаний принимается в качестве точечной оценки для вероятности p появления события А в отдельном испытании. При этом величину p* называют выборочной долей появлений события А , а р - генеральной долей .

В силу следствия из центральной предельной теоремы (теорема Муавра-Лапласа) относительную частоту события при большом объеме выборки можно считать нормально распределенной с параметрами M(p*)=p и

Поэтому при n>30 доверительный интервал для генеральной доли можно построить, используя формулы:


где u кр находится по таблицам функции Лапласа с учетом заданной доверительной вероятности γ: 2Ф(u кр)=γ.

При малом объеме выборки n≤30 предельная ошибка ε определяется по таблице распределения Стьюдента :
где t кр =t(k; α) и число степеней свободы k=n-1 вероятность α=1-γ (двустороння область).

Формулы справедливы, если отбор проводился случайным повторным образом (генеральная совокупность бесконечна), в противном случае необходимо сделать поправку на бесповторность отбора (таблица).

Средняя ошибка выборки для генеральной доли

Генеральная совокупность Бесконечная Конечная объема N
Тип отбора Повторный Бесповторный
Средняя ошибка выборки

Формулы расчета численности выборки при собственно-случайном способе отбора

Способ отбора Формулы определения численности выборки
для средней для доли
Повторный
Бесповторный
Доля единиц w = . Точность ε = . Вероятность γ =

Задачи о генеральной доле

На вопрос «Накрывает ли доверительный интервал заданное значение p 0 ?» - можно ответить, проверив статистическую гипотезу H 0:p=p 0 . При этом предполагается, что опыты проводятся по схеме испытаний Бернулли (независимы, вероятность p появления события А постоянна). По выборке объема n определяют относительную частоту p * появления события A: где m - количество появлений события А в серии из n испытаний. Для проверки гипотезы H 0 используется статистика, имеющая при достаточно большом объеме выборки стандартное нормальное распределение (табл. 1).
Таблица 1 - Гипотезы о генеральной доле

Гипотеза

H 0:p=p 0 H 0:p 1 =p 2
Предположения Схема испытаний Бернулли Схема испытаний Бернулли
Оценки по выборке
Статистика K
Распределение статистики K Стандартное нормальное N(0,1)

Пример №1 . С помощью случайного повторного отбора руководство фирмы провело выборочный опрос 900 своих служащих. Среди опрошенных оказалось 270 женщин. Постройте доверительный интервал , с вероятностью 0.95 накрывающий истинную долю женщин во всем коллективе фирмы.
Решение. По условию выборочная доля женщин составляет (относительная частота женщин среди всех опрошенных). Так как отбор является повторным, и объем выборки велик (n=900) предельная ошибка выборки определяется по формуле

Значение u кр находим по таблице функции Лапласа из соотношения 2Ф(u кр)=γ, т.е. Функция Лапласа (приложение 1) принимает значение 0.475 при u кр =1.96. Следовательно, предельная ошибка и искомый доверительный интервал
(p – ε, p + ε) = (0.3 – 0.18; 0.3 + 0.18) = (0.12; 0.48)
Итак, с вероятностью 0.95 можно гарантировать, что доля женщин во всем коллективе фирмы находится в интервале от 0.12 до 0.48.

Пример №2 . Владелец автостоянки считает день «удачным», если автостоянка заполнена более, чем на 80 %. В течение года было проведено 40 проверок автостоянки, из которых 24 оказались «удачными». С вероятностью 0.98 найдите доверительный интервал для оценки истинной доли «удачных» дней в течение года.
Решение . Выборочная доля «удачных» дней составляет
По таблице функции Лапласа найдем значение u кр при заданной
доверительной вероятности
Ф(2.23) = 0.49, u кр = 2.33.
Считая отбор бесповторным (т.е. две проверки в один день не проводилось), найдем предельную ошибку:
где n=40 , N = 365 (дней). Отсюда
и доверительный интервал для генеральной доли: (p – ε, p + ε) = (0.6 – 0.17; 0.6 + 0.17) = (0.43; 0.77)
С вероятностью 0.98 можно ожидать, что доля «удачных» дней в течение года находится в интервале от 0.43 до 0.77.

Пример №3 . Проверив 2500 изделий в партии, обнаружили, что 400 изделий высшего сорта, а n–m – нет. Сколько надо проверить изделий, чтобы с уверенностью 95% определить долю высшего сорта с точностью до 0.01 ?
Решение ищем по формуле определения численности выборки для повторного отбора.

Ф(t) = γ/2 = 0.95/2 = 0.475 и этому значению по таблице Лапласа соответствует t=1.96
Выборочная доля w = 0.16; ошибка выборки ε = 0.01

Пример №4 . Партия изделий принимается, если вероятность того, что изделие окажется соответствующим стандарту, составляет не менее 0.97. Среди случайно отобранных 200 изделий проверяемой партии оказалось 193 соответствующих стандарту. Можно ли на уровне значимости α=0,02 принять партию?
Решение . Сформулируем основную и альтернативную гипотезы.
H 0:p=p 0 =0,97 - неизвестная генеральная доля p равна заданному значению p 0 =0,97. Применительно к условию - вероятность того, что деталь из проверяемой партии окажется соответствующей стандарту, равна 0.97; т.е. партию изделий можно принять.
H 1:p<0,97 - вероятность того, что деталь из проверяемой партии окажется соответствующей стандарту, меньше 0.97; т.е. партию изделий нельзя принять. При такой альтернативной гипотезе критическая область будет левосторонней.
Наблюдаемое значение статистики K (таблица) вычислим при заданных значениях p 0 =0,97, n=200, m=193


Критическое значение находим по таблице функции Лапласа из равенства


По условию α=0,02 отсюда Ф(Ккр)=0,48 и Ккр=2,05. Критическая область левосторонняя, т.е. является интервалом (-∞;-K kp)= (-∞;-2,05). Наблюдаемое значение К набл =-0,415 не принадлежит критической области, следовательно, на данном уровне значимости нет оснований отклонять основную гипотезу. Партию изделий принять можно.

Пример №5 . Два завода изготавливают однотипные детали. Для оценки их качества сделаны выборки из продукции этих заводов и получены следующие результаты. Среди 200 отобранных изделий первого завода оказалось 20 бракованных, среди 300 изделий второго завода - 15 бракованных.
На уровне значимости 0.025 выяснить, имеется ли существенное различие в качестве изготавливаемых этими заводами деталей.

По условию α=0,025 отсюда Ф(Ккр)=0,4875 и Ккр=2,24. При двусторонней альтернативе область допустимых значений имеет вид (-2,24;2,24). Наблюдаемое значение K набл =2,15 попадает в этот интервал, т.е. на данном уровне значимости нет оснований отвергать основную гипотезу. Заводы изготавливают изделия одинакового качества.

Статистическая совокупность - множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 9.2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 9.5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 9.5 Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.

КАЛЬКУЛЯТОРЫ

Генеральная совокупность

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени. Примеры генеральных совокупностей:- Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)- Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года)- Юридические лица России (2,2 млн. на начало 2005 года)- Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и т.д.

Выборка (Выборочная совокупность)

Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Репрезентативность выборки

Свойство выборки корректно отражать генеральную совокупность. Одна и та же выборка может быть репрезентативной и нерепрезентативной для разных генеральных совокупностей.Пример:- Выборка, целиком состоящая из москвичей, владеющих автомобилем, не репрезентирует все население Москвы. - Выборка из российских предприятий численностью до 100 человек не репрезентирует все предприятия России.- Выборка из москвичей, совершающих покупки на рынке, не репрезентирует покупательское поведение всех москвичей.В то же время, указанные выборки (при соблюдении прочих условий) могут отлично репрезентировать москвичей-автовладельцев, небольшие и средние российские предприятия и покупателей, совершающих покупки на рынках соответственно.Важно понимать, что репрезентативность выборки и ошибка выборки - разные явления. Репрезентативность, в отличие от ошибки никак не зависит от размера выборки.Пример:Как бы мы не увеличивали количество опрошенных москвичей-автовладельцев, мы не сможем репрезентировать этой выборкой всех москвичей.

Ошибка выборки (доверительный интервал)

Отклонение результатов, полученных с помощью выборочного наблюдения от истинных данных генеральной совокупности.Ошибка выборки бывает двух видов - статистическая и систематическая. Статистическая ошибка зависит от размера выборки. Чем больше размер выборки, тем она ниже.Пример:Для простой случайной выборки размером 400 единиц максимальная статистическая ошибка (с 95% доверительной вероятностью) составляет 5%, для выборки в 600 единиц - 4%, для выборки в 1100 единиц - 3% Обычно, когда говорят об ошибке выборки, подразумевают именно статистическую ошибку.Систематическая ошибка зависит от различных факторов, оказывающих постоянное воздействие на исследование и смещающих результаты исследования в определенную сторону.Пример:- Использование любых вероятностных выборок занижает долю людей с высоким доходом, ведущих активный образ жизни. Происходит это в силу того, что таких людей гораздо сложней застать в каком-либо определенном месте (например, дома).- Проблема респондентов, отказывающихся отвечать на вопросы анкеты (доля «отказников» в Москве, для разных опросов, колеблется от 50% до 80%)В некоторых случаях, когда известны истинные распределения, систематическую ошибку можно нивелировать введением квот или перевзвешиванием данных, но в большинстве реальных исследований даже оценить ее бывает достаточно проблематично.

Типы выборок

Выборки делятся на два типа:
- вероятностные
- невероятностные

1. Вероятностные выборки
1.1 Случайная выборка (простой случайный отбор)
Такая выборка предполагает однородность генеральной совокупности, одинаковую вероятность доступности всех элементов, наличие полного списка всех элементов. При отборе элементов, как правило, используется таблица случайных чисел.
1.2 Механическая (систематическая) выборка
Разновидность случайной выборки, упорядоченная по какому-либо признаку (алфавитный порядок, номер телефона, дата рождения и т.д.). Первый элемент отбирается случайно, затем, с шагом ‘n’ отбирается каждый ‘k’-ый элемент. Размер генеральной совокупности, при этом - N=n*k
1.3 Стратифицированная (районированная)
Применяется в случае неоднородности генеральной совокупности. Генеральная совокупность разбивается на группы (страты). В каждой страте отбор осуществляется случайным или механическим образом.
1.4 Серийная (гнездовая или кластерная) выборка
При серийной выборке единицами отбора выступают не сами объекты, а группы (кластеры или гнёзда). Группы отбираются случайным образом. Объекты внутри групп обследуются сплошняком.

2.Невероятностные выборки
Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям - доступности, типичности, равного представительства и т.д..
2.1. Квотная выборка
Изначально выделяется некоторое количество групп объектов (например, мужчины в возрасте 20-30 лет, 31-45 лет и 46-60 лет; лица с доходом до 30 тысяч рублей, с доходом от 30 до 60 тысяч рублей и с доходом свыше 60 тысяч рублей) Для каждой группы задается количество объектов, которые должны быть обследованы. Количество объектов, которые должны попасть в каждую из групп, задается, чаще всего, либо пропорционально заранее известной доле группы в генеральной совокупности, либо одинаковым для каждой группы. Внутри групп объекты отбираются произвольно. Квотные выборки используются в маркетинговых исследованиях достаточно часто.
2.2. Метод снежного кома
Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
2.3 Стихийная выборка
Опрашиваются наиболее доступные респонденты. Типичные примеры стихийных выборок - опросы в газетах/журналах, анкеты, отданные респондентам на самозаполнение, большинство интернет-опросов. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром - активностью респондентов.
2.4 Выборка типичных случаев
Отбираются единицы генеральной совокупности, обладающие средним (типичным) значением признака. При этом возникает проблема выбора признака и определения его типичного значения.

Калькулятор расчета ошибки и размера выборки

(для простой случайной выборки)

Пояснения к полям:

Доверительная вероятность
Вероятность того, что доверительный интервал накроет неизвестное истинное значение параметра, оцениваемого по выборочным данным. В практике исследований чаще всего используют 95%-ую доверительную вероятность

Ошибка выборки (доверительный интервал)
Интервал, вычисленный по выборочным данным, который с заданной вероятностью (доверительной) накрывает неизвестное истинное значение оцениваемого параметра распределения.

Доля признака

Ожидаемая доля признака, для которого рассчитывается ошибка. В случае, если данные о доле признака отсутствуют, необходимо использовать значение равное 50, при котором достигается максимальная ошибка.

Размер выборки требуется определить перед началом большинства количественных исследований. Определение размера выборки не требуется для качественных исследований (обратите внимание, что здесь понимаются формально количественные методы, такие как контент-анализ; простые описательные проекты относятся к количественным). Расчет размера выборки может не выполнять перед проведением предварительных, пилотных исследований (однако такие исследования обычно выполняются перед реальным планированием научного исследования). В случае сомнений, обязательно обратитесь в то учреждение, которое финансирует исследование или включает его в свой план исследований - отсутствие данные о размере выборки одна из наиболее частых причин отказа в утверждении темы

Почему размер выборки важен для исследователя?

При проведении исследований, которые определяют распространенность некоей характеристики в популяции (например, распространенность астмы у детей), расчет размера выборки необходим для того, чтобы полученные оценки имели желаемую степень точности. Например, распространенность заболевания в 10%, полученная на выборке размером в 20 человек будет иметь 95% доверительный интервал от 1% до 31%, что никак нельзя признать ни точно, ни информативной оценкой. С другой стороны, распространенность заболевания в 10%, полученная на выборке размером в 400 человек будет иметь 95% доверительный интервал от 7% до 13%, что может рассматриваться, как достаточно точный результат. оценка размеров выборки позволяет избежать первого из этих двух вариантов.

В исследованиях, направленных на выявление эффекта (например, разность эффективности двух методов лечения, относительный риск заболевания при наличии или отсутствии фактора риска) оценка размера выборки важна для того, чтобы удостовериться в том, что если клинически или биологически важный эффект существует, то он с высокой степенью вероятности будет обнаружен, иными словами анализ даст статистически значимые результаты. Если размер выборки невелик то даже в случае значительных различий между группами будет невозможно доказать, что они являются следствием чего-то иного, кроме как выборочной вариабельности.

Информация необходимая для расчета размера выборки

Методы оценки размера выборки описаны в ряде учебников по статистике, включая Altman, 1991; Bland, 2000; Armitage, Berry и Matthews, 2002. Две книги специализируются на описании методов оценки размеров выборки в разных ситуациях. Для качественных параметров следует проконсультироваться с работой Manchin и соавт. (1998), для качественных - Lemeshow и соавт. (1996). В обеих книгах приведены таблицы, облегчающие расчет размеров выборки. В случае последовательных испытаний, необходимо обратиться к работе Whitehead (1997).Собственно расчеты размера выборки могут быть выполнены с использованием одной из многочисленных компьютерных программ. Так, программа Stata позволяет анализировать размер выборки, необходимый для сравнения средних и пропорций, а также анализа распространенности. Значительно большее количество опций предлагают специализированные пакеты, такие как nQuery Advisor или UnifyPow.

Расчет размера выборки зависит от следующих факторов, которые надо будет сообщить статистику-консультанту:

  • Изучаемые в исследовании переменные, включая их типы
  • Необходимая мощность исследования
  • Необходимый уровень статистической значимости
  • Размер эффекта, который имеет клиническую значимость
  • Стандартное отклонение для количественных переменных
  • Будет ли использоваться одно- или двусторонний тест значимости
  • Дизайн исследования, иными словами является ли исследование:
    • Рандомизированным контролируемым испытанием
    • Кластерным рандомизированным исследованием
    • Исследованием эквивалентности
    • Нерандомизированным исседованием вмешательства
    • Обсервационным исследованием
    • Исследованием распространенности
    • Изучением чувствительности и специфичности теста

При этом потребуется ответить на ряд дополнительных вопросов:

  • Включаются ли в исследование парные данные?
  • Будут ли в исследовании измерены повторно одни и те же переменные у одного и того же человека?
  • Равны ли включаемые в исследование группы по численности?
  • Являются ли данные иерархическими?

Следует принять во внимание, что нерандомизированные исследования различий или взаимосвязей обычно требуют значительно больший размер выборки для того, чтобы принять во внимание при анализе влияние третьих переменных. При этом исследователя интересует абсолютный размер выборки, а не процент, который она составляет от популяции в целом.

Какие статистические термины используются при описании процесса планировании размера выборки

Нулевая и альтернативная гипотезы

Многие типы статистического анализа направлены на сравнение двух видов лечения, процедур или групп пациентов. Численное значение, которое суммирует интересующие исследователя различия называется эффектом. В других исследованиях эффектом может являться коэффициент корреляции, отношение шансов или относительный риск. Затем мы выдвигаем нулевую и альтернативную гипотезы. Обычно нулевая гипотеза гласит, что эффекта нет (различия между группами равны нулю, относительный риск равен единице, корреляционный коэффициент равен нулю), альтернативная гипотеза предполагает, что эффект есть.

Доверительная вероятность (р-оценка)

р-оценка это вероятность наблюдения в исследовании такого же или более сильного эффекта при условии справедливости нулевой гипотезы. Обычно выражается как пропорция (например, р=0.03)

Уровень значимости

Уровень значимости - это пороговое значение для р-оценки, ниже которого нулевая гипотеза должна быть отвергнута и сделано заключение о том, что имеются доказательства эффекта. Обычно уровень значимости устанавливается на значении 5% (Уровень значимости, несмотря на прямую связь с р-оценкой выражается в процентах: 5% уровень значимости эквивалентен р=0.05). Если наблюдаемой значение меньше 5%, то имеется незначительная вероятность, что в исследовании были бы получены такие результаты, если бы истинного эффекта не было. Поэтому принимается гипотеза о наличии эффекта

Уровень значимости 5% также означает, что имеется практически 5% вероятность придти к выводу о наличии эффекта, хотя на самом деле его нет. Иногда более адекватным является использование 1% уровня значимости, особенно если очень важно избежать заключения о том, что эффект существует тогда, когда на самом деле его нет.

Мощность

Мощность - это вероятность того, что нулевая гипотеза будет адекватно отвергнута, иными словами тогда, когда действительно существуют доказательства реальных различий или взаимосвязей. Ее можно рассматривать как "100 процентов минус вероятность пропуска истинного эффекта". поэтому чем выше мощность, тем меньше вероятность пропуска истинного эффекта. Мощность обычно фиксируется на уровне 80%, 90% или 95%. Мощность не должна быть меньше 80%. Если крайне важно, чтобы исследование не пропустило существующего эффекта, надо стремиться достичь мощности 90% или более.

Клинически важный размер эффекта

Это наименьшие различия между средними групп или процентами событий в них (для отношений шансов самый близкий к единице риск), которые еще можно рассматривать как биологически или клинически значимые. Должна быть сформирована выборка такого размера, чтобы если подобные различия существуют, то в исследовании были бы получены статистически значимые результаты.

Односторонний или двухсторонний тест значимости

При двухстороннем тесте нулевая гипотеза заключается в отсутствии различий, а альтернативная гипотеза предполагает, что различия между группами могут идти в любом направлении. При одностороннем тесте альтернативная гипотеза определяет предполагаемое направление различий, например, что терапия лучше, чем плацебо, а нулевая гипотеза включает ситуации, когда эффект препарата и плацебо одинаков и когда препарат приводит к худшему, по сравнению с плацебо, результату.

Если нет серьезных причин для того, чтобы это не делать, следует пользоваться двухсторонней гипотезой. Ожидание того, что различия пойдут в том или ином направлении недостаточное основание для того, чтобы пользоваться односторонним тестом. Исследователи-медики часто оказываются удивлены, если полученный результат идет в разрез с тем, что ожидалось, очень часто подобная находка имеет иные последствия, по сравнению с отсутствием различий и поэтому она должна быть адекватным образом описана. Односторонний тест не позволяет этого сделать. Примеры ситуаций, в которых односторонний тест может оказаться приемлемы приведены в книге Bland и Altman (1994).

Какие переменные должны учитываться при расчете размера выборки

Расчет размера выборки должен базироваться на анализе основной переменной исхода в данном исследовании.

Если в исследование будут включены дополнительные переменные, которые также рассматриваются, как имеющие важное научное значение, то размер выборки должен таковым, чтобы позволить адекватный анализ этих переменных. Для всех важных в научном плане переменных должен быть проведен и представлен расчет размера выборки.

Учет процента отклика и потерь при наблюдении

Расчетный размер выборки указывает количество пациентов в финальной, анализируемой в конце исследования группе. Поэтому количество лиц, которые должны быть вовлечены в исследование должно быть увеличено в соответствии с ожидаемым откликом, потерям при наблюдении, отказом от следования протоколу и другим возможным причинам потери экспериментальных субъектов. Необходимо четко описать взаимосвязь между ожидаемым количеством участников и объемом формируемой выборки.

Соответствие целям исследования и методам статистического анализа

Адекватность размера выборки должна также быть оценена в соответствии с целью исследования. Например, если целью исследования является демонстрация того, что новое лекарство лучше существующего, необходимо добиться того, чтобы размер выборки позволял обнаружить клинически значимые различия между двумя методами лечения. Однако иногда требуется продемонстрировать, что два лекарственных средства клинически эквивалентны. Этот тип исследований часто называют испытанием эквивалентности или "негативным" испытанием. Вопросы определения размера выборки для этих исследований детально описаны в работе Pocock (1983). Размер выборки в исследованиях, направленных на демонстрацию эквивалентности лекарств больше, чем в исследованиях, которые направлены на выявление различий в эффективности. Обязательно следует убедиться в том, что расчеты размеров выборки связаны с целями и задачами исследования и базируются на данных об основной переменной исхода.

Размеры выборки также должны быть адекватны используемым в исследовании методам анализа, поскольку как размер выборки, так и анализ зависят от выбранного дизайна исследования. Обязательно следует удостовериться в том, что предполагаемые методы анализа и расчеты размера выборки совместимы друг с другом.

Примеры расчета размера выборки.

Если планируемое исследование требует оценки одной единственной частоты, сравнения двух средних или сравнения двух частот, расчеты размера выборки (обычно) остаточно просты и поэтому представлены ниже. Однако мы рекомендуем в любом случае проконсультироваться со статистиком по поводу расчетов размера выборки.

Оценка одной единственной частоты

Примечание: приведенная ниже формула базируется на т.н. "методе примерного нормального распределения" и, если только не планируется создавать очень большую выборку, не рекомендуется для оценки частот близких к 0 или 1 (0: или 100%. В подобных случаях следует пользоваться "точными" методами. Подобная ситуация может наблюдаться при изучении чувствительности и специфичности нового метода диагностики, где предполагается наличие частот, близких к 1 (100%). В данном случае следует проконсультироваться со статистиком или, как минимум, воспользоваться специализированными компьютерными программами.

Сценарий: Используя почтовый опросник оценить распространенность нарушений дыхания у пациентов с бронхиальной астмой, находящихся под наблюдением врача общей практики (Thomas и соавт., 2001)

Требующаяся информация:

  • Основная переменная исхода = наличие или отсутствие нарушений дыхания
  • Предполагаемая частота нарушений = 30% (0.3)
  • Требуемая ширина 95% доверительного интервала = 10% (т.е. +/-5% или от 25% до 35%)

Формула для оценки размера выборки одной единственной частоты:

n=15.4*p*(1-p)/W 2

где n - требуемый размер выборки, р - ожидаемая частота результата (в данном случае 0,3) и W - ширина доверительного интервала (в данном случае 0.1)

Подставляя в формулу значения, получаем:

n=15.4*0.3*(1-0.3)/0.1 2 =324

"Для получения доверительного интервала в +/-5% вокруг оценки распространенности в 30% потребуется выборка из 324 человек. Учитывая 70% частоту отклика на предложение участвовать в исследовании, будет распространено 480 опросников"

Сравнение двух частот

Сценарий: Планируется провести рандомизированное плацебо-контролируемое испытание эффективности колонии-стимулирующего фактора для снижения риска сепсиса у недоношенных детей. Ранее проведенное исследование продемонстрировало, что частота развития сепсиса у таких детей составляет 50% в течение 2 недель после рождения и исследователи считают, что снижение этой частоты до 34% будет являться клинически значимым.

Требующаяся информация:

  • Основная переменная исхода= наличие или отсутствие сепсиса у новорожденных через 14 дней после рождения (терапия проводится на протяжении максимум 72 часов после рождения). Это качественная переменная, представленная частотами.
  • Величина значимых различий = 16% или 0.16 (т.е. 50%-34%)
  • Уровень значимости=5%
  • Мощность=80%
  • Тест=двухсторонний

Формула для расчета размера выборки при сравнении двух частот следующая:

n= 2 *[(p 1 *(1-p 1)+(p 2 *(1-p 2)))]/ 2

где n=размер выборки для каждой группы (общий размер выборки в два раза больше)

р 1 =первая частота - в данном случае 0.50

р 2 =вторая частота - в данном случае 0.34

р 1 -р 2 =клинически значимые различия, в данном случае 0.16

Таблица значений для А и В

Уровень значимости

Мощность

Подставляя значения в формулу получим:

n= 2 *[(0.5*0.5+(0.34*0.66)]/ 2 =146

Таким образом, мы получаем количество наблюдений, необходимое для включения в каждую из групп. Общая численность выборки будет в два раза больше, т.е. 292 ребенка

Описание результатов расчета размера выборки может выглядеть следующим образом:

"Выборка в 292 новорожденных (146 в группе лечения и плацебо) будет достаточным для того, чтобы выявить различия в частоте сепсиса 16% с 80% мощностью на 5% уровне достоверности. 16% различия равны разности между 50% частотой сепсиса к 14 дню наблюдения в группе плацебо и 34% частотой в группе лечения."

Сравнение двух средних

Примечание: описанные ниже расчеты справедливы только для случая, когда две группы имеют один и тот же размер.

Сценарий: планируется рандомизированное контролируемое испытание по сравнению краткосрочного психологического лечения в сравнении с обычным лечением для борьбы с суицидальными тенденциями у пациентов, госпитализированных после суицидальной попытки отравления. Суицидальные тенденции измеряются с помощью шкалы Бека. Стандартное отклонение для оценок по этой шкале составляет 7.7 (данные предшествующих исследований) и клинически значимыми считаются различия в 5 баллов по шкале Бека. Предполагается, что из группы лечения выйдут до трети пациентов (Guthrie и соавт., 2001)

Необходимая информация:

  • Основная переменная исхода= шкала суицидальных тенденций Бека. Непрерывная переменная описываемая средними значениями
  • Стандартное отклонение=7.7 баллов
  • Размер клинически значимого эффекта= 5 баллов
  • Уровень значимости=5%
  • Мощность=80%
  • Тест=двухсторонний

Формула для расчета размера выборки при сравнении двух средних следующая:

n= 2 *2*SD 2 /DIFF 2

где n=размер выборки для каждой группы (общий размер выборки в два раза бльше)

SD= стандартное отклонения для основной переменной исхода, в данном случае 7.7

DIFF=клинически важный эффект, в данном случае 5.0

А - зависит от уровня значимости (см. таблицу) - в данном случае 1.96

В - зависит от мощности (см. таблицу) - в данном случае 0.84

Таблица значений для А и В

Уровень значимости

Мощность

Подставляя необходимые значения в формулу получаем:

n= 2 *2*7.7 2 /5.0 2 =38

Таким образом, мы получаем количество наблюдений, необходимое для включения в каждую из групп. Общая численность выборки будет в два раза больше, т.е. 76 человек.

Адекватное описание оценки размеров выборки будет выглядеть следующим образом:

"Для выявления различий в 5 баллов по шкале суицидальных тенденций Бека на 5% уровне значимости с 80% мощностью, принимая стандартное отклонение равным 7.7 баллам, потребуется 38 человек в группу вмешательства и контроля. Это число было увеличено до 60 в группе (общее количество наблюдений 120), для того, чтобы компенсировать потери при наблюдении, составляющие обычно около трети обследуемых"

Примеры неадекватных описаний оценок размера необходимой выборки

Пример 1

"Предшествующее исследование в данной области использовало выборку в 150 человек и получило высоко достоверные результаты (р=0.014), поэтому в данное исследование включается аналогичное количество пациентов"

Предшествующие исследования могли оказаться просто "везучими" в том смысле, что найденные ими значимые результаты являются следствием случайного варьирования выборочных средних. Необходимо рассчитывать размер выборки для данного исследования - включая такие детали, как мощность исследования, уровень значимости, основная изучаемая переменная, размер клинически значимого эффекта, стандартное отклонение (для количественных переменных) и размер каждой группы, если в исследовании будет несколько групп

Пример 2.

"Расчет размера выборки не проводился, поскольку предварительная информация для ее оценки отсутствовала"

Необходимо тщательно проанализировать литературу, чтобы найти информацию, необходимую для расчета размера выборки. Если такой информации нет, можно организовать небольшое предварительное исследование для сбора этой информации.

Если отсутствуют данные о значении стандартного отклонения, расчеты размера выборки могут быть даны в более общем виде, например различия, являющиеся клинически эффективными могут быть описаны не в абсолютных значениях, а в единицах стандартного отклонения.

Вместе с тем, если пишется заявка на грант, направленный на финансирование пилотного исследования для сбора информации, необходимой для расчета размера выборки последующего крупного исследования, то в такой заявке расчет размера выборки не проводится.

"В клинику в течение года поступает 50 пациентов с данным заболеванием. Около 10% из них могут отказаться от участия в исследовании. Поэтому в течение двух лет можно будет набрать выборку размером в 90 человек"

Хотя большинство исследований должны уравновешивать возможности их организации с мощностью, размер выборки не должен определяться на основании только количества доступных для исследования пациентов.

В ситуациях, когда количество пациентов является ограничивающим размер выборки фактором, расчеты все равно должны проводиться для того, чтобы установить а) мощность исследования с данным количеством пациентов по отношению к клинически важным различиям или б) размер эффекта, который может быть выявлен в исследовании данного размера (учитывая его мощность).

В тех случаях, когда доступное количество пациентов слишком мало для того, чтобы выявить клинически значимые различия, можно подумать об увеличении продолжительности исследования или проведения совместного с несколькими исследователями многоцентрового испытания.

Литература

  1. Altman DG. (1991) Practical Statistics for Medical Research. Chapman and Hall, London.
  2. Armitage P, Berry G, Matthews JNS. (2002) Statistical Methods in Medical Research, 4th ed. Blackwell, Oxford.
  3. Bland JM and Altman DG. (1994). One and two sided tests of significance. British Medical Journal 309 248.
  4. Bland M. (2000) An Introduction to Medical Statistics, 3rd. ed. Oxford University Press, Oxford.
  5. Elashoff JD. (2000) nQuery Advisor Version 4.0 User"s Guide. Los Angeles, CA.
  6. Guthrie E, Kapur N, Mackway-Jones K, Chew-Graham C, Moorey J, Mendel E, Marino-Francis F, Sanderson S, Turpin C, Boddy G, Tomenson B. (2001) Randomised controlled trial of brief psychological intervention after deliberate self poisoning. British Medical Journal 323, 135-138.
  7. Lemeshow S, Hosmer DW, Klar J & Lwanga SK. (1996) Adequacy of sample size in health studies. John Wiley & Sons, Chichester.
  8. Machin D, Campbell MJ, Fayers P, Pinol, A. (1998) Statistical Tables for the Design of Clinical Studies, Second Edition Blackwell, Oxford.
  9. Pocock SJ. (1983) Clinical Trials: A Practical Approach. John Wiley and Sons, Chichester.
  10. Thomas M, McKinley RK, Freeman E, Foy C. (2001) Prevalence of dysfunctional breathing in patients treated for asthma in primary care: cross sectional survey. British Medical Journal 322, 1098-1100.
  11. Whitehead, J. (1997) The Design and Analysis of Sequential Clinical Trials, revised 2nd. ed. Chichester, Wiley.
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека