Автокорреляционная функция и аддитивная модель временного ряда. Значение коэффициента автокорреляции первого порядка характеризует

Для выявления структуры ряда (т. е. состава компонент) строят автокорреляционную функцию.

Автокорреляция уровней ряда – корреляционная между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L – лаг). То есть связь между рядом: Х 1 , Х 2 , ... Х n-L и рядом Х 1+L , Х 2+L , ... Х n , где L – положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L = 1, то имеем коэффициент автокорреляции 1-го порядка r t,t-1 . Если L = 2, то коэффициент автокорреляции 2-го порядка r t,t-2 и т.д.

Следует учитывать, что с увеличением лага на единицу число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции, равный n/4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (I), при котором автокорреляция (r t,t-L) наиболее высокая, выявив тем самым структуру временного ряда .

Если наиболее высоким оказывается значение r t,t-1 , то исследуемый ряд додержит только тенденцию. Если наиболее высоким оказался r t,t-L , то ряд содержит (помимо тенденции) колебания периодом L.

Если ни один из r t,t-L (l=1;L) не является значимым, можно сделать одно из двух предположений:

Либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;

Либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда . График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Чтобы найти коэффициент корреляции 1-го порядка, нужно найти корреляцию между рядами (расчет производится не по 14, а по 13 парам наблюдений):

Два важных свойства коэффициента автокорреляции:



1) Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По-этому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2) По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Сдвигаем исходный ряд на 1 уровней. Получаем следующую таблицу:

y t y t - 1
3.18 4.31
4.31 5.66
5.66 6.89
6.89 9.47
9.47 12.34
12.34 14.36
14.36 18.08
18.08 20.63
20.63 24.3
24.3 30.2
30.2 37.04
37.04 43.81
43.81 48.32

Расчет коэффициента автокорреляции 1-го порядка .

Выборочные средние.

Выборочные дисперсии:

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-1:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < r t,t-1 < 0.3: слабая;

0.3 < r t,t-1 < 0.5: умеренная;

0.5 < r t,t-1 < 0.7: заметная;

0.7 < r t,t-1 < 0.9: высокая;

0.9 < r t,t-1 < 1: весьма высокая;

В нашем примере связь между рядами - весьма высокая и прямая.


x y x 2 y 2 x y
3.18 4.31 10.11 18.58 13.71
4.31 5.66 18.58 32.04 24.39
5.66 6.89 32.04 47.47
6.89 9.47 47.47 89.68 65.25
9.47 12.34 89.68 152.28 116.86
12.34 14.36 152.28 206.21 177.2
14.36 18.08 206.21 326.89 259.63
18.08 20.63 326.89 425.6 372.99
20.63 24.3 425.6 590.49 501.31
24.3 30.2 590.49 912.04 733.86
30.2 37.04 912.04 1371.96 1118.61
37.04 43.81 1371.96 1919.32 1622.72
43.81 48.32 1919.32 2334.82 2116.9
230.27 275.41 6102.65 8427.36 7162.43

Сдвигаем исходный ряд на 2 уровней. Получаем следующую таблицу:

y t y t - 2
3.18 5.66
4.31 6.89
5.66 9.47
6.89 12.34
9.47 14.36
12.34 18.08
14.36 20.63
18.08 24.3
20.63 30.2
24.3 37.04
30.2 43.81
37.04 48.32

Расчет коэффициента автокорреляции 2-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-2:

x y x 2 y 2 x y
3.18 5.66 10.11 32.04
4.31 6.89 18.58 47.47 29.7
5.66 9.47 32.04 89.68 53.6
6.89 12.34 47.47 152.28 85.02
9.47 14.36 89.68 206.21 135.99
12.34 18.08 152.28 326.89 223.11
14.36 20.63 206.21 425.6 296.25
18.08 24.3 326.89 590.49 439.34
20.63 30.2 425.6 912.04 623.03
24.3 37.04 590.49 1371.96 900.07
30.2 43.81 912.04 1919.32 1323.06
37.04 48.32 1371.96 2334.82 1789.77
186.46 271.1 4183.34 8408.79 5916.94

Сдвигаем исходный ряд на 3 уровней. Получаем следующую таблицу:

y t y t - 3
3.18 6.89
4.31 9.47
5.66 12.34
6.89 14.36
9.47 18.08
12.34 20.63
14.36 24.3
18.08 30.2
20.63 37.04
24.3 43.81
30.2 48.32

Расчет коэффициента автокорреляции 3-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-3:

x y x 2 y 2 x y
3.18 6.89 10.11 47.47 21.91
4.31 9.47 18.58 89.68 40.82
5.66 12.34 32.04 152.28 69.84
6.89 14.36 47.47 206.21 98.94
9.47 18.08 89.68 326.89 171.22
12.34 20.63 152.28 425.6 254.57
14.36 24.3 206.21 590.49 348.95
18.08 30.2 326.89 912.04 546.02
20.63 37.04 425.6 1371.96 764.14
24.3 43.81 590.49 1919.32 1064.58
30.2 48.32 912.04 2334.82 1459.26
149.42 265.44 2811.38 8376.75 4840.25

Сдвигаем исходный ряд на 4 уровней. Получаем следующую таблицу:

y t y t - 4
3.18 9.47
4.31 12.34
5.66 14.36
6.89 18.08
9.47 20.63
12.34 24.3
14.36 30.2
18.08 37.04
20.63 43.81
24.3 48.32

Расчет коэффициента автокорреляции 4-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-4:

x y x 2 y 2 x y
3.18 9.47 10.11 89.68 30.11
4.31 12.34 18.58 152.28 53.19
5.66 14.36 32.04 206.21 81.28
6.89 18.08 47.47 326.89 124.57
9.47 20.63 89.68 425.6 195.37
12.34 24.3 152.28 590.49 299.86
14.36 30.2 206.21 912.04 433.67
18.08 37.04 326.89 1371.96 669.68
20.63 43.81 425.6 1919.32 903.8
24.3 48.32 590.49 2334.82 1174.18
119.22 258.55 1899.34 8329.28 3965.71

Вывод : в данном ряду динамики имеется тенденция (r t,t-1 = 0.997 → 1).

Решение было получено и оформлено с помощью сервиса:

Автокорреляция

Вместе с этой задачей решают также:

Тест Дарбина-Уотсона

Выявление тренда методом аналитического выравнивания

Уравнение нелинейной регрессии

Показатели динамики: цепные и базисные

Анализ сезонных колебаний

Аддитивная модель временного ряда

Мультипликативная модель временного ряда

Онлайн сдача дистанционных тестов

Copyright © Semestr.RU


Список литературы

1. Практикум по эконометрике: Учебн. пособие/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 344 с.

2. Эконометрика: Учебник/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 576 с.

3. Эконометрика: Учебно-методическое пособие/ Шалабанов А.К., Роганов Д.А. – Казань: ТИСБИ, 2004. – 198 с.


При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда .

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(4.2)

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Свойства коэффициента автокорреляции.

1. Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции.

2. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом .

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой .

При наличии тенденции в ряде динамики уровни ряда характеризуются автокорреляцией, т.е. каждый последующий уровень ряда зависит от предыдущего. Например, цена на товар сегодня, как правило, зависит от цены вчерашнего дня. Корреляционная связь между последовательными значениями уровней динамического ряда называется автокорреляцией уровней динамического ряда .

Для измерения автокорреляции уровней динамического ряда используется коэффициент автокорреляции уровней

где у, – фактические уровни динамического ряда; у с_ Т – уровни того же динамического ряда, но сдвинутые на τ шагов во времени; τ – величина лага (сдвига во времени), принимающая значения 1,2, 3,.... и определяющая порядок коэффициента автокорреляции.

При τ = 1 рассчитывается коэффициент автокорреляции первого порядка, т.е. измеряется корреляция текущих значений уровней динамического ряда уг с предшествующими уровнями уг_г.

При τ = 2 изучается зависимость текущих уровней ряда у, с уровнями этого же ряда, сдвинутыми на 2 временных шага у ,_2, т.е. рассчитывается коэффициент автокорреляции второго порядка, а при х = 3 – соответственно третьего порядка, при X = к – коэффициент автокорреляции к-го порядка. Чем длиннее динамический ряд, тем выше может быть порядок коэффициента автокорреляции уровней.

Коэффициент автокорреляции уровней ряда практически рассчитывается по формуле линейного коэффициента корреляции. Поэтому его величина изменяется в пределах от -1 до +1. Чем ближе его величина , тем сильнее зависимость текущих уровней динамического ряда от предыдущих.

Если ряд характеризуется четко выраженной тенденцией, то для него коэффициент автокорреляции первого порядка приближается к +1. Так, для рассмотренного ранее ряда динамики заработной платы работника коэффициент автокорреляции уровней первого порядка составил 0,9987, демонстрируя тесную связь последующих уровней ряда от предыдущих.

Поскольку в примере рассчитывается коэффициент автокорреляции первого порядка, т.е. когда τ = 1, формула его расчета приобретает вид

(5.2)

где у, – уровни ряда в момент времени f; yf_j – те же уровни ряда, но сдвинутые на год, т.е.уровни ряда в момент времени (t – 1) (предыдущий год).

Так как оба ряда (у, иум) для расчета коэффициента автокорреляции должны быть одинаковой длины, то первое значение по ряду уг в расчетах не участвует. По нашему примеру необходимые суммы для подсчета отдельных элементов формулы коэффициента автокорреляции уровней составили

Соответственно коэффициент автокорреляции уровней составит

Методика расчета коэффициентов автокорреляции более высоких порядков та же, но при этом число коррелируемых пар уменьшается. В нашем примере их восемь (ct = 2 по t = 9). Если же увеличим лаг до 2 лет, т.е. τ = 2, то останется семь коррелируемых пар (с t = 3 по ί = 9), при τ = 3 будет шесть коррелируемых пар (с t = 4 по t = 9). Ввиду уменьшения числа наблюдений при расчете коэффициента автокорреляции уровней, увеличение величины лага не беспредельно: принято считать, что максимальная величина лага должна быть не более чем п / 4 (n – длина динамического ряда). Для нашего примера при л = = 9 максимальная величина лага составит 2 года (τ = 2).

Для расчета коэффициента автокорреляции второго порядка составим таблицу.

Таблица 5.1. Расчет коэффициента автокорреляции уровней второго порядка (для ряда динамики заработной платы работника)

y t – 2

y t y t – 2

* Подсчитано без первых двух строк

Так как теперь в расчете участвует семь коррелируемых пар и , то первые две строки табл. 5.1 не принимаются во внимание. Коэффициенты автокорреляции разных порядков принято обозначать где указывает на номер порядка коэффициента автокорреляции. Формула расчета коэффициента автокорреляции второго порядка следующая:

где

Соответственно коэффициент автокорреляции равен

В рассмотренном примере уровни динамического ряда имеют тенденцию к возрастанию, и коэффициенты автокорреляции приближаются к +1. Аналогичная картина будет наблюдаться и при тенденции к уменьшению уровней динамического ряда. Например, лесовосстановление в России за 1995–2002 гг. характеризуется тенденцией к снижению. Уровни ряда (в тыс. га) составили:

Коэффициенты автокорреляции первого и второго порядков оказались равными η = 0,812 и г2 =0,885, что подтверждает наличие тенденции в ряду динамики. При этом г, > 0 и г2 > 0, хотя ряд и имеет тенденцию к снижению. Чем тенденция по ряду динамики более четкая, тем ближе г, и г2 к +1.

Для стационарного динамического ряда с небольшими колебаниями уровней, гг достаточно близок к нулю и может принимать небольшое отрицательное значение. Так, предположим, что уровни ряда приняли следующие значения (последовательно во времени):

Коэффициент автокорреляции первого порядка составил -0,209, а коэффициент автокорреляции второго порядка составил 0,056.

Серию коэффициентов автокорреляции уровней ряда с последовательным увеличением величины лага принято называть автокорреляционной функцией (АКФ).

Для стационарного временного ряда с увеличением величины лага взаимосвязь у с и y,_t ослабевает и АКФ характеризуется монотонным убыванием, что графически должно представлять затухающую кривую (рис. 5.7).

По стационарному ряду АКФ оценивается исходя из формулы коэффициента автокорреляции

(5.3)

где n – длина временного ряда; τ –временной сдвиг; – средняя арифметическая по исходному ряду .

В нашем примере АКФ для стационарного ряда составила: г, = -0,209; г 2 = 0,056; г3 = -0,114; г4 – -0,356; г5 = 0,057; г6 = -0,074; г7 = -0,003. Однако при ограниченной длине динамического ряда поведение АКФ в виде рис. 5.7 не всегда соблюдается.

АКФ дает представление о внутренней структуре динамического ряда. С помощью АКФ можно определить наличие или отсутствие в ряду динамики периодических колебаний и соответственно величину периода колебаний: она равна той величине лага τ, при которой коэффициент автокорреляции уровней наибольший.

Предположим, что объем продаж товара за 18 мес. характеризуют следующим образом (рис. 5.8).

График показывает наличие тенденции, а также периодических колебаний. Это подтверждает и АКФ:

Рис. 5.7.

Рис. 5.8

Достаточно высокое значение коэффициента автокорреляции первого порядка (Г] = 0,863) означает наличие тенденции в ряде динамики. Вместе с тем максимальное значение коэффициента автокорреляции наблюдается при лаге 3 и кратном ему лаге 6, т.е. для ряда характерна регулярная колеблемость уровней через 3 мес.: подъем в течение 3 мес. сменяется спадом в следующий месяц. Иными словами, волнообразное изменение объема продаж повторяется через 3 мес., что и демонстрирует АКФ. Для динамического ряда с монотонной тенденцией к возрастанию (или уменьшению) уровней АКФ имеет значения, близкие к +1, которые медленно снижаются с возрастанием величины лага. Например, за 60 кварталов динамика объема продаж характеризовалась уравнением тренда

где у – объем продаж в тыс. руб.;

Коэффициент детерминации для него составил 0,973, характеризуя хорошее качество описания тенденции ряда: отклонения фактических уровней ряда от теоретических, обусловленных тенденцией, составляют всего 2,7%. АКФ для данного ряда оказалась следующей: rj = 0,991; г2 = 0,984; г3 = 0,980; г4 = = 0,979; г5 = 0,973; г6 = 0,968; г7 = 0,963; г8 = 0,965; г9 = 0,963; гю = 0,962; ги = 0,959; г12 = 0,957; г13 = 0,952; г14 = 0,955; г15 = 0,943.

Если ряд характеризуется сменой тенденций, то АКФ примет значения, стремительно уменьшающиеся с возрастанием величины лага, сопровождаемые иногда сменой знака коэффициента автокорреляции. Так, например динамический ряд описывается параболой второго порядка (рис. 5.9).

АКФ оказывается следующей:

Рис. 5.9.

Похожая ситуация имеет место, например, при анализе динамики числа раненых в ДТП (на 100 тыс. человек населения) за 1999–2008 гг. по Тюменской области. Тенденция описывается параболой видау = 80,537 + 45,756t- 3,5053г2. Коэффициенты автокорреляции уровней с увеличением величины лага составили: 0,831; 0,588; 0,179; -0,544.

Иными словами, знание АКФ может помочь при подборе модели рассматриваемого динамического ряда.

Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

    факторы, формирующие тенденцию ряда;

    факторы, формирующие циклические колебания ряда;

    случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.

Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию.

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой н
аходится экономика страны.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

§ 5.2. Автокорреляция уровней временного ряда и выявление его структуры

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда .

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Рассмотрим пример.

Пример 1. Расчет коэффициентов автокорреляции уровней для временного ряда расходов на конечное потребление .

Пусть имеются следующие условные данные о средних расходах на конечное потребление (, д. е.) за 8 лет (таблица 1).

Таблица 1

Расчет коэффициента автокорреляции первого порядка для временного ряда расходов на конечное потребление, д. е.

Разумно предположить, что расходы на конечное потребление в текущем году зависят от расходов на конечное потребление предыдущих лет.

Определим коэффициент корреляции между рядами и
и измерим тесноту связи между расходами на конечное потребление текущего и предыдущего годов. Добавим в табл. 1 временной ряд
.

Одна из рабочих формул для расчета коэффициента корреляции имеет вид:

.

В качестве переменной мы рассмотрим ряд
, в качестве переменной– ряд
. Тогда приведенная выше формула примет вид

,

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка , так как он измеряет зависимость между соседними уровнями ряда и
, т. е. при лаге 1.

Для данных примера 1 соотношения (2) составят:

Используя формулу (1), получаем коэффициент автокорреляции первого порядка:

.

Полученное значение свидетельствует об очень тесной зависимости между расходами на конечное потребление текущего и непосредственно предшествующего годов и, следовательно, о наличии во временном ряде расходов на конечное потребление сильной линейной тенденции.

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и
и определяется по формуле

,

,

Для данных из примера 1 получим:

Построим табл. 2.

Полученные результаты еще раз подтверждают вывод о том, что ряд расходов на конечное потребление содержит линейную тенденцию.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом . С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше
.

Подставив полученные значения в формулу (3), имеем:

.

Таблица 2

Расчет коэффициента автокорреляции второго порядка для временного ряда расходов на конечное потребление, д. е.

Отметим два важных свойства коэффициента автокорреляции:

Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда . График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой .

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка, ряд содержит циклические колебания с периодичностью вмоментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты () и циклической (сезонной) компоненты ().

Временной ряд расходов на конечное потребление, рассмотренный нами в примере 1, содержит только тенденцию, так как коэффициенты автокорреляции его уровней высокие.

Пример 2 Автокорреляционная функция и выявление структуры ряда.

Пусть имеются условные данные об объемах потребления электроэнергии жителями региона за 16 кварталов (табл. 3).

Таблица 3

Потребление электроэнергии жителями региона, млн. кВт ч

Нанесем эти значения на график:

Определим коэффициент корреляции первого порядка. Он составит:
. Отметим, что расчет этого коэффициента производился по 15, а не по 16 парам наблюдений. Это значение свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих уровней. Однако, как следует из графика, структура этого ряда такова, что каждый следующий уровеньзависит от уровня
и
в гораздо большей степени, чем от уровня
. Рассчитаем коэффициенты автокорреляции до порядка 8. Получим автокорреляционную функцию этого ряда. Ее значения и коррелограмма приведены в таблице 4.

Таблица 4

Коррелограмма временного ряда потребления электроэнергии

Коэффициент автокорреляции уровней

Коррелограмма

Анализ значений автокорреляционной функции позволяет сделать вывод о наличии в изучаемом временном ряде, во-первых , линейной тенденции, во-вторых , сезонных колебаний периодичностью в четыре квартала. Данный вывод подтверждается и графическим анализом структуры ряда (см. график).

Аналогично, если, например, при анализе временного ряда наиболее высоким оказался коэффициент автокорреляции уровней второго порядка, ряд одержит циклические колебания в два периода времени, т.е. имеет пилообразную структуру .

Введение

Периодическая зависимость играть роль общего типа компонентов временного ряда. Не сложно заметить, что каждое наблюдение очень похоже на пограничное; к тому же имеется повторяющаяся периодическая составляющая, что означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад.

В общей сложности, периодическая зависимость может быть формально определена как корреляционная зависимость порядка n между каждым i-м элементом ряда и (i-n) - м элементом. Ее можно измерять с помощью автокорреляции (т.е. корреляции между самими членами ряда); n обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если оплошность измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые n временных единиц.

Периодические составляющие временного ряда могут быть отысканы с помощью коррелограммы. Коррелограмма (автокоррелограмма) представляет численно и графически автокорреляционную функцию. Другими словами, коэффициенты автокорреляции для последовательности шагов из определенного диапазона. На коррелограмме просто отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

При изучении коррелограмм следует знать следующее: автокорреляции последовательных лагов формально зависимы между собой.

Рассмотрим пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Теоретические сведения

Коэффициент автокорреляции и его оценка

Для совершенной характеристики случайного движения недостаточно его математического ожидания и дисперсии. Вероятность того, что на определенном месте возникнут те или иные конкретные значения зависит от того, какие роли случайная величина получила раньше или будет получать позже.

Другими словами, существует поле рассеяния пар значений x(t), x (t+n) временного ряда, где n - постоянный интервал или задержка, которая характеризует зависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

g (n) = E[(x(t) - m) (x (t + n) - m)] -

и автокорреляции

r (n) = E[(x(t) - m) (x (t + n) - m)] / D,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p (x(t 1), x(t 2)).

r (n) = g (n) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности множитель корреляции r (n) между двумя значениями временного ряда зависит лишь от величины временного интервала n и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (n) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой n

Главным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2),…, x (n -1) и x(2), x(3),…, x(n).

Распределение коэффициентов автокорреляции неизвестно, поэтому для оценки их правдивости иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r 1 (n -1) 0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека