Загрязнение почвы свинцом максимально. Тяжелые металлы – наиболее опасные элементы, способные загрязнять почву


Загрязнение почв тяжелыми металлами имеет разные источники:

1. отходы металлообрабатывающей промышленности;

2. промышленные выбросы;

3. продукты сгорания топлива;

4. автомобильные выхлопы отработанных газов;

5. средства химизации сельского хозяйства.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тонн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 тыс. мг/кг свинца, до 3 тыс. мг/кг меди, до 10 тыс. мг/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%, а в США эксплуатируют руды с содержанием цинка 1,8%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом.

Тяжелые металлы попадают в почву вместе с удобрениями, в состав которых они входят как примесь, а также и с биоцидами.

Л. Г. Бондарев (1976) подсчитал возможные поступления тяжелых металлов на поверхность почвенного покрова в результате производственной деятельности человека при полном исчерпании рудных запасов, в сжигании имеющихся запасов угля и торфа и сравнение их с возможными запасами металлами, аккумулированных в гумосфере к настоящему времени. Полученная картина позволяет составить представление о тех изменениях, которые человек в состоянии вызвать в течение 500-1000 лет, на которые хватит разведанных полезных ископаемых.

Возможное поступление металлов в биосферу при исчерпании достоверных запасов руд, угля, торфа, млн. тонн

Суммарный техногенный выброс металлов

Содержится в гумосфере

Отношение техногенного выброса к содержанию в гумосфере

Отношение этих величин позволяет прогнозировать масштаб влияния деятельности человека на окружающую среду, прежде всего на почвенный покров.

Техногенное поступление металлов в почву, закрепление их в гумусовых горизонтах в почвенном профиле в целом не может быть равномерным. Неравномерность его и контрастность прежде всего связана с плотностью населения. Если считать эту связь пропорциональной, то 37,3% всех металлов будет рассеяно всего лишь в 2% обитаемой суши.

Распределение тяжелых металлов по поверхности почвы определяется многими факторами. Оно зависит от особенностей источников загрязнения, метеорологических особенностей региона, геохимических факторов и ландшафтной обстановке в целом.

Источник загрязнения в целом определяет качество и количество выбрасываемого продукта. При этом степень его рассеивания зависит от высоты выброса. Зона максимального загрязнения распространяется на расстояние, равное 10-40-кратной высоте трубы при высоком и горячем выбросе, 5-20-кратной высоте трубы при низком промышленном выбросе. Длительность нахождения частиц выброса в атмосфере зависит от их массы и физико-химических свойств. Чем тяжелее частицы, тем быстрее они оседают.

Неравномерность техногенного распространения металлов усугубляется неоднородностью геохимической обстановке а природных ландшафтах. В связи с этим, для прогнозирования возможного загрязнения продуктами техногенеза и предотвращения нежелательных последствий деятельности человека необходимо понимание законов геохимии, законов миграции химических элементов в различных природных ландшафтах или геохимической обстановке.

Химические элементы и их соединения попадая в почву претерпевают ряд превращений, рассеиваются или накапливаются в зависимости от характера геохимических барьеров, свойственных данной территории. Понятие о геохимических барьерах было сформулировано А. И. Перельманом (1961) как участках зоны гипергенеза, на которых изменение условий миграции приводит к накоплению химических элементов. В основу классификации барьеров положены виды миграции элементов. На этом основании А. И. Перельман выделяет четыре типа и несколько классов геохимических барьеров:

1. барьеры – для всех элементов, которые биогеохимические перераспределяются и сортируются живыми организмами (кислород, углерод, водород, кальций, калий, азот, кремний, марганец и т.д.);

2. физико-химические барьеры:

1) окислительные – железные или железно-марганцевые (железо, марганец), марганцевые (марганец), серный (сера);

2) восстановительные – сульфидный (железо, цинк, никель, медь, кобальт, свинец, мышьяк и др.), глеевый (ванадий, медь, серебро, селен);

3) сульфатный (барий, кальций, стронций);

4) щелочной (железо, кальций, магний, медь, стронций, никель и др.);

5) кислый (оксид кремния);

6) испарительный (кальций, натрий, магний, сера, фтор и т.д.);

7) адсорбционный (кальций, калий, магний, фосфор, сера, свинец и др.);

8) термодинамический (кальций, сера).

3. механические барьеры (железо, титан, хром, никель и др.);

4. техногенные барьеры.

Геохимические барьеры существуют не изолированно, а в сочетании друг с другом, образуя сложные комплексы. Они регулируют элементный состав потоков веществ, от них в большей мере зависит функционирование экосистем.

Продукты техногенеза в зависимости от их природы и той ландшафтной обстановки, в которую они попадают, могут либо перерабатываться природными процессами, и не вызывать существенных изменений в природе, либо сохраняться и накапливаться, губительно влияя на все живое.

И тот и другой процесс определяются рядом факторов, анализ которых позволяет судить об уровне биохимической устойчивости ландшафта и прогнозировать характер их изменений в природе под влиянием техногенеза. В автономных ландшафтах развиваются процессы самоочищения от техногенного загрязнения, так как продукты техногенеза рассеиваются поверхностными и внутрипочвенными водами. В аккумулятивных ландшафтах накапливаются и консервируются продукты техногенеза.

Промышленные стоки, кг/л

Почва, мг/кг

Растения, мг/кг

Вода питьевая, мг/л

Воздух, мг/м 3

ПДК в крови человека, мг/л

* У автострад в зависимости от интенсивности движения и расстояния до автострады

Всевозрастающее внимание к охране окружающей среды вызвал особый интерес к вопросам воздействия на почву тяжелых металлов.

С исторической точки зрения интерес к этой проблеме появился с исследованием плодородия почв, поскольку такие элементы, как железо, марганец, медь, цинк, молибден и, возможно, кобальт, очень важны для жизни растений и, следовательно, для животных и человека.

Они известны и под названием микроэлементов, потому, что необходимы растениям в малых количествах. К группе микроэлементов относятся также металлы, содержание которых в почве довольно высокое, например, железо, которое входит в состав большинства почв и занимает четвертое место в составе земной коры (5%) после кислорода (46,6%), кремния (27,7%) и алюминия (8,1%).

Все микроэлементы могут оказывать отрицательное влияние на растения, если концентрация их доступных форм превышает определенные пределы. Некоторые тяжелые металлы, например, ртуть, свинец и кадмий, которые, по всей видимости, не очень важны для растений и животных, опасны для здоровья человека даже при низких концентрациях.

Выхлопные газы транспортных средств, вывоз в поле или станции очистки сточных вод, орошение сточными водами, отходы, остатки и выбросы при эксплуатации шахт и промышленных площадок, внесение фосфорных и органических удобрений, применение пестицидов и т.д. привели к увеличению концентраций тяжелых металлов в почве.

До тех пор, пока тяжелые металлы прочно связаны с составными частями почвы и труднодоступны, их отрицательное влияние на почву и окружающую среду будет незначительным. Однако, если почвенные условия позволяют перейти тяжелым металлам в почвенный раствор, появляется прямая опасность загрязнения почв, возникает вероятность проникновения их в растения, а также в организм человека и животных, потребляющие эти растения. Кроме того, тяжелые металлы могут быть загрязнителями растений и водоемов в результате использования сточных ила вод. Опасность загрязнения почв и растений зависит: от вида растений; форм химических соединений в почве; присутствия элементов противодействующих влиянию тяжелых металлов и веществ, образующих с ними комплексные соединения; от процессов адсорбции и десорбции; количества доступных форм этих металлов в почве и почвенно-климатических условий. Следовательно, отрицательное влияние тяжелых металлов зависит, по существу, от их подвижности, т.е. растворимости.

Тяжелые металлы в основном характеризуются переменной валентностью, низкой растворимостью их гидроокисей, высокой способностью образовывать комплексные соединения и, естественно, катионной способностью.

К факторам, способствующим удержанию тяжелых металлов почвой относятся: обменная адсорбция поверхности глин и гумуса, формирование комплексных соединений с гумусом, адсорбция поверхностна и окклюзирование (растворяющие или поглощающие способности газов расплавленными или твердыми металлами) гидратированными окислами алюминия, железа, марганца и т.д., а также формирование нерастворимых соединений, особенно при восстановлении.

Тяжелые металлы в почвенном растворе встречаются как в ионной так и в связанной формах, которые находятся в определенном равновесии (рис. 1).

На рисунке Л р – растворимые лиганды, какими являются органические кислоты с малым молекулярным весом, а Л н – нерастворимые. Реакция металлов (М) с гумусовыми веществами включает частично и ионный обмен.

Конечно, в почве могут присутствовать и другие формы металлов, которые не участвуют непосредственно в этом равновесии, например, металлы из кристаллической решетки первичных и вторичных минералов, а также металлы из живых организмов и их отмерших остатков.

Наблюдение за изменением тяжелых металлов в почве невозможно без знания факторов, определяющих их подвижность. Процессы передвижения удержания, обуславливающие поведение тяжелых металлов в почве, мало чем отличаются от процессов, определяющих поведение других катионов. Хотя тяжелые металлы иногда обнаруживаются в почвах в низких концентрациях, они формируют устойчивые комплексы с органическими соединениями и вступают в специфические реакции адсорбции легче, чем щелочные и щелочноземельные металлы.

Миграция тяжелых металлов в почвах может происходить с жидкостью и суспензией при помощи корней растений или почвенных микроорганизмов. Миграции растворимых соединений происходит вместе с почвенным раствором (диффузия) или путем перемещения самой жидкости. Вымывание глин и органического вещества приводит к миграции всех связанных с ними металлов. Миграция летучих веществ в газообразной форме, например, диметила ртути, носит случайный характер, и этот способ перемещения не имеет особого значения. Миграция в твердой фазе и проникновение в кристаллическую решетку являются больше механизмом связывания, чем перемещения.

Тяжелые металлы могут быть внесены или адсорбированы микроорганизмами, которые в свою очередь, способны участвовать в миграции соответствующих металлов.

Дождевые черви и другие организмы могут содействовать миграции тяжелых металлов механическим или биологическим путями, перемешивая почву или включая металлы в свои ткани.

Из всех видов миграции самая важная – миграция в жидкой фазе, потому что большинство металлов попадает в почву в растворимом виде или в виде водной суспензии и фактически все взаимодействия между тяжелыми металлами и жидкими составными частями почвы происходит на границе жидкой и твердой фаз.

Тяжелые металлы в почве через трофическую цепь поступают в растения, а затем потребляются животными и человеком. В круговороте тяжелых металлов участвуют различные биологические барьеры, вследствие чего происходит выборочное бионакопление, защищающее живые организмы от избытка этих элементов. Все же деятельность биологических барьеров ограничена, и чаще всего тяжелые металлы концентрируются в почве. Устойчивость почв к загрязнению ими различна в зависимости от буферности.

Почвы с высокой адсорбционной способностью соответственно и высоким содержанием глин, а также органического вещества могут удерживать эти элементы, особенно в верхних горизонтах. Это характерно для карбонатных почв и почв с нейтральной реакцией. В этих почвах количество токсических соединений, которые могут быть вымыты в грунтовые воды и поглощены растениями, значительно меньше, чем в песчаных кислых почвах. Однако при этом существует большой риск в увеличении концентрации элементов до токсичной, что вызывает нарушение равновесия физических, химических и биологических процессов в почве. Тяжелые металлы, удерживаемые органической и коллоидной частями почвы, значительно ограничивают биологическую деятельность, ингибируют процессы иттрификации, которые имеют важное значение для плодородия почв.

Песчаные почвы, которые характеризуются низкой поглотительной способностью, как и кислые почвы очень слабо удерживают тяжелые металлы, за исключением молибдена и селена. Поэтому они легко адсорбируются растениями, причем некоторые из них даже в очень малых концентрациях обладают токсичным воздействием.

Содержание цинка в почве колеблется от 10 до 800 мг/кг, хотя чаще всего оно составляет 30-50 мг/кг. Накопление избыточного количества цинка отрицательно влияет на большинство почвенных процессов: вызывает изменение физических и физико-химических свойств почвы, снижает биологическую деятельность. Цинк подавляет жизнедеятельность микроорганизмов, вследствие чего нарушаются процессы образования органического вещества в почвах. Избыток цинка в почвенном покрове затрудняет ферментацию разложения целлюлозы, дыхания, действия уреазы.

Тяжелые металлы, поступая из почвы в растения, передаваясь по цепям питания, оказывают токсическое действие на растения, животных и человека.

Среди наиболее токсичных элементов прежде всего следует назвать ртуть, которая представляет наибольшую опасность в форме сильнотоксичного соединения – метилртути. Ртуть попадает в атмосферу при сжигании каменного угля и при испарении вод из загрязненных водоемов. С воздушными массами она может переноситься и откладываться на почвах в отдельных районах. Исследования показали, что ртуть хорошо сорбируется в верхних сантиметрах перегнойно-аккумулятивного горизонта разных типов почв суглинистого механического состава. Миграция ее по профилю и вымывание за пределы почвенного профиля в таких почвах незначительна. Однако в почвах легкого механического состава, кислых и обедненных гумусом процессы миграции ртути усиливаются. В таких почвах проявляется также процесс испарения органических соединений ртути, которые обладают свойствами летучести.

При внесении ртути на песчаную, глинистую и торфяную почвы из расчета 200 и 100 кг/га урожай на песчаной почве полностью погиб не зависимо от уровня известкования. На торфяной почве урожай понизился. На глинистой почве произошло снижение урожая только при низкой дозе извести.

Свинец также обладает способностью передаваться по цепям питания, накапливаясь в тканях растений, животных и человека. Доза свинца, равная 100 мг/кг сухого веса корма, считается летальной для животных.

Свинцовая пыль оседает на поверхности почв, адсорбируется органическими веществами, передвигается по профилю с почвенными растворами, но выносится за пределы почвенного профиля в небольших количествах.

Благодаря процессам миграции в условиях кислой среды образуются техногенные аномалии свинца в почвах протяженностью 100 м. Свинец из почв поступает в растения и накапливается в них. В зерне пшеницы и ячменя количество его в 5-8 раз превышает фоновое содержание, в ботве, картофеле – более чем в 20 раз, в клубнях – более чем в 26 раз.

Кадмий, подобно ванадию и цинку, аккумулируется гумусовой толще почв. Характер его распределения в почвенном профиле и ландшафте, видимо, имеет много общего с другими металлами, в частности с характером распределения свинца.

Однако, кадмий закрепляется в почвенном профиле менее прочно, чем свинец. Максимальная адсорбция кадмия свойственна нейтральным и щелочным почвам с высоким содержанием гумуса и высокой емкостью поглощения. Содержание его в подзолистых почвах может составлять от сотых долей до 1 мг/кг, в черноземах – до 15-30, а в красноземах – до 60 мг/кг.

Многие почвенные беспозвоночные концентрируют кадмий в своих организмах. Кадмий усваивается дождевыми червями, мокрицами и улитками в 10-15 раз активнее, чем свинец и цинк. Кадмий токсичен для сельскохозяйственных растений, и даже, если высокие концентрации кадмия не оказывают заметного влияния на урожай сельскохозяйственных культур, токсичность его сказывается на изменении качества продукции, так как в растениях происходит повышения содержания кадмия.

Мышьяк попадает в почву с продуктами сгорания угля, с отходами металлургической промышленности, с предприятий по производству удобрений. Наиболее прочно мышьяк удерживается в почах, содержащих активные формы железа, алюминия, кальция. Токсичность мышьяка в почвах всем известна. Загрязнение почв мышьяком вызывает, например, гибель дождевых червей. Фоновое содержание мышьяка в почвах составляет сотые доли миллиграмма на килограмм почвы.

Фтор и его соединения находят широкое применение в атомной, нефтяной, химической и др. видах промышленности. Он попадает в почву с выбросами металлургических предприятий, в частности, алюминиевых заводов, а также как примесь при внесении суперфосфата и некоторых других инсектицидов.

Загрязняя почву, фтор вызывает снижение урожая не только благодаря прямому токсическому действию, но и изменяя соотношение питательных веществ в почве. Наибольшая адсорбция фтора происходит в почвах с хорошо развитым почвенным поглощающим комплексом. Растворимые фтористые соединения перемещаются по почвенному профилю с нисходящим током почвенных растворов и могут попадать в грунтовые воды. Загрязнение почвы фтористыми соединениями разрушает почвенную структуру и снижает водопроницаемость почв.

Цинк и медь менее токсичны, чем названные тяжелые металлы, но избыточное их количество в отходах металлургической промышленности загрязняет почву и угнетающе действует на рост микроорганизмов, понижает ферментативную активность почв, снижает урожай растений.

Следует отметить усиление токсичности тяжелых металлов при их совместном воздействии на живые организмы в почве. Совместное воздействие цинка и кадмия оказывает в несколько раз более сильное ингибирующее действие на микроорганизмы, чем при такой же концентрации каждого элемента в отдельности.

Поскольку тяжелые металлы и в продуктах сгорания топлива, и в выбросах металлургической промышленности встречаются обычно в различных сочетаниях, то действие их на природу, окружающую источники загрязнения, бывает более сильным, чем предполагаемое на основании концентрации отдельных элементов.

Вблизи предприятий естественные фитоценозы предприятий становятся более однообразными по видовому составу, так как многие виды не выдерживают повышения концентрации тяжелых металлов в почве. Количество видов может сокращаться до 2-3, а иногда до образования моноценозов.

В лесных фитоценозах первыми реагируют на загрязнения лишайники и мхи. Наиболее устойчив древесный ярус. Однако длительное или высокоинтенсивное воздействие вызывает в нем сухостойкие явления.



Почва – это поверхность земли, имеющая свойства, которые характеризуют как живую, так и неживую природу.

Почва является индикатором общей . Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами.

К группе тяжелых металлов относятся все с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.

Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью.

Источники загрязнения тяжелыми металлами – это . Существует методика, по которой рассчитывается допустимая норма содержания металлов. При этом учитывается суммарная величина нескольких металлов Zc.

  • допустимая;
  • умеренно опасная;
  • высоко-опасная;
  • чрезвычайно опасная.

Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.

Тяжелые металлы, загрязняющие почву

Существует три класса опасности тяжелых металлов. Всемирная организация здравоохранения самыми опасными считает заражение свинцом, ртутью и кадмием. Но не менее вредна и высокая концентрация остальных элементов.

Ртуть

Загрязнение почвы ртутью происходит с попаданием в нее пестицидов, различных бытовых отходов, например люминесцентных ламп, элементов испорченных измерительных приборов.

По официальным данным годовой выброс ртути составляет более пяти тысяч тонн. Ртуть может поступать в организм человека из загрязненной почвы.

Если это происходит регулярно, могут возникнуть тяжелые расстройства работы многих органов, в том числе страдает и нервная система.

При ненадлежащем лечении возможен летальный исход.

Свинец

Очень опасным для человека и всех живых организмов является свинец.

Он чрезвычайно токсичен. При добыче одной тонны свинца двадцать пять килограммов попадает в окружающую среду. Большое количество свинца поступает в почву с выделением выхлопных газов.

Зона загрязнения почвы вдоль трасс составляет свыше двухсот метров вокруг. Попадая в почву, свинец поглощается растениями, которые употребляют в пищу человек и животные, в том числе и скот, мясо которого также присутствует в нашем меню. От избытка свинца поражается центральная нервная система, головной мозг, печень и почки. Он опасен своим канцерогенным и мутагенным действием.

Кадмий

Огромной опасностью для организма человека является загрязнение почвы кадмием. Попадая в пищу, он вызывает деформацию скелета, остановку роста у детей и сильные боли в спине.

Медь и цинк

Высокая концентрация в почве этих элементов становится причиной того, что замедляется рост и ухудшается плодоношение растений, что приводит в конечном итоге к резкому уменьшению урожайности. У человека происходят изменения в мозге, печени и поджелудочной железе.

Молибден

Избыток молибдена вызывает подагру и поражения нервной системы.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Сурьма

Присутствует в некоторых рудах.

Входит в состав сплавов, используемых в различных производственных сферах.

Ее избыток вызывает тяжелые пищевые расстройства.

Мышьяк

Основным источником загрязнения почвы мышьяком являются вещества, с помощью которых борются с вредителями сельскохозяйственных растений, например гербициды, инсектициды. Мышьяк – это накапливающийся яд, вызывающий хронические . Его соединения провоцируют заболевания нервной системы, мозга, кожных покровов.

Марганец

В почве и растениях наблюдается высокое содержание этого элемента.

При попадании в почву дополнительного количества марганца быстро создается его опасный избыток. На организме человека это сказывается в виде разрушения нервной системы.

Не менее опасен переизбыток и остальных тяжелых элементов.

Из вышесказанного можно сделать вывод, что накопление тяжелых металлов в почве влечет за собой тяжелые последствия для состояния здоровья человека и окружающей среды в целом.

Основные методы борьбы с загрязнением почв тяжелыми металлами

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими. Среди них можно выделить следующие способы:

  • Увеличение кислотности почвы повышает возможность Поэтому внесение органических веществ и глины, известкование помогают в какой-то мере в борьбе с загрязнением.
  • Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным.
  • Проведение детоксикации подземных вод, ее откачивание и очистка.
  • Прогнозирование и устранение миграции растворимой формы тяжелых металлов.
  • В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.

Самым опасным из всех перечисленных металлов является свинец. Он имеет свойство, накапливаясь ударять по организму человека. Ртуть не опасна если попадет в организм человека один раз или несколько, особо опасны лишь пары ртути. Я считаю, что промышленные предприятия должны использовать более усовершенствованные технологии производства не столь губительные для всего живого. Задуматься должен не один человек, а масса, тогда мы придем к хорошему результату.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ. СПОСОБЫ КОНТРОЛЯ И НОРМИРОВАНИЯ ЗАГРЯЗНЕННЫХ ПОЧВ

Учебно-методическое пособие для вузов

Составители: Х.А. Джувеликян, Д.И. Щеглов, Н.С. Горбунова

Издательско-полиграфический центр Воронежского государственного университета

Утверждено научно-методическим советом биолого-почвенного факультета 4 июля 2009 г., протокол № 10

Рецензент д-р биол. наук, проф. Л.А. Яблонских

Учебно-методическое пособие подготовлено на кафедре почвоведения и управления земельными ресурсами биолого-почвенного факультета Воронежского государственного университета.

Для специальности 020701 – Почвоведение

Общие сведения о загрязнении............................................................................

Понятие о техногенных аномалиях.....................................................................

Загрязнение почв тяжелыми металлами.............................................................

Миграция тяжелых металлов в почвенном профиле.........................................

Понятие о почвенном экологическом мониторинге........................................

Показатели состояния почв, определяемые при их контроле........................

Экологическое нормирование качества загрязненных почв..........................

Общие требования к классификации почв подверженных загрязнению......

Литература...........................................................................................................

ОБЩИЕ СВЕДЕНИЯ О ЗАГРЯЗНЕНИИ

Загрязняющие вещества – это вещества антропогенного происхождения, поступающие в окружающую среду в количествах, превышающих природный уровень их поступления.Загрязнение почв – вид антропогенной деградации, при которой содержание химических веществ в почвах, подверженных антропогенному воздействию, превышает природный региональный фоновый уровень. Превышение содержания определенных химических веществ в окружающей человека среде (по сравнению с природными уровнями) за счет их поступления из антропогенных источников представляет экологическую опасность.

Использование человеком химических веществ в хозяйственной деятельности и вовлечение их в цикл антропогенных превращений в окружающей среде постоянно растет. Характеристикой интенсивности извлечения и использования химических элементов является технофильность – отношение ежегодной добычи или производства элемента в тоннах к его кларку в литосфере (А.И. Перельман, 1999). Высокая технофильность характерна для элементов, наиболее активно используемых человеком, особенно для тех, естественный уровень которых в литосфере невысок. Высокие уровни технофильности характерны для таких металлов, как Bi, Hg, Sb, Pb, Cu, Se, Ag, As, Mo, Sn, Cr, Zn, потребность в которых различных видов производств велика. При низком содержании этих элементов в породах (10–2 –10–6 %) добыча их значительна. Это ведет к извлечению из недр земли колоссальных количеств руд, содержащих эти элементы, и к последующему глобальному рассеиванию их в окружающей среде.

Помимо технофильности предложены и другие количественные характеристики техногенеза. Так, отношение технофильности элемента к его биофильности (биофильность – кларки концентрации химических элементов в живом веществе) М.А. Глазовская назваладеструктивной активностью элементов техногенеза . Деструктивная активность элементов техногенеза характеризует степень опасности элементов для живых организмов. Другой количественной характеристикой антропогенного вовлечения химических элементов в их глобальные циклы на планете являетсяфактор мобилизации илифактор техногенного обогащения , который рассчитывают как отношение техногенного потока химического элемента к его природному потоку. Уровень фактора техногенного обогащения, как и технофильность элементов, является не только показателем мобилизации их из литосферы в наземные природные среды, но и отражением уровня выбросов химических элементов с отходами производств в окружающую среду.

ПОНЯТИЕ О ТЕХНОГЕННЫХ АНОМАЛИЯХ

Геохимическая аномалия – участок земной коры (или поверхности земли), отличающийся существенно повышенными концентрациями какихлибо химических элементов или их соединений по сравнению с фоновыми значениями и закономерно расположенный относительно скоплений полезных ископаемых. Выявление техногенных аномалий является одной из важнейших эколого-геохимических задач при оценки состояния окружающей среды. Аномалии образуются в компонентах ландшафта в результате поступления различных веществ от техногенных источников и представляют собой некоторый объем, в пределах которого значения аномальных концентраций элементов больше фоновых значений. По распространенности А.И. Перельман и Н.С. Касимов (1999) выделяют следующие техногенные аномалии:

1) глобальные – охватывающие весь земной шар (например, повышен-

2) региональные – формирующиеся в отдельных частях континентов, природных зонах и областях в результате применения ядохимикатов, минеральных удобрений, подкисления атмосферных осадков выбросами соединений серы и др.;

3) локальные – образующиеся в атмосфере, почвах, водах, растениях вокруг местных техногенных источников: заводов, рудников и т.д.

По среде образования техногенные аномалии делятся:

1) на литохимические (в почвах, породах);

2) гидрогеохимические (в водах);

3) атмогеохимические (в атмосфере, снеге);

4) биохимические (в организмах).

По длительности действия источника загрязнения они делятся:

на кратковременные (аварийные выбросы и т.д.);

средневременные (с прекращением воздействия, например, прекращение разработки месторождений полезных ископаемых);

долговременные стационарные (аномалии заводов, городов, агроландшафтов, например КМА, Норильский никель).

При оценке техногенных аномалий фоновые территории выбираются вдали от техногенных источников загрязняющих веществ, как правило, более чем в 30–50 км. Одним из критериев аномальности служит коэффициент техногенной концентрации или аномальности Кс, представляющий собой отношение содержания элемента в рассматриваемом аномальном объекте к его фоновому содержанию в компонентах ландшафта.

Для оценки воздействия количества поллютантов, поступающих в организм, используются также гигиенические нормативы загрязнения – пре-

дельно допустимые концентрации. Это максимальное содержание вредного вещества в природном объекте или продукции (воде, воздухе, почве, пище), которое не влияет на здоровье человека или других организмов.

Загрязняющие вещества по опасности делятся на классы (ГОСТ

17.4.1.0283): I класс (высоко опасные) – As, Cd, Hg, Se, Pb, F, бенз(а)пирен, Zn; II класс (умеренно опасные) – B, Co, Ni, Mo, Cu, Sb, Cr; III класс (мало опасные) – Ba, V, W, Mn, Sr, ацетофенон.

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан. Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса (1990),

тяжелыми следует считать металлы с плотностью более 8 г/см3 . При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определе-

ние (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов.

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).

В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10–12), концентрация Cd, V, Sb – в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag – в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd (Гапонюк, 1985).

Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).

Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда (1975), при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10–40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .

Таблица 2

Зоны загрязнения почв вокруг точечных источников загрязнения

Расстояние от

Превышение содер-

источника за-

жания ТМ по отно-

грязнения в км

шению к фоновому

Охранная зона предприятия

Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕННОМ ПРОФИЛЕ

Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте, где они связываются алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Состав и количество удерживаемых в почве элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановительных условий, сорбционной способности, интенсивности биологического поглощения. Часть тяжелых металлов удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности

для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов.

В пределах почвенного профиля техногенный поток веществ встречает ряд почвенно-геохимических барьеров. К ним относятся карбонатные, гипсовые, иллювиальные горизонты (иллювиально-железисто-гумусовые). Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенногеохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Подвижность элементов в значительной степени зависит от кислотно-основных и окислительновосстановительных условий в почвах. В нейтральных почвах подвижны соединения Zn, V, As, Se, которые могут выщелачиваться при сезонном промачивании почв.

Накопление подвижных, особо опасных для организмов соединений элементов зависит от водного и воздушного режимов почв: наименьшая аккумуляция их наблюдается в водопроницаемых почвах промывного режима, увеличивается она в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции в почве могут накапливаться Se, As, V в легкодоступной форме, а в условиях восстановительной среды – Hg в виде метилированных соединений.

Однако следует иметь в виду, что в условиях промывного режима потенциальная подвижность металлов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.

В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состояние почвенной биоты. Если в составе загрязняющих веществ присутствует S, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.

В заболоченных почвах Mo, V, As, Se присутствуют в малоподвижных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Co, Cu, Zn, Cd и Hg. В слабокислых и нейтральных почвах с хорошей аэрацией образуются труднорастворимые соединения Pb, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, а Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере возрастания щелочности опасность загрязнения почв перечисленными элементами увеличивается.

ПОНЯТИЕ О ПОЧВЕННОМ ЭКОЛОГИЧЕСКОМ МОНИТОРИНГЕ

Почвенный экологический мониторинг – система регулярного неогра-

ниченного в пространстве и времени контроля почв, которая дает информацию об их состоянии с целью оценки прошлого, настоящего и прогноза изменения в будущем. Почвенный мониторинг направлен на выявление антропогенных изменений почв, которые могут в конечном итоге нанести вред здоровью человека. Особая роль почвенного мониторинга обусловлена тем, что все изменения состава и свойств почв отражаются на выполнении почвами их экологических функций, следовательно, на состоянии биосферы.

Огромное значение имеет то, что в почве в отличие от воздуха атмосферы и вод поверхностных водоемом экологические последствия антропогенного воздействия обычно проявляются позже, но они более устойчивы и сохраняются дольше. Существует необходимость оценивать и долговременные последствия этого воздействия, например, возможность мобилизации загрязняющих веществ в почвах, вследствие чего почва из «депо» загрязняющих веществ может превращаться в их вторичный источник.

Виды почвенного экологического мониторинга

Выделение видов почвенного экологического мониторинга основано на различиях в сочетании информативных почвенных показателей, соответствующих задачам каждого из них. На основе различий механизмов и масштабов проявления деградации почв выделяется две группы видов монито-

ринга: первая группа – глобальный мониторинг, вторая – локальный и региональный.

Глобальный почвенный мониторинг – составная часть глобального мониторинга биосферы. Проводится он для оценки влияния на состояние почв экологических последствий дальнего атмосферного переноса загрязняющих веществ в связи с опасностью общепланетарного загрязнения биосферы и сопровождающих его процессов глобального уровня. Результаты глобального или биосферного мониторинга характеризуют глобальные изменения состояния живых организмов на планете под влиянием человеческой деятельности.

Назначение локального ирегионального мониторингов заключается в выявлении влияния деградации почв на экосистемы локального и регионального уровней и непосредственно на условия жизни человека в сфере его природопользования.

Локальный мониторинг называют еще санитарно-гигиеническим или импактным. Он направлен на контроль уровня содержания в окружающей среде тех загрязняющих веществ, которые выбрасывает конкретное пред-

Загрязнение почв тяжелыми металлами имеет разные источники:

1. отходы металлообрабатывающей промышленности;

2. промышленные выбросы;

3. продукты сгорания топлива;

4. автомобильные выхлопы отработанных газов;

5. средства химизации сельского хозяйства.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тонн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 г/кг свинца, до 3 г/кг меди, до 10 г/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%, а в США эксплуатируют руды с содержанием цинка 1,8%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом. Тяжелые металлы попадают в почву вместе с удобрениями, в состав которых они входят как примесь.

Хотя тяжелые металлы иногда обнаруживаются в почвах в низких концентрациях, они формируют устойчивые комплексы с органическими соединениями и вступают в специфические реакции адсорбции легче, чем щелочные и щелочноземельные металлы.Вблизи предприятий естественные фитоценозы предприятий становятся более однообразными по видовому составу, так как многие виды не выдерживают повышения концентрации тяжелых металлов в почве. Количество видов может сокращаться до 2-3, а иногда до образования моноценозов.В лесных фитоценозах первыми реагируют на загрязнения лишайники и мхи. Наиболее устойчив древесный ярус. Однако длительное или высокоинтенсивное воздействие вызывает в нем сухостойкие явления.Восстановление нарушенного почвенного покрова требует длительного времени и больших капиталовложений.

Особенно трудной задачей является восста­новление растительного покрова на отвалах вскрышных пород и хвостохранилищах (хвостах) выработок, где добывались руды металлов: такие хвосты обычно бедны элементами питания, бога­ты токсичными металлами и слабо удерживают воду. Серьезной проблемой для окружающей сре­ды является ветровая эрозия рудниковых отва­лов.

Нормирование содержания тяжелых металлов в почве

Нормирование содержания тяжелых металлов в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.


Предложено множество шкал экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других - содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, которые превосходят реально допустимые значения концентраций металлов в несколько раз.

Для характеристики техногенного загрязнения тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации.

В таблице 1 приведены официально утвержденные ПДК и допустимые уровни их содержания по показателям вредности. В соответствие с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и почвенный микробиоценоз).


ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА
ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
МОРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
имени адмирала Г.И. Невельского

Кафедра защиты окружающей среды

РЕФЕРАТ
по дисциплине «Физико-химические процессы»

Последствия загрязнения почв тяжелыми металлами и радионуклидами.

Проверила преподаватель:
Фирсова Л.Ю.
Выполнил студент гр. ___
Ходанова С.В.

Владивосток 2012
СОДЕРЖАНИЕ

Введение
1 Тяжелые металлы в почвах





2 Радионуклиды в почвах. Радиоактивное загрязнение
Заключение
Список используемых источников

ВВЕДЕНИЕ

Почва - это не просто инертная среда, на поверхности которой осуществляется деятельность человека, а динамическая, развивающаяся система, включающая множество органических и неорганических компонентов, в которых имеется сеть полостей и пор, а в них, в свою очередь, содержатся газы и жидкости. Пространственное распределение этих компонентов определяет главные типы почв на земном шаре.
Кроме того, почвы содержат огромное число живых организмов, их называют биотой: от бактерий и грибов до червей и грызунов. Почва образуется на скальных родительских породах под совместным воздействием климата, растительности, почвенных организмов и времени. Поэтому изменение любого из этих факторов может привести к изменениям в почвах. Почвообразование - это длительный процесс: образование слоя почвы в 30 см занимает от 1000 до 10 000 лет. Следовательно, скорости почвообразования столь малы, что почву можно считать невозобновляемым ресурсом.
Почвенный покров Земли представляет собой важнейший компонент биосферы Земли. Именно почвенная оболочка определяет многие процессы, происходящие в биосфере. Важнейшее значение почв состоит в накоплении органического вещества, различных химических элементов, а также энергии. Почвенный покров выполняет функции биологического поглотителя, разрушителя и нейтрализатора различных загрязнений. Если это звено биосферы будет разрушено, то сложившееся функционирование биосферы необратимо нарушится. Именно поэтому чрезвычайно важно изучение глобального биохимического значения почвенного покрова, его современного состояния и изменения под влиянием антропогенной деятельности.

1 Тяжелые металлы в почвах

      Источники поступления тяжелых металлов в почву
К тяжелым металлам (ТМ) относят более 40 химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше 50 атомных единиц массы (а. е. м.). Это Pb, Zn, Cd, Hg, Cu, Mo, Mn, Ni, Sn, Co и др. Сложившееся понятие «тяжелые металлы» не является строгим, т.к. к ТМ часто относят элементы-неметаллы, например As, Se, а иногда даже F, Be и другие элементы, атомная масса которых меньше 50 а.е.м.
Среди ТМ много микроэлементов, биологически важных для живых организмов. Они являются необходимыми и незаменимыми компонентами биокатализаторов и биорегуляторов важнейших физиологических процессов. Однако избыточное содержание ТМ в различных объектах биосферы оказывает угнетающее и даже токсическое действие на живые организмы.
Источники поступления ТМ в почву делятся на природные (выветривание горных пород и минералов, эрозионные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, влияние автотранспорта, сельского хозяйства и т.д.) Сельско-хозяйственные земли, помимо загрязнения через атмосферу, загрязняются ТМ еще и специфически, при применении пестицидов, минеральных и органических удобрений, известковании, использовании сточных вод. В последнее время, особое внимание ученые уделяют городским почвам. Последние испытывают значительный техногенный процесс, составной частью которого является загрязнение ТМ.
На поверхность почвы ТМ поступают в различных формах. Это оксиды и различные соли металлов, как растворимые, так и практически нерастворимые в воде (сульфиды, сульфаты, арсениты и др.). В составе выбросов предприятий по переработке руды и предприятий цветной металлургии - основного источника загрязнения окружающей среды ТМ - основная масса металлов (70-90 %) находится в форме оксидов.
Попадая на поверхность почв, ТМ могут либо накапливаться, либо рассеиваться в зависимости от характера геохимических барьеров, свойственных данной территории.
Большая часть ТМ, поступивших на поверхность почвы, закрепляется в верхних гумусовых горизонтах. ТМ сорбируются на поверхности почвенных частиц, связываются с органическим веществом почвы, в частности в виде элементно-органических соединений, аккумулируются в гидроксидах железа, входят в состав кристаллических решеток глинистых минералов, дают собственные минералы в результате изоморфного замещения, находятся в растворимом состоянии в почвенной влаге и газообразном состоянии в почвенном воздухе, являются составной частью почвенной биоты.
Степень подвижности ТМ зависит от геохимической обстановки и уровня техногенного воздействия. Тяжелый гранулометрический состав и высокое содержание органического вещества приводят к связыванию ТМ почвой. Рост значений рН усиливает сорбированность катионообразующих металлов (медь, цинк, никель, ртуть, свинец и др.) и увеличивает подвижность анионообразующих (молибден, хром, ванадий и пр.). Усиление окислительных условий увеличивает миграционную способность металлов. В итоге по способности связывать большинство ТМ, почвы образуют следующий ряд: серозем > чернозем > дерново-подзолистая почва.
      Загрязнения почв тяжелыми металлами
Загрязнение почв ТМ имеет сразу две отрицательные стороны. Во-первых, поступая по пищевым цепям из почвы в растения, а оттуда в организм животных и человека, ТМ вызывают у них серьезные заболевания. Росту заболеваемости населения и сокращению продолжительности жизни, а также к снижению количества и качества урожаев сельскохозяйственных растений и животноводческой продукции.
Во-вторых, накапливаясь в почве в больших количествах, ТМ способны изменять многие ее свойства. Прежде всего, изменения затрагивают биологические свойства почвы: снижается общая численность микроорганизмов, сужается их видовой состав (разнообразие), изменяется структура микробоценозов, падает интенсивность основных микробиологических процессов и активность почвенных ферментов и т.д. Сильное загрязнение ТМ приводит к изменению и более консервативных признаков почвы, таких как гумусное состояние, структура, pH среды и др. Результатом этого является частичная, а в ряде случаев и полная утрата почвенного плодородия.
      Природные и техногенные аномалии
В природе встречаются территории с недостаточным или избыточным содержанием в почвах ТМ. Аномальное содержание ТМ в почвах обусловлено двумя группами причин: биогеохимическими особенностями экосистем и влиянием техногенных потоков вещества. В первом случае, районы, где концентрация химических элементов выше или ниже оптимального для живых организмов уровня, называются природными геохимическими аномалиями или биогеохимическими провинциями. Здесь аномальное содержание элементов обусловлено естественными причинами – особенностями почвообразующих пород, почвообразовательного процесса, присутствием рудных аномалий. Во втором случае, территории называются техногенными геохимическими аномалиями. В зависимости от масштаба они делятся на глобальные, региональные и локальные.
Почва, в отличие от других компонентов природной среды, не только геохимически аккумулирует компоненты загрязнений, но и выступает как природный буфер, контролирующий перенос химических элементов и соединений в атмосферу, гидросферу и живое вещество.
Различные растения, животные и человек требуют для жизнедеятельности определенного состава почвы, воды. В местах геохимических аномалий происходит, усугубляясь, передача отклонений от нормы минерального состава по всей пищевой цепи. В результате нарушения минерального питания наблюдаются изменения видового состава фито-, зоо- и микробоценозов, заболевание дикорастущих форм растений, снижение количества и качества урожаев сельскохозяйственных растений и животноводческой продукции, рост заболеваемости населения и снижение продолжительности жизни.
Токсическое воздействие ТМ на биологические системы в первую очередь обусловлено тем, что они легко связываются с сульфгидрильными группами белков (в том числе и ферментов), подавляя их синтез и, тем самым, нарушая обмен веществ в организме.
Живые организмы выработали разнообразные механизмы устойчивости к ТМ: от восстановления ионов ТМ в менее токсичные соединения до активации систем ионного транспорта, осуществляющих эффективное и специфическое удаление токсических ионов из клетки во внешнюю среду.
Наиболее существенное последствие воздействия ТМ на живые организмы, проявляющееся на биогеоценотическом и биосферном уровнях организации живого вещества, заключается в блокировании процессов окисления органического вещества. Это приводит к снижению скорости его минерализации и накоплению в экосистемах. В то же время увеличение концентрации органического вещества вызывает связывание им ТМ, что временно снимает нагрузку с экосистемы. Снижение скорости разложения органического вещества за счет снижения численности организмов, их биомассы и интенсивности жизнедеятельности считают пассивной реакцией экосистем на загрязнение ТМ. Активное противостояние организмов антропогенным нагрузкам проявляется лишь в ходе прижизненной аккумуляции металлов в телах и скелетах. Ответственными за этот процесс являются наиболее устойчивые виды.
Устойчивость живых организмов, прежде всего растений, к повышенным концентрациям ТМ и их способность накапливать высокие концентрации металлов могут представлять большую опасность для здоровья людей, поскольку допускают проникновение загрязняющих веществ в пищевые цепи.
      Нормирование содержания тяжелых металлов в почве и очищение почв
Очень сложен вопрос нормирования содержания ТМ в почве. В основе его решения должно лежать признание полифункциональности почвы. В процессе нормирования почва может рассматриваться с различных позиций: как естественное природное тело, как среда обитания и субстрат для растений, животных и микроорганизмов, как объект и средство сельскохозяйственного и промышленного производства, как природный резервуар, содержащий патогенные микроорганизмы. Нормирование содержания ТМ в почве необходимо проводить на основе почвенно-экологических принципов, которые отрицают возможность нахождения единых значений для всех почв.
По вопросу санации почв, загрязненных ТМ, существует два основных подхода. Первый направлен на очищение почвы от ТМ. Очищение может производиться путем промывок, путем извлечения ТМ из почвы с помощью растений, путем удаления верхнего загрязненного слоя почвы и т.п. Второй подход основан на закреплении ТМ в почве, переводе их в нерастворимые в воде и недоступные живым организмам формы. Для этого предлагается внесение в почву органического вещества, фосфорных минеральных удобрений, ионообменных смол, природных цеолитов, бурого угля, известкование почвы и т.д. Однако любой способ закрепления ТМ в почве имеет свой срок действия. Рано или поздно часть ТМ снова начнет поступать в почвенный раствор, а оттуда в живые организмы.
    Радионуклиды в почвах. Радиоактивное загрязнение

В почвах присутствуют почти все известные в природе химические элементы, в том числе и радионуклиды.
Радионуклиды – химические элементы, способные к самопроизвольному распаду с образованием новых элементов, а также образованные изотопы любых химических элементов. Следствием ядерного распада является ионизирующая радиация в виде потока альфа-частиц (поток ядер гелия, протонов) и бета-частиц (поток электронов), нейтронов, гамма-излучение и рентгеновское излучение. Это явление получило название радиоактивность. Химические элементы, способные к самопроизвольному распаду называются радиоактивными. Наиболее употребляемый синоним ионизирующей радиации – радиоактивное излучение.
Ионизирующее излучение – поток заряженных или нейтральных частиц и электромагнитных квантов, взаимодействие которых со средой приводит к ионизации и возбуждению ее атомов и молекул. Ионизирующие излучения имеют электромагнитную (гамма- и рентгеновское излучения) и корпускулярную (альфа-излучение, бета-излучение, нейтронное излучение) природу.
Гамма-излучение – это электромагнитное излучение, обусловленное гамма-лучами (дискретными пучками или квантами, называемыми фотона-ми), если после альфа- или бета-распада ядро остается в возбужденном со-стоянии. Гамма-лучи в воздухе могут проходить значительные расстояния. Фотон гамма-лучей с высокой энергией может проходить сквозь тело человека. Интенсивное гамма-излучение может повредить не только кожу, но и внутренние органы. Защищают от этого излучения плотные и тяжелые материалы, железо, свинец. Гамма-излучение можно создавать искусственно в ускорителях зараженных частиц (микротрон), например, тормозное гамма-излучение быстрых электронов ускорителя при их попадании на мишень.
Рентгеновское излучение – аналогично гамма-излучению. Космическое рентгеновское излучение поглощается атмосферой. Рентгеновские лучи получают искусственно, они приходятся на нижнюю часть энергетического спектра электромагнитного излучения.
Радиоактивное излучение - естественный фактор в биосфере для всех живых организмов, да и сами живые организмы обладают определенной радиоактивностью. Среди биосферных объектов почвы обладают наиболее высокой естественной степенью радиоактивности. В этих условиях природа благоденствовала многие миллионы лет, разве что в исключительных случаях при геохимических аномалиях, связанных с месторождением радиоактивных пород, например, урановых руд.
Однако, в XX человечество столкнулось с радиоактивностью запредельно превышающей естественную, а следовательно и биологически анормальную. Первыми пострадавшими от избыточных доз радиации были великие ученые, открывшие радиоактивные элементы (радий, полоний) супруги Мария Склодовская-Кюри и Пьер Кюри. А затем: Хиросима и Нагасаки, испытания атомного и ядерного оружия, многие катастрофы, в том числе Чернобыльская и т.д.
Наиболее значимыми объектами биосферы, определяющими биологические функции всего живого являются почвы.
Радиоактивность почв обусловлена содержанием в них радионуклидов. Различают естественную и искусственную радиоактивность.
Естественная радиоактивность почв вызывается естественными радиоактивными изотопами, которые всегда в тех или иных количествах присутствуют в почвах и почвообразующих породах. Естественные радионуклиды подразделяют на 3 группы.
Первая группа включает радиоактивные элементы - элементы, все изотопы которых радиоактивны: уран (238
и т.д.................

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека