Витамин В2 (рибофлавин, витамин роста). Биологические функции

Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках . АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах. В клетке молекула АТФ расходуется в течение одной минуты после ее образования. У человека количество АТФ, равное массе тела, образуется и разрушается каждые 24 часа .

АТФ – мононуклеотид, состоящий из остатков азотистого основания (аденина), рибозы и трех остатков фосфорной кислоты. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам .

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты – в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет около 30,6 кДж/моль. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж/моль. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).


АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

Кроме АТФ есть и другие молекулы с макроэргическими связями – УТФ (уридинтрифосфорная кислота), ГТФ (гуанозинтрифосфорная кислота), ЦТФ (цитидинтрифосфорная кислота), энергия которых используются для биосинтеза белка (ГТФ), полисахаридов (УТФ), фосфолипидов (ЦТФ). Но все они образуются за счет энергии АТФ.

Помимо мононуклеотидов, важную роль в реакциях обмена веществ играют динуклеотиды (НАД + , НАДФ + , ФАД), относящиеся к группе коферментов (органические молекулы, сохраняющие связь с ферментом только в ходе реакции). НАД + (никотинамидадениндинуклеотид), НАДФ + (никотинамидадениндинуклеотидфосфат) – динуклеотиды, имеющие в своем составе два азотистых основания – аденин и амид никотиновой кислоты – производное витамина РР), два остатка рибозы и два остатка фосфорной кислоты (рис. .). Если АТФ – универсальный источник энергии, то НАД + и НАДФ + – универсальные акцепторы, а их восстановленные формы – НАДН и НАДФН универсальные доноры восстановительных эквивалентов (двух электронов и одного протона). Входящий в состав остатка амида никотиновой кислоты атом азота четырехвалентен и несет положительный заряд (НАД + ). Это азотистое основание легко присоединяет два электрона и один протон (т.е. восстанавливается) в тех реакциях, в которых при участии ферментов дегидрогеназ от субстрата отрываются два атома водорода (второй протон уходит в раствор):



Субстрат-Н 2 + НАД + субстрат + НАДН + Н +


В обратных реакциях ферменты, окисляя НАДН или НАДФН , восстанавливают субстраты, присоединяя к ним атомы водорода (второй протон приходит из раствора).

ФАД – флавинадениндинуклеотид – производное витамина В 2 (рибофлавина) также является кофактором дегидрогеназ, но ФАД присоединяет два протона и два электрона, восстанавливаясь до ФАДН 2 .

Источники

Достаточное количество содержат мясные продукты, печень, почки, молочные продукты, дрожжи. Также витамин образуется кишечными бактериями.

Суточная потребность

Строение

В состав рибофлавина входит флавин – изоаллоксазиновое кольцо с заместителями (азотистое основание) и спирт рибитол .

Строение витамина В 2

Коферментные формы витамина дополнительно содержат либо только фосфорную кислоту – флавинмононуклеотид (ФМН), либо фосфорную кислоту, дополнительно связанную с АМФ – флавинадениндинуклеотид .

Строение окисленных форм ФАД и ФМН

Метаболизм

В кишечнике рибофлавин освобождается из состава пищевых ФМН и ФАД, и диффундирует в кровь. В слизистой кишечника и других тканях вновь образуется ФМН и ФАД.

Биохимические функции

Кофермент оксидоредуктаз – обеспечивает перенос 2 атомов водорода в окислительно-восстановительных реакциях.

Механизм участия флавинового кофермента в биохимической реакции

1. Дегидрогеназы энергетического обмена – пируватдегидрогеназа (окисление пировиноградной кислоты), α-кетоглутаратдегидрогеназа и сукцинатдегидрогеназа (цикл трикарбоновых кислот), ацил-SКоА-дегидрогеназа (окисление жирных кислот), митохондриальная α-глицеролфосфатдегидрогеназа (челночная система).

Пример дегидрогеназной реакции с участием ФАД

2. Оксидазы , окисляющие субстраты с участием молекулярного кислорода. Например, прямое окислительное дезаминирование аминокислот или обезвреживание биогенных аминов (гистамин, ГАМК).

Пример оксидазной реакции с участием ФАД
(обезвреживание биогенных аминов)

Гиповитаминоз B2

Причина

Пищевая недостаточность, хранение пищевых продуктов на свету, фототерапия, алкоголизм и нарушения ЖКТ.

Клиническая картина

В первую очередь страдают высокоаэробные ткани – эпителий кожи и слизистых. Проявляется как сухость ротовой полости, губ и роговицы; хейлоз , т.е. трещины в уголках рта и на губах ("заеды"), глоссит (фуксиновый язык), шелушение кожи в районе носогубного треугольника, мошонки, ушей и шеи, конъюнктивит и блефарит .

Сухость конъюнктивы и ее воспаление ведут к компенсаторному увеличению кровотока в этой зоне и улучшению снабжения ее кислородом, что проявляется как васкуляризация роговицы.

Антивитамины В 2

1. Акрихин (атебрин) – ингибирует функцию рибофлавина у простейших. Используется при лечении малярии, кожного лейшманиоза, трихомониаза, гельминтозов (лямблиоз, тениидоз).

2. Мегафен – тормозит образование ФАД в нервной ткани, используется как седативное средство.

3. Токсофлавин – конкурентный ингибитор флавиновых дегидрогеназ.

Лекарственные формы

Свободный рибофлавин, ФМН и ФАД (коферментные формы).

Транспорт высокоэнергетических электронов и протонов от окисляемого субстрата на кислород осуществляет система, состоящая из окислительно-восстановительных ферментов, локализованная на внутренней мембране митохондрий. В состав этой системы входят:

Пиридиновые дегидрогеназы, у которых в качестве коферментов выступают НАД (никотинамидадениндинуклеотид) или НАДФ (никотинамидадениндинуклеотидфосфат);

Флавиновые дегидрогеназы (флавиновые ферменты), роль небелковой части у которых выполняют ФАД (флавинадениндинуклеотид) или ФМН (флавинмононуклеотид);

Убихинон (кофермент Q);

Цитохромы.

Пиридиновые дегидрогеназы . Строение НАД и НАДФ представлено на рис. 4.

Никотинамидаденин- Никотинамидаденинди-

динуклеотид (НАД) нуклеотидфосфат (НАДФ)

Рис. 4. Строение НАД и НАДФ

НАД и НАДФ являются динуклеотидами, нуклеотиды которых связаны пирофосфатной связью (через два соединенных между собой остатка фосфорной кислоты). В состав одного нуклеотида входит амид никотиновой кислоты (витамин РР), другой нуклеотид представлен адениловой кислотой. В молекуле НАДФ имеется дополнительный остаток фосфорной кислоты, присоединенный ко второму углеродному атому рибозы, связанной с адениловой кислотой.

НАД и НАДФ являются коферментами большого числа специфических для разных субстратов окисления дегидрогеназ. Связь между ними и белковой частью непрочная, они объединяются только непосредственно в момент реакции.

Некоторые пиридиновые дегидрогеназы локализованы в матриксе митохондрий. НАД-зависимые дегидрогеназы передают электроны и протоны в дыхательную цепь, НАДФ-зависимые дегидрогеназы служат источником восстановительных эквивалентов для реакций биосинтеза

Активной частью НАД и НАДФ является витамин РР. При взаимодействии с восстановленным субстратом пиридиновое кольцо витамина РР связывает два электрона и протон, второй протон остается в среде (рис. 5).

Рис. 5. Окисление субстрата пиридиновыми дегидрогеназами

Флавиновые ферменты. В отличие от НАД и НАДФ, простетические группы флавиновых ферментов (ФАД и ФМН) прочно связаны с белковой частью. Обе простетические группы содержат метаболически активную форму рибофлавина (витамина В 2), к которой в процессе их восстановления присоединяются атомы водорода (рис.6).

Рис. 6. Окисление субстратов активной частью (витамин В 2) простетической группы флавиновых ферментов

ФМН-зависимая дегидрогеназа выполняет роль промежуточного переносчика электронов и протонов между НАД и убихиноном, т.е. является непосредственным участником дыхательной цепи.

Убихинон (кофермент Q). Убихинон является производным бензохинона с длинной боковой цепью. Его строение представлено на рис.7.

Рис. 7. Строение кофермента Q (убихинона)

Кофермент Q играет роль промежуточного переносчика электронов и протонов в дыхательной цепи, непосредственно окисляя флавиновые ферменты. Место присоединения протонов и электронов – атомы кислорода в кольце бензохинона (рис. 8):

Рис. 8. Механизм переноса протонов молекулой кофермента Q (убихина)

Цитохромы. Цитохромы относятся к классу хромопротеинов. В их состав входит железосодержащий гем, по своему строению аналогичный гему гемоглобина. Различные цитохромы отличаются строением боковых цепей в структуре гема, структурой белковых компонентов, способом соединения гема с белковым компонентом. Функция цитохромов связана с переносом электронов от убихинона к кислороду. Они локализованы в дыхательной цепи в определенной последовательности:

Цит.b →цит.с 1 → цит.с → цит.аа 3

Цитохромы b, с 1 и с выполняют функцию промежуточных переносчиков электронов, а комплекс цитохромов а и а 3 , называемый цитохромоксидазой, является терминальным дыхательным ферментом, непосредственно взаимодействующим с кислородом. Этот комплекс состоит из шести субъединиц, каждая из которых содержит геминовую группу и атом меди. Две субъединицы из шести составляют цитохром а, а остальные четыре образуют цитохром а 3.

Перенос цитохромами электронов непосредственно связан с присутствием в их составе ионов железа. Окисленная форма цитохромов содержит Fе 3+ . Принимая электроны от убихинона или другого цитохрома, Fe 3+ переходит в восстановленное состояние (Fе 2+), а передавая электроны другому цитохрому или кислороду, Fe 2+ вновь переходит в окисленное состояние (F 3+).

Кислород, принимая электроны от цитохромоксидазы, переходит в активное (ионизированное) состояние, затем принимает два протона из окружающей среды. В результате образуется молекула воды.

Схематично систему переноса электронов и протонов по дыхательной цепи можно представить следующим образом (рис. 9):

Рис. 9. Последовательность расположения переносчиков электронов и протонов в дыхательной цепи

Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами:

Ковалентными связями;

Ионными связями;

Гидрофобными взаимодействиями и т.д.

Один кофермент может быть коферментом для нескольких ферментов. Многие коферменты являются полифункциональными (например, НАД, ПФ). В зависимости от апофермента зависит специфичность холофермента.

Все коферменты делят на две большие группы: витаминные и невитаминные.

Коферменты витаминной природы – производные витаминов или химические модификации витаминов.

1 группа: тиаминовые производные витамина В1 . Сюда относят:

Тиаминмонофосфат (ТМФ);

Тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) или кокарбоксилаза;

Тиаминтрифосфат (ТТФ).

ТПФ имеет наибольшее биологическое значение. Входит в состав декарбоксилазы кетокислот: ПВК, a-кетоглутаровая кислота. Этот фермент катализирует отщепление СО 2 .

Кокарбоксилаза участвует в транскетолазной реакции из пентозофосфатного цикла.

2 группа: флавиновые коферменты, производные витамина В2 . Сюда относят:

- флавинмононуклеотид (ФМН) ;

- флавинадениндинуклеотид (ФАД) .

Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД.

[рис. изоалоксазиновое кольцо соединено с ребитолом, ребитол с фосфорной к-той, а фосфорная к-та – с АМФ]

ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. [рис. COOH-CH 2 -CH 2 -COOH® (над стрелкой – СДГ, под – ФАД и ФАДН 2) COOH-CH=CH-COOH]. Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН 2 . Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах.

3 группа: пантотеновые коферменты, производные витамина В3 – пантотеновой кислоты. Входят в состав кофермента А, НS-КоА. Этот кофермент А является коферментом ацилтрансфераз, вместе с которой переносит различные группировки с одной молекулы на другую.

4 группа: никотинамидные, производные витамина РР - никотинамида :

Представители:

Никотинамидадениндинуклеотид (НАД);

Никотинамидадениндинуклеотидфосфат (НАДФ).

Коферменты НАД и НАДФ являются коферментами дегидрогеназ (НАДФ-зависимых ферментов), например малатДГ, изоцитратДГ, лактатДГ. Участвуют в процессах дегидрирования и в окислительно-восстановительных реакциях. При этом НАД присоединяет два протона и два электрона, и образуется НАДН2.


Рис. рабочей группы НАД и НАДФ: рисунок витамина РР, к которому присоединяется один атом Н и в результате происходит перегруппировка двойных связей. Рисуется новая конфигурация витамина РР + Н + ]

5 группа: пиридоксиновые, производные витамина В6 . [рис. пиридоксаля. Пиридоксаль+ фосфорная к-та= пиридоксальфосфат]

- пиридоксин ;

- пиридоксаль ;

- пиридоксамин .

Эти формы взаимопревращаются в процессе реакций. При взаимодействии пиридоксаля с фосфорной кислотой получается пиридоксальфосфат (ПФ).

ПФ является коферментом аминотрансфераз, осуществляет перенос аминогруппы от АК на кетокислоту – реакция переаминирования . Также производные витамина В6 входят как коферменты в состав декарбоксилаз АК.

Коферменты невитаминной природы – вещества, которые образуются в процессе метаболизма.

1) Нуклеотиды – УТФ, УДФ, ТТФ и т.д. УДФ-глюкоза вступает в синтез гликогена. УДФ-гиалуроновая к-та используется для обезвреживания различных веществ в трансверных реакциях (глюкоуронил трансфераза).

2) Производные порфирина (гем): каталаза, пероксидаза, цитохромы и т.д.

3) Пептиды . Глутатион – это трипептид (ГЛУ-ЦИС-ГЛИ), он участвует в о-в реакциях, является коферментом оксидоредуктаз (глутатионпероксидаза, глутатионредуктаза). 2GSH«(над стрелкой 2Н) G-S-S-G. GSH является восстановленной формой глутатиона, а G-S-S-G – окисленной.

4) Ионы металлов , например Zn 2+ входит в состав фермента АлДГ (алкогольдегидрогеназы), Cu 2+ - амилазы, Mg 2+ - АТФ-азы (например, миозиновой АТФ-азы).

Могут участвовать в:

Присоединении субстратного комплекса фермента;

В катализе;

Стабилизация оптимальной конформации активного центра фермента;

Стабилизация четвертичной структуры.

Ферменты, как и белки, делятся на 2 группы: простые исложные . Простые целиком и полностью состоят из аминокислот и при гидролизе образуют исключительно аминокислоты.Их пространственная организация ограничена третичной структурой. Это в основом ферменты ЖКТ: пепсин, трипсин, лизацим, фосфатаза. Сложные ферменты кроме белковой части содержат и небелковые компоненты.Эти небелковые компоненты отличаются по прочности связывания с белковой частью (аллоферментом). Если константа диссоциации сложного фермента настолько мала, что в растворе все полипептидные цепи оказываются связанными со своими небелковыми компонентами и не разделяются при выделении и очистке, то небелковый компонент называется простетической группой и рассматривается как интегральная часть молекулы фермента.

Под коферментом понимают дополнительную группу, легко отделяющуюся от аллофермента при диссоциации. Между аллоферментом и простейшей группой существует ковалентная связь, довольно сложная. Между аллофермнтом и коферментом существует нековалентная связь (водородные или электростатические взаимодействия). Типичными представителями коферментов являются:

В 1 - тиамин; пирофосфат (он содержит В)

В 2 - рибофлавин; ФАД, ФНК

РР - НАД, НАДФ

Н – биотин; биозитин

В 6 - пиридоксин; пиридоксальфосфат

Пантотеновая кислота: коэнзим А

Многие двухвалентные металлы (Cu,Fe,Mn,Mg) тоже выполняют роль кофакторов, хотя и не относятся ни к коферментам, ни к простетическим группам. Металлы входят в состав активного центра или стабилизируют оптимальный вариант сруктуры активного центра.

МЕТАЛЛЫ ФЕРМЕНТЫ

Fe,Feгемоглобин, каталаза, пероксидаза

Cu,Cuцитохромоксидаза

ZnДНК – полимераза, дегидрогеназа

Mgгексокиназа

Mnаргиназа

Seглутатионредуктаза

Кофакторную функцию могут выполнять также АТФ, молочная кислота, т – РНК. Следует отметить одну отличительную особенность двухкомпонентных ферментов, заключающуюся в том, что ни кофактор (кофермент или простетическая группа), ни аллофермент в отдельности каталитической активности не проявляют, и только их объединение в единое целое, протекающее в соответствии с программой их трёхмерной организации, обеспечивает быстрое протекание химических реакций.

Строение НАД и НАДФ.

НАД и НАДФ являются коферментами пиридинзависимых дегидрогеназ.

НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИД.

НИКОТИНАМИДАДЕНИНДИНУКЛЕОАМИДФОСФАТ (НАДФ)

Способность НАД и НАДФ играть роль точного переносчика водорода связана с наличием в их структу –

ре амида никотиновой кислоты.

В клетках НАД – зависимые дегидрогеназы участвуют

в процессах переноса электронов от субстрата к О.

НАДФ – зависимые дегидрогеназы играют роль в процес –

сах биосинтеза. Поэтому коферменты НАД и НАДФ

отличаются по внутриклеточной локализации: НАД

концентрируется в митохондриях, а большая часть НАДФ

находится в цитоплазме.

Строение ФАД и ФМН.

ФАД и ФМН являются простетическими группами флавиновых ферментов. Они очень прочно, в отличие от НАД и НАДФ, присоединяются к аллоферменту.

ФЛАВИНМОНОНУКЛЕОТИД (ФМН).

ФЛАВИНАЦЕТИЛДИНУКЛЕОТИД.

Активной частью молекулы ФАД и ФМН является изоаллоксадиновое кольцо рибофлавин, к атомам азота которого могут присоединятся 2 атома водорода.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека