Атмосфера. Строение и состав атмосферы Земли

Когда мы наблюдаем солнечный летний пейзаж, нам кажется, что вся картина будто залита светом. Однако если посмотреть на солнце при помощи специальных приборов, то мы обнаружим, что вся поверхность его напоминает гигантское море, где бушуют огненные волны и перемещаются пятна. Каковы же основные составляющие солнечной атмосферы? Какие процессы происходят внутри нашей звезды и какие вещества входят в ее состав?

Общие данные

Солнце - это небесное тело, являющееся звездой, причем единственной в Солнечной системе. Вокруг него вращаются планеты, астероиды, спутники и другие космические объекты. Химический состав Солнца примерно одинаков в любой его точке. Однако он существенно изменяется по мере приближения к центру звезды, где находится его ядро. Ученые обнаружили, что солнечная атмосфера делится на несколько слоев.

Какие химические элементы входят в состав Солнца

Не всегда человечество располагало теми данными о Солнце, которые сегодня имеет наука. Когда-то сторонники религиозного мировоззрения утверждали, что мир невозможно познать. И в качестве подтверждения своих идей они приводили тот факт, что человеку не дано узнать, каков химический состав Солнца. Однако прогресс в науке убедительно доказал ошибочность таких взглядов. Особенно продвинулись ученые в деле исследования звезды после изобретения спектроскопа. Химический состав Солнца и звезд ученые изучают при помощи спектрального анализа. Так, они выяснили, что состав нашей звезды весьма разнообразен. В 1942 году исследователи обнаружили, что на Солнце присутствует даже золото, хотя его и не так много.

Другие вещества

Главным образом в химический состав Солнца входят такие элементы, как водород и гелий. Их преобладание характеризует газообразную природу нашей звезды. Содержание других элементов, например, магния, кислорода, азота, железа, кальция незначительно.

При помощи спектрального анализа исследователи выяснили, каких веществ точно нет на поверхности этой звезды. Например, хлора, ртути и бора. Однако ученые предполагают, что эти вещества, помимо основных химических элементов, входящих в состав Солнца, могут находиться в его ядре. Практически на 42% наша звезда состоит из водорода. Примерно 23% приходится на все металлы, которые есть в составе Солнца.

Как и большинство параметров других небесных тел, характеристики нашей звезды рассчитываются лишь теоретически при помощи вычислительной техники. В качестве исходных данных служат такие показатели, как радиус звезды, масса и ее температура. В настоящее время ученые определили, что химический состав Солнца представлен 69 элементами. Большую роль в этих исследованиях играет спектральный анализ. Например, благодаря ему был установлен состав атмосферы нашей звезды. Также была обнаружена интересная закономерность: набор химических элементов в составе Солнца удивительно похож на состав каменных метеоритов. Этот факт - важное свидетельство в пользу того, что эти небесные тела имеют общее происхождение.

Огненный венец

Представляет собой слой сильно разреженной плазмы. Температура ее достигает 2 млн кельвинов, а плотность вещества превосходит плотность земной атмосферы в сотни миллионов раз. Здесь атомы не могут быть в нейтральном состоянии, они постоянно сталкиваются и ионизируются. Корона является мощным источником ультрафиолетового излучения. Вся наша планетная система подвержена воздействию солнечного ветра. Его изначальная скорость равна практически 1 тыс км/сек, однако по мере удаления от звезды она постепенно уменьшается. Скорость солнечного ветра у поверхности земли равна приблизительно 400 км/сек.

Общие представления о короне

Солнечный венец иногда называют атмосферой. Однако он является лишь ее внешней частью. Проще всего корону наблюдать во время полного затмения. Тем не менее зарисовать ее будет очень трудно, ведь затмение длится всего лишь несколько минут. Когда же была изобретена фотография, астрономы смогли получить объективное представление о солнечной короне.

Уже после того как были сделаны первые снимки, исследователям удалось обнаружить области, которые связаны с повышенной активностью звезды. Корона Солнца имеет лучистую структуру. Она является не только самой горячей частью его атмосферы, но и по отношению к нашей планете находится ближе всего. Фактически, мы постоянно находимся в ее пределах, ведь солнечный ветер проникает в самые отдаленные уголки солнечной системы. Однако от ее радиационного воздействия мы защищены земной атмосферой.

Ядро, хромосфера и фотосфера

Центральная часть нашей звезды называется ядром. Его радиус равен примерно четверти общего радиуса Солнца. Вещество внутри ядра очень сжато. Ближе к поверхности звезды находится так называемая конвективная зона, где происходит движение вещества, порождающее магнитное поле. Наконец, видимая поверхность Солнца называется фотосферой. Она представляет собой слой толщиной более 300 км. Именно из фотосферы на Землю приходит солнечное излучение. Температура ее достигает приблизительно 4800 кельвинов. Водород здесь сохраняется практически в нейтральном состоянии. Над фотосферой расположена хромосфера. Ее толщина составляет порядка 3 тыс. км. Хотя хромосфера и корона Солнца находятся над фотосферой, четких границ между этими слоями ученые не проводят.

Протуберанцы

Хромосфера имеет очень низкую плотность и по силе излучения уступает солнечной короне. Однако здесь можно наблюдать интересное явление: гигантские языки пламени, высота которых составляет несколько тысяч километров. Они носят название солнечных протуберанцев. Иногда протуберанцы поднимаются на высоту до миллиона километров над поверхностью звезды.

Исследования

Протуберанцам свойственны те же показатели плотности, что и хромосфере. Однако они располагаются непосредственно над ней и окружаются ее разреженными слоями. Впервые в истории астрономии протуберанцы наблюдались исследователем из Франции Пьером Жансеном и его английским коллегой Джозефом Локьером в 1868 г. Их спектр включает в себя несколько ярких линий. Химический состав Солнца и протуберанцев очень схож. Главным образом в нем представлен водород, гелий и кальций, а присутствие других элементов незначительно.

Некоторые протуберанцы, просуществовав определенный промежуток времени без видимых изменений, внезапно взрываются. Их вещество с гигантской скоростью, достигающей нескольких километров в секунду, выбрасывается в близлежащее космическое пространство. Внешний вид хромосферы часто меняется, что свидетельствует о различных процессах, происходящих на поверхности Солнца, в том числе и о движении газов.

В областях звезды с повышенной активностью можно наблюдать не только протуберанцы, но и пятна, а также усиление магнитных полей. Иногда при помощи специальной аппаратуры на Солнце обнаруживаются вспышки особенно плотных газов, температура которых может достигать огромных величин.

Хромосферные вспышки

Иногда радиоизлучение нашей звезды увеличивается в сотни тысяч раз. Такое явление называют хромосферной вспышкой. Оно сопровождается образованием пятен на поверхности Солнца. Сначала вспышки были замечены в виде повышения яркости хромосферы, однако впоследствии оказалось, что они представляют собой целый комплекс различных явлений: резкого повышения радиоизлучения (рентгеновского и гамма-излучения), выброса массы из короны, протонных вспышек.

Делаем выводы

Итак, мы выяснили, что химический состав Солнца представлен большей частью двумя веществами: водородом и гелием. Конечно, есть и другие элементы, но их процент невысок. Кроме того, ученые не обнаружили никаких новых химических веществ, которые бы входили в состав звезды и при этом отсутствовали бы на Земле. В солнечной фотосфере происходит формирование видимого излучения. Оно в свою очередь имеет колоссальное значение для поддержания жизни на нашей планете.

Солнце является раскаленным телом, которое непрерывно испускает Его поверхность окружена облаком газов. Их температура не настолько высока, как у газов внутри звезды, однако и она впечатляет. Спектральный анализ позволяет на расстоянии узнать, каков химический состав Солнца и звезд. А поскольку спектры многих звезд очень похожи на спектры Солнца, это означает, что их состав примерно одинаков.

Сегодня процессы, происходящие на поверхности и внутри главного светила нашей планетарной системы, включая исследование его химического состава, изучаются астрономами в специальных солнечных обсерваториях.

Атмосфера

Земная атмосфера - это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство.

Фотосфера

Фотосфера Солнца начинается на 200-300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.

Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К.

При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняется относительно немного простейших молекул и радикалов типа Н 2 , ОН, СН.

Особую роль в солнечной атмосфере играет не встречающийся в I земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее “холодном” слое фотосферы при “налипании” на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые доставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов. При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растёт. Поэтому видимый край Солнца и кажется нам очень резким.

Почти все наши знания о Солнце основаны на изучении его спектра - Узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул:

“Спектрум!” (лат. spectrum - “видение”). Позже в спектре Солнца заметили тёмные линии и сочли их границами цветов. В 1815 г. немецкий физик Йозеф Фраунгофер дал первое подробное описание таких линий в солнечном спектре, и их стали называть его именем. Оказалось, что фраунгоферовы линии соответствуют эким участкам спектра, которые сильно поглощаются атомами различных веществ (см. статью “Анализ Видимого света”). В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зёрнышками - гранулами, разделёнными сетью узких тёмных дорожек. Грануляция является результатом перемешивания всплывающих более тёплых потоков газа и опускающихся более холодных. Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы.

В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце. Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько раз более сильные, чем на Земле. Ионизованная плазма - хороший проводник, она не может перемешиваться поперёк линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъём горячих газов снизу тормозится, и возникает тёмная область - солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем чёрным, хотя в действительности яркость его слабее только раз в десять.

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки - поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна как правило, состоят из тёмной части (ядра) и менее тёмной - полутени, структура которой придаёт пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями.

Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы - хромосферу и корону.

Хромосфера

Хромосфера (греч. “сфера цвета”) названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяжённость хромосферы 10- 15 тыс. километров.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Часто во время затмений (а при помощи специальных спектральных приборов - и не дожидаясь затмений) над поверхностью Солнца можно наблюдать причудливой формы “фонтаны”, “облака”, “воронки”, “кусты”, “арки” и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окружёнными плавными изогнутыми струями, которые стекают в хромосферу или вытекают из неё, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы - протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска тёмными, длинными и изогнутыми волокнами.

Протуберанцы имеют примерно ту же плотность и температуру, что и Хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.

Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения. Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих её газов.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Пятна, факелы, протуберанцы, хромосферные вспышки - всё это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.

Корона

В отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца - корона - обладает огромной протяжённостью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а её слабое продолжение уходит ещё дальше.

Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъёме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы его атмосфера не должна быть высокой. В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1 - 2 млн градусов!

Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить её цвет.

Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу её часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна. Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны - с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластиной специальный “радиальный” фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На такихснимках её структуру можно проследить до расстояний во много солнечных радиусов.

Спектральный анализ солнечных лучей показал, что больше всего в нашей звезде водорода (73% от массы звезды) и гелия (25%). На остальные элементы (железо, кислород, никель, азот, кремний, сера, углерод, магний, неон, хром, кальций, натрий) приходится всего 2%. Все вещества, обнаруженные на Солнце, есть и на Земле, и на других планетах, что говорит об их едином происхождении. Средняя плотность вещества Солнца - 1,4 г/см3.

Как изучают Солнце

Солнце - это « » с множеством слоев, имеющих разный состав и плотность, в них проходят разные процессы. В привычном человеческому глазу спектре наблюдение звезды невозможно, однако в настоящее время созданы , телескопы, радиотелескопы и прочие приборы, фиксирующие ультрафиолетовое, инфракрасное, рентгеновское излучения Солнца. С Земли наиболее эффективным является наблюдение во время солнечного затмения. В этот короткий период астрономы во всем мире изучают корону, протуберанцы, хромосферу и различные явления, происходящие на единственной доступной для такого подробного изучения звезде.

Структура Солнца

Корона - внешняя оболочка Солнца. У нее очень низкая плотность, из-за этого ее видно только во время затмения. Толщина внешней атмосферы неравномерна, поэтому время от времени в ней появляются дыры. Через эти дыры в космос со скоростью 300-1200 м/с устремляется солнечный ветер - мощный поток энергии, который на земле становится причиной северных сияний и магнитных бурь.


Хромосфера - слой газов, достигающий толщины 16 тыс. км. В ней происходит конвекция раскаленных газов, которые, от поверхности нижнего слоя (фотосферы), вновь опускаются назад. Именно они «прожигают» корону и образуют потоки солнечного ветра длиной до 150 тыс. км.


Фотосфера - это плотный непрозрачный слой толщиной 500-1 500 км, в котором происходят сильнейшие огненные бури диаметром до 1 тыс. км. Температура газов фотосферы - 6 000 оС. Они поглощают энергию из нижележащего слоя и выделяют ее в виде тепла и света. Структура фотосферы напоминает гранулы. Разрывы в слое воспринимаются, как пятна на Солнце.


Конвективная зона толщиной 125-200 тыс. км - солнечная оболочка, в которой газы постоянно обмениваются энергией с радиационной зоной, нагреваясь, поднимаются к фотосфере и, охлаждаясь, вновь спускаются вниз за новой порцией энергии.


Радиационная зона имеет толщину 500 тыс. км и очень высокую плотность. Здесь вещество подвергается бомбардировке гамма-лучами, которые преобразуются в менее радиоактивные ультрафиолетовые (UV) и рентгеновские (X) лучи.


Кора, или ядро, - солнечный «котел», где постоянно происходят протон-протонные термоядерные реакции, благодаря которым звезда и получает энергию. Атомы водорода превращаются в гелий при температуре 14 х 10 в оС. Здесь титаническое давление - триллион кг на каждый кубический см. Ежесекундно здесь превращается 4,26 млн тонн водорода в гелий.

Своеобразным “ паспортом ” каждой звезды, в том числе и Солнца, является ее спектр. В солнечном спектре зарегистрировано более 30000 линий, принадлежащих 72 химическим элементам. Конечно, на Солнце “ присутствуют ” и остальные 20 элементов. Просто их линии очень слабые и заметить их на общем фоне нелегко. В настоящее время Солнце состоит примерно из 75% водорода и 25% гелия по массе (92.1% водорода и 7.8% гелия по числу атомов); все остальные химические элементы (так называемые "металлы") содержат только 0.2% общей массы. Это соотношение медленно меняется со временем, по мере того, как в ядре Солнца водород превращается в гелий.

Внутреннее строение Солнца

Солнце представляет собой сферически симметричное тело, находящееся в равновесии. Всюду на одинаковых растояниях от центра этого шара физические условия одинаковы, но они заметно меняются по мере приближения к центру. . Солнце можно разделить на несколько концетрических слоев, постепенно переходящих друг в друга (рис.3). В центре Солнца температура и плотность достигают наибольших значений. Условия в солнечном ядре (которое занимает примерно 25% от его радиуса) чрезвычайно экстремальные. Температура достигает 15.6 миллионов градусов Кельвина, а давление - 250 миллиардов атмосфер. Газ в ядре более чем в 150 раз плотнее воды. Ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходят близ самого центра Солнца. По мере удаления от центра Солнца температура и плотность становятся меньше, выделение энергии быстро прекращается и вплоть до расстояния 0,2-0,3 радиуса от центра. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 млн. градусов. В результате ядерные реакции здесь практически не происходят. Эти слои только передают наружу излучение, возникшее на большей глубине, поглощаемое и переизлучаемое вышележащими слоями. Последние 20% пути к поверхности энергия переносится конвекцией, а не излучением. Конвекция - это перемещение вещества в целом, потоками или пузырями, наподобие того, как ведет себя кипящая вода. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ опускается вниз.

Атмосфера Солнца

Все расмотренные выше слои Солнца фактически не наблюдаемы. Над конвективной зоной располагаются непосредственно наблюдаемые слои Солнца, называемые его атмосферой. Солнечная атмосфера также состоит из нескольких различных слоев. В строении внешних слоев Солнца выделяют фотосферу (“ сферу света ”, если перевести с греческого), хромосферу (“ сферу света ”) и корону.

Фотосфера

Видимая солнечная поверхность - фотосфера - это слой газа толщиной около 700 км, в котором формируется приходящее к Земле излучение Солнца. Как раз через середину этого слоя и “ проведена ” условная поверхность нашей звезды, используемая для различных расчетов, конкретно - отсчета высот (вверх) и глубин (вниз). Во внешних, более холодных, разряженных слоях фотосферы на фоне непрерывного спектра возникают фраунгоферовы линии поглощения. Производя анализ солнечного спектра, содержащего свыше 300 тысяч линий поглощения, устанавливают химический состав не фотосферы, а расположенных над ней слоев. Распространяясь в верхние слои солнечной атмосферы, волны, возникшие в конвективной зоне и в фотосфере, передают им часть механической энергии конвективных движений и производят нагревание газов последующих слоев атмосферы- хромосферы и короны. В результате верхние слои фотосферы с температурой около 4500K оказываются самыми "холодными" на Солнце. Как вглубь, так и вверх от них температура газов быстро растет.

Вопросы программы:

    Химический состав солнечной атмосферы;

    Вращение Солнца;

    Потемнение солнечного диска к краю;

    Внешние слои солнечной атмосферы: хромосфера и корона;

    Радио- и рентгеновское излучение Солнца.

Краткое содержание:

Химический состав солнечной атмосферы;

В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч тёмных линий поглощения, называемых фраунгоферовыми . Наибольшей интенсивности непрерывный спектр достигает в синезелёной части, у длин волн 4300 - 5000 А. В обе стороны от максимума интенсивность спектра убывает.

Внеатмосферные наблюдения показали, что Солнце излучает в невидимые коротковолновую и длинноволновую области спектра. В более коротковолновой области спектр резко меняется. Интенсивность непрерывного спектра быстро падает, а тёмные фраунгоферовы линии сменяются эмиссионными.

Самая сильная линия солнечного спектра находится в ультрафиолетовой области. Это резонансная линия водорода L  с длиной волны 1216 А. В видимой области наиболее интенсивны резонансные линии Н и К ионизованного кальция. После них по интенсивности идут первые линии бальмеровской серии водорода H  , H  , H  , затем резонансные линии натрия, линии магния, железа, титана, других элементов. Остальные многочисленные линии отождествляются со спектрами около 70 известных химических элементов из таблицы Д.И. Менделеева. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, железа, кальция, др. элементов.

Преобладающим элементом на Солнце является водород. На его долю приходится 70% массы Солнца. Следующим является гелий - 29% массы. На остальные элементы вместе взятые приходится чуть больше 1%.

Вращение Солнца

Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца.

Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7 0 15’ и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведённым из центра Солнца в данную точку на его поверхности называетсягелиографической широтой .

Угловая скорость вращения Солнца убывает по мере удаления от экватора и приближения к полюсам.

В среднем = 14º,4 - 2º,7 sin 2 B, где В - гелиографическая широта. Угловая скорость измеряется углом поворота за сутки.

Сидерический период экваториальной области равен 25 суток, вблизи полюсов он достигает 30 суток. Вследствие вращения Земли вокруг Солнца его вращение кажется более замедленным и равно 27 и 32 суток соответственно (синодический период).

Потемнение солнечного диска к краю

Фотосферой называется основная часть солнечной атмосферы, в которой образуется видимое излучение, имеющее непрерывный характер. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера - это тонкий слой газа протяжённостью в несколько сотен километров, достаточно непрозрачный. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его “поверхности”.

При наблюдении солнечного диска заметно его потемнение к краю. По мере удаления от центра, яркость убывает очень быстро. Этот эффект объясняется тем, что в фотосфере происходит рост температуры с глубиной.

Различные точки солнечного диска характеризуют углом , который составляет луч зрения с нормалью к поверхности Солнца в рассматриваемом месте. В центре диска этот угол равен 0, и луч зрения совпадает с радиусом Солнца. На краю= 90 и луч зрения скользит вдоль касательной к слоям Солнца. Большая часть излучения некоторого слоя газа исходит от уровня, находящегося на оптической глубине1. Когда луч зрения пересекает слои фотосферы под большим углом, оптическая глубина1 достигается в более внешних слоях, где температура меньше. Вследствие этого интенсивность излучения от краёв солнечного диска меньше интенсивности излучения его середины.

Уменьшение яркости солнечного диска к краю в первом приближении может быть представлено формулой:

I () = I 0 (1 - u + cos),

где I () - яркость в точке, в которой луч зрения составляет уголс нормалью, I 0 - яркость излучения центра диска, u - коэффициент пропорциональности, зависящий от длины волны.

Визуальные и фотографические наблюдения фотосферы позволяют обнаружить её тонкую структуру, напоминающую тесно расположенные кучевые облака. Светлые округлые образования называются гранулами, а вся структура - грануляцией . Угловые размеры гранул составляют не более 1″ дуги, что соответствует 700 км. Каждая отдельная гранула существует 5-10 минут, после чего она распадается и на её месте образуются новые гранулы. Гранулы окружены тёмными промежутками. В гранулах вещество поднимается, а вокруг них опускается. Скорость этих движений 1-2 км/с.

Грануляция - проявление конвективной зоны, расположенной под фотосферой. В конвективной зоне происходит перемешивание вещества в результате подъёма и опускания отдельных масс газа.

Причиной возникновения конвекции в наружных слоях Солнца являются два важных обстоятельства. С одной стороны, температура непосредственно под фотосферой очень быстро растёт вглубь и лучеиспускание не может обеспечить выхода излучения из более глубоких горячих слоёв. Поэтому энергия переносится самими движущимися неоднородностями. С другой стороны, эти неоднородности оказываются живучими, если газ в них не полностью, а лишь частично ионизован.

При переходе в нижние слои фотосферы газ нейтрализуется и не способен образовывать устойчивые неоднородности. поэтому в самих верхних частях конвективной зоны конвективные движения тормозятся и конвекция внезапно прекращается. Колебания и возмущения в фотосфере порождают акустические волны. Наружные слои конвективной зоны представляют своеобразный резонатор в котором возбуждаются 5-минутные колебания в виде стоячих волн.

Внешние слои солнечной атмосферы: хромосфера и корона

Плотность вещества в фотосфере быстро уменьшается с высотой и внешние слои оказываются сильно разреженными. В наружных слоях фотосферы температура достигает 4500 К, а потом снова начинает расти. Происходит медленный рост температуры до нескольких десятков тысяч градусов, сопровождающийся ионизацией водорода и гелия. Эта часть атмосферы называется хромосферой . В верхних слоях хромосферы плотность вещества достигает 10 -15 г/см 3 .

В 1 см 3 этих слоёв хромосферы содержится около 10 9 атомов, но температура возрастает до миллиона градусов. Здесь начинается самая внешняя часть атмосферы Солнца, которая называется солнечной короной. Причиной разогрева самых внешних слоёв солнечной атмосферы является энергия акустических волн, возникающих в фотосфере. При распространении вверх, в слои с меньшей плотностью, эти волны увеличивают свою амплитуду до нескольких километров и превращаются в ударные волны. В результате возникновения ударных волн происходит диссипация волн, которая увеличивает хаотические скорости движения частиц и происходит рост температуры.

Интегральная яркость хромосферы в сотни раз меньше чем яркость фотосферы. Поэтому для наблюдения хромосферы необходимо применение специальных методов, позволяющих выделить слабое её излучение из мощного потока фотосферной радиации. Наиболее удобными методами являются наблюдения в моменты затмений. Протяжённость хромосферы составляет 12 - 15 000 км.

При изучении фотографий хромосферы видны неоднородности, наиболее мелкие называются спикулами . Спикулы имеют продолговатую форму, вытянуты в радиальном направлении. Длина их составляет несколько тысяч км., толщина около 1 000 км. Со скоростями в несколько десятков км/с спикулы поднимаются из хромосферы в корону и растворяются в ней. Через спикулы происходит обмен вещества хромосферы с вышележащей короной. Спикулы образуют более крупную структуру, называемую хромосферной сеткой, порождённую волновыми движениями, вызванными значительно большими и более глубокими элементами подфотосферной конвективной зоны, чем гранулы.

Корона имеет очень малую яркость, поэтому может наблюдаться лишь во время полной фазы солнечных затмений. Вне затмений она наблюдается с помощью коронографов. Корона не имеет резких очертаний и обладает неправильной формой, сильно меняющейся со временем. Наиболее яркую часть короны, удалённую от лимба не более, чем на 0,2 - 0,3 радиуса Солнца принято называть внутренней короной, а остальную, весьма протяжённую часть - внешней короной. Важной особенностью короны является её лучистая структура. Лучи бывают различной длины, вплоть до десятка и более солнечных радиусов. Внутренняя корона богата структурными образованиями, напоминающими дуги, шлемы, отдельные облака.

Излучение короны является рассеянным светом фотосферы. Этот свет сильно поляризован. Такую поляризацию могут вызвать только свободные электроны. В 1 см 3 вещества короны содержится около 10 8 свободных электронов. Появление такого количества свободных электронов должно быть вызвано ионизацией. Значит в короне в 1 см 3 содержится около 10 8 ионов. Общая концентрация вещества должна быть 2 . 10 8 . Солнечная корона представляет собой разреженную плазму с температурой около миллиона кельвинов. Следствием высокой температуры является большая протяжённость короны. Протяжённость короны в сотни раз превышает толщину фотосферы и составляет сотни тысяч километров.

Радио- и рентгеновское излучение Солнца

С олнечная корона полностью прозрачна для видимого излучения, но плохо пропускает радиоволны, которые испытывают в ней сильное поглощение и преломление. На метровых волнах яркостная температура короны достигает миллиона градусов. На более коротких волнах она уменьшается. Это связано с увеличением глубины, откуда выходит излучение, из-за уменьшения поглощающих свойств плазмы.

Радиоизлучение солнечной короны прослежено на расстояния в несколько десятков радиусов. Это возможно благодаря тому, что Солнце ежегодно проходит мимо мощного источника радиоизлучения - Крабовидной туманности и солнечная корона затмевает его. Происходит рассеяние излучения туманности в неоднородностях короны. Наблюдаются всплески радиоизлучения Солнца, вызванные колебаниями плазмы, связанными с прохождениями через неё космических лучей во время хромосферных вспышек.

Рентгеновское излучение изучено при помощи специальных телескопов, установленных на космических аппаратах. Рентгеновское изображение Солнца имеет неправильную форму с множеством ярких пятен и “клочковатой” структурой. Вблизи оптического лимба заметно увеличение яркости в виде неоднородного кольца. Особенно яркие пятна наблюдаются над центрами солнечной активности, в областях, где находятся мощные источники радиоизлучения на дециметровых и метровых волнах. Это означает, что рентгеновское излучение возникает в основном с солнечной короне. Рентгеновские наблюдения Солнца позволяют проводить детальные исследования структуры солнечной короны непосредственно в проекции на диск Солнца. Рядом с яркими областями свечения короны над пятнами обнаружены обширные тёмные области, не связанные ни с какими заметными образованиями в видимых лучах. Они называютсякорональными дырами и связаны с участками солнечной атмосферы, в которых магнитные поля не образуют петель. Корональные дыры являются источником усиления солнечного ветра. Они могут существовать в течение нескольких оборотов Солнца и вызывать на Земле 27-дневную периодичность явлений, чувствительных к корпускулярному излучению Солнца.

Контрольные вопросы:

    Какие химические элементы преобладают в солнечной атмосфере?

    Как можно узнать о химическом составе Солнца?

    С каким периодом Солнце вращается вокруг своей оси?

    Совпадает ли период вращения экваториальных и полярных областей Солнца?

    Что такое фотосфера Солнца?

    Какое строение имеет Солнечная фотосфера?

    Чем вызвано потемнение солнечного диска к краю?

    Что такое грануляция?

    Что такое солнечная корона?

    Какова плотность вещества в короне?

    Что такое солнечная хромосфера?

    Что такое спикулы?

    Какова температура короны?

    Чем объясняется большая температура короны?

    Каковы особенности радиоизлучения Солнца?

    Какие области Солнца ответственны за появление рентгеновского излучения?

Литература:

    Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.

    Галузо И.В., Голубев В.А., Шимбалев А.А. Планирование и методика проведения уроков. Астрономия в 11 классе. Минск. Аверсэв. 2003.

    Уипл Ф.Л. Семья Солнца. М. Мир. 1984

    Шкловский И. С. Звёзды: их рождение, жизнь и смерть. М. Наука. 1984

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека