Углеводный обмен. Что такое углеводный обмен в организме человека и к чему ведут нарушения? Нужна помощь по изучению какой-либы темы

В течение жизни человек съедает около 10 т углеводов. Углеводы поступают в организм главным образом в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Особенно богата углеводами растительная пища: хлеб, крупы, овощи, фрукты. Продукты животного происхождения (за исключением молока) содержат мало углеводов.

Углеводы - главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счет углеводов. Конечные продукты обмена углеводов - углекислый газ и вода.

Обмен углеводов занимает центральное место в обмене веществ и энергии. Сложные углеводы пищи подвергаются расщеплению в процессе пищеварения до моносахаридов, в основном глюкозы. Моносахариды всасываются из кишечника в кровь и доставляются в печень и другие ткани, где включаются в промежуточный обмен. Часть поступившей глюкозы в печени и скелетных мышцах откладывается в виде гликогена либо используется для других пластических процессов. При избыточном поступлении углеводов с пищей они могут превращаться в жиры и белки. Другая часть глюкозы подвергается окислению с образованием АТФ и выделением тепловой энергии. В тканях возможны два основных механизма окисления углеводов - без участия кислорода (анаэробно) и с его участием (аэробно).

Углеводы и их функции

Углеводы - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии. Функции углеводов в организме:

· Углеводы являются непосредственным источником энергии для организма.

· Участвуют в пластических процессах метаболизма.

· Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды. Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза). Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза). Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).

Расщепление углеводов в организме

Расщепление сложных углеводов пищи начинается в ротовой полости под действием ферментов амилазы и мальтазы слюны. Оптимальная активность этих ферментов проявляется в щелочной среде. Амилаза расщепляет крахмал и гликоген, а мальтаза -- мальтозу. При этом образуются более низкомолекулярные углеводы -- декстрины, частично -- мальтоза и глюкоза.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена. Процесс всасывания моносахаридов в кишечнике регулируется нервной и гормональной системами. Под действием нервной системы может измениться проницаемость кишечного эпителия, степень кровоснабжения слизистой оболочки кишечной стенки и скорость движения ворсинок, в результате чего меняется скорость поступления моносахаридов в кровь воротной вены. В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150--200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря -- пищевой. Ее результатом является глюкозурия, т. е. выделение глюкозы с мочой, которое наступает в том случае, если уровень глюкозы в крови повышается до 8,9-- 10,0 ммоль/л (160--180 мг%).

При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков.

По мере убыли глюкозы в крови происходят расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови

Гликоген откладывается также в мышцах, где его содержится около 1--2%. Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания. При работе мышц под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Захват глюкозы разными органами из притекающей крови неодинаков: мозг задерживает 12% глюкозы, кишечник-- 9%, мышцы -- 7%, почки -- 5% (Е. С. Лондон).

Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до СО2 и Н2O. Повышение температуры окружающей среды до 35--40 °С угнетает, а понижение до 25 °С -- усиливает всасывание углеводов, что связано, по-видимому, со стимуляцией энергетического обмена углеводов.

Регуляция обмена углеводов

Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4--6,7 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Роль коры головного мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин -- гормон, вырабатываемый в-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или сахарное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клетками островковой ткани поджелудочной железы; адреналин -- гормон мозгового слоя надпочечников; глюкокортикоиды -- гормоны коркового слоя надпочечника; соматотропный гормон гипофиза; тироксин и трийодтиронин -- гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».

Углеводы - обязательный и наиболее значительный компонент пищи. В сутки человек потребляет 400–600 г различных углеводов.

Как необходимый участник метаболизма, углеводы включены практически во все виды обмена веществ: нуклеиновых кислот (в виде рибозы и дезоксирибозы), белков (например, гликопротеинов), липидов (например, гликолипидов), нуклеозидов (например, аденозина), нуклеотидов (например, АТФ, АДФ, АМФ), ионов (например, обеспечивая энергией их трансмембранный перенос и внутриклеточное распределение).

Как важный компонент клеток и межклеточного вещества, углеводы входят в состав структурных белков (например, гликопротеинов), гликолипидов, гликозаминогликанов и других.

Как один из главных источников энергии, углеводы необходимы для обеспечения жизнедеятельности организма. Наиболее важны углеводы для нервной системы. Ткань мозга использует примерно 2/3 всей глюкозы, поступающей в кровь.

Типовые формы нарушений

Расстройства метаболизма углеводов объединяют в несколько групп их типовых форм патологии: гипогликемии, гипергликемии, гликогенозы, гексоз‑ и пентоземии, агликогенозы (рис. 8–1).

Рис. 8–1. Типовые формы нарушения углеводного обмена.

Гипогликемии

Гипогликемии - состояния, характеризующиеся снижением уровня глюкозы плазмы крови (ГПК) ниже нормы (менее 65 мг%, или 3,58 ммоль/л). В норме ГПК натощак колеблется в диапазоне 65–110 мг%, или 3,58–6,05 ммоль/л.

Причины гипогликемии

Причины гипогликемии представлены на рис. 8–2.

Рис. 8–2. Причины гипогликемии.

Патология печени

Наследственные и приобретённые формы патология печени - одна из наиболее частых причин гипогликемии. Гипогликемия характерна для хронических гепатитов, циррозов печени, гепатодистрофий (в том числе иммуноагрессивного генеза), для острых токсических поражений печени, для ряда ферментопатий (например, гексокиназ, гликогенсинтетаз, глюкозо–6‑фосфатазы) и мембранопатий гепатоцитов. К гипогликемии приводят нарушения транспорта глюкозы из крови в гепатоциты, снижение активности гликогенеза в них и отсутствие (или малое содержание) депонированного гликогена.

Нарушения пищеварения

Нарушения пищеварения - полостного переваривания углеводов, а также их пристеночного расщепления и абсорбции - приводят к развитию гипогликемии. Гипогликемия развивается также при хронических энтеритах, алкогольном панкреатите, опухолях поджелудочной железы, синдромах нарушенного всасывания.

Причины нарушений полостного переваривания углеводов

† Недостаточность  ‑амилазы поджелудочной железы (например, у пациентов с панкреатитами или опухолями железы).

† Недостаточное содержание и/или активность амилолитических ферментов кишечника (например, при хронических энтеритах, резекции кишечника).

Причины нарушений пристеночного расщепления и абсорбции углеводов

† Недостаточность дисахаридаз, расщепляющих углеводы до моносахаридов - глюкозы, галактозы, фруктозы.

† Недостаточность ферментов трансмембранного переноса глюкозы и других моносахаридов (фосфорилаз), а также белка–переносчика глюкозы GLUT5.

Патология почек

Гипогликемия развивается при нарушении реабсорбции глюкозы в проксимальных канальцах нефрона почек. Причины:

Дефицит и/или низкая активность ферментов (ферментопатия, энзимопатия), участвующих в реабсорбции глюкозы.

Нарушение структуры и/или физико‑химического состояния мембран (мембранопатии) вследствие дефицита или дефектов мембранных гликопротеинов, участвующих в реабсорбции глюкозы (подробнее см. в приложении «Справочник терминов», статья «Переносчики глюкозы» на компакт-диске).

Названные причины приводят к развитию синдрома, характеризующегося гипогликемией и глюкозурией («почечный диабет»).

Эндокринопатии

Основные причины развития гипогликемии при эндокринопатиях: недостаток эффектов гипергликемизирующих факторов или избыток эффектов инсулина.

К гипергликемизирующим факторам относят глюкокортикоиды, йодсодержащие гормоны щитовидной железы, СТГ, катехоловые амины и глюкагон.

Глюкокортикоидная недостаточность (например, при гипокортицизме вследствие гипотрофии и гипоплазии коры надпочечников). Гипогликемия развивается в результате торможения глюконеогенеза и дефицита гликогена.

Дефицит тироксина (T 4) и трийодтиронина (T 3) (например, при микседеме). Гипогликемия при гипотиреозах является результатом торможения процесса гликогенолиза в гепатоцитах.

Недостаток СТГ (например, при гипотрофии аденогипофиза, разрушении его опухолью, кровоизлиянии в гипофиз). Гипогликемия при этом развивается в связи с торможением гликогенолиза и трансмембранного переноса глюкозы.

Дефицит катехоламинов (например, при туберкулёзе с развитием надпочечниковой недостаточности). Гипогликемия при дефиците катехоламинов является следствием пониженной активности гликогенолиза.

Недостаток глюкагона (например, при деструкции  ‑клеток поджелудочной железы в результате иммунной аутоагрессии). Гипогликемия развивается в связи с торможением глюконеогенеза и гликогенолиза.

Избыток инсулина и/или его эффектов

Причины гипогликемии при гиперинсулинизме:

† активация утилизации глюкозы клетками организма,

† торможение глюконеогенеза,

† подавление гликогенолиза.

Указанные эффекты наблюдаются при инсулиномах или передозировке инсулина.

Углеводное голодание

Углеводное голодание наблюдается в результате длительного общего голодания, в том числе - углеводного. Дефицит в пище только углеводов не приводит к гипогликемии в связи с активацией глюконеогенеза (образование углеводов из неуглеводных веществ).

Длительная значительная гиперфункция организма при физической работе

Гипогликемия развивается при длительной и значительной физической работе в результате истощения запасов гликогена, депонированного в печени и скелетных мышцах.

Клинические проявления гипогликемиИ

Возможные последствия гипогликемии (рис. 8–3): гипогликемическая реакция, синдром и кома.

Рис. 8–3. Возможные последствия гипогликемии.

Гипогликемическая реакция

Гипогликемическая реакция - острое временное снижение ГПК до нижней границы нормы (как правило, до 80–70 мг%, или 4,0–3,6 ммоль/л).

Причины

† Острая избыточная, но преходящая секреция инсулина через 2–3 сут после начала голодания.

† Острая чрезмерная, но обратимая секреция через несколько часов после нагрузки глюкозой (с диагностической или лечебной целью, переедания сладкого, особенно у лиц пожилого и старческого возраста).

Проявления

† Низкий уровень ГПК.

† Лёгкое чувство голода.

† Мышечная дрожь.

† Тахикардия.

Указанные симптомы в покое выражены слабо и выявляются при дополнительной физической нагрузке или стрессе.

Гипогликемический синдром

Гипогликемический синдром - стойкое снижение ГПК ниже нормы (до 60–50 мг%, или 3,3–2,5 ммоль/л), сочетающееся с расстройством жизнедеятельности организма.

Проявления гипогликемического синдрома приведены на рис. 8–4. По происхождению они могут быть как адренергическими (обусловленными избыточной секрецией катехоламинов), так и нейрогенными (вследствие расстройств функций ЦНС).

Рис. 8–4. Проявления гипогликемического синдрома.

Гипогликемическая кома

Гипогликемическая кома - состояние, характеризующееся падением ГПК ниже нормы (как правило, менее 40–30 мг%, или 2,0–1,5 ммоль/л), потерей сознания, значительными расстройствами жизнедеятельности организма.

Механизмы развития

Нарушение энергетического обеспечения нейронов, а также клеток других органов вследствие:

† Недостатка глюкозы.

† Дефицита короткоцепочечных метаболитов свободных жирных кислот - ацетоуксусной и  ‑гидрооксимасляной, которые эффективно окисляются в нейронах. Они могут обеспечить нейроны энергией даже в условиях гипогликемии. Однако, кетонемия развивается лишь через несколько часов и при острой гипогликемии не может быть механизмом предотвращения энергодефицита в нейронах.

† Нарушения транспорта АТФ и расстройств использования энергии АТФ эффекторными структурами.

Повреждение мембран и ферментов нейронов и других клеток организма.

Дисбаланс ионов и воды в клетках: потеря ими K + , накопление H + , Na + , Ca 2+ , воды.

Нарушения электрогенеза в связи с указанными выше расстройствами.

Принципы терапии гипогликемий

Принципы устранения гипогликемического синдрома и комы: этиотропный, патогенетический и симптоматический

Этиотропный

Этиотропный принцип направлен на ликвидацию гипогликемии и лечение основного заболевания.

Ликвидация гипогликемии

Введение в организм глюкозы:

В/в (для устранения острой гипогликемии одномоментно 25–50 г в виде 50% раствора. В последующем инфузия глюкозы в меньшей концентрации продолжается до восстановления сознания у пациента).

С пищей и напитками. Это необходимо в связи с тем, что при в/в введении глюкозы не восстанавливается депо гликогена в печени (!).

Терапия основного заболевания, вызвавшего гипогликемию (болезней печени, почек, ЖКТ, желёз внутренней секреции и др.).

Патогенетический

Патогенетический принцип терапии ориентирован на:.

Блокирование главных патогенетических звеньев гипогликемической комы или гипогликемического синдрома (расстройств энергообеспечения, повреждения мембран и ферментов, нарушений электрогенеза, дисбаланса ионов, КЩР, жидкости и других).

Ликвидацию расстройств функций органов и тканей, вызванных гипогликемией и её последствиями.

Устранение острой гипогликемии, как правило, приводит к быстрому «выключению» её патогенетических звеньев. Однако хронические гипогликемии требуют целенаправленной индивидуализированной патогенетической терапии.

Симптоматический

Симптоматический принцип лечения направлен на устранение симптомов, усугубляющих состояние пациента (например, сильной головной боли, страха смерти, резких колебаний АД, тахикардии и др.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГАОУ СПО РТ «Альметьевский медицинский колледж»

по анатомии на тему: «Углеводный обмен»

Выполнил: Хайруллин Р.Р

Проверила: Галлямова Л.Х

Альметьевск 2014

В организме человека до 60 % энергии удовлетворяется за счет углеводов. Вследствие этого энергообмен мозга почти исключительно осуществляется глюкозой. Углеводы выполняют и пластическую функцию. Они входят в состав сложных клеточных структур (гликопептиды, гликопротеины, гликолипиды, липополисахариды и др.). Углеводы делятся на простые и сложные. Последние при расщеплении в пищеварительном тракте образуют простые моноса-хариды, которые затем из кишечника поступают в кровь. В организм углеводы поступают?лавным образом с растительной пищей (хлеб, овощи, крупы, фрукты) и откладываются в основном в виде гликогена в печени, мышцах. Количество гликогена в организме взрослого человека составляет около 400 г. Однако эти запасы легко истощаются и используются?лавным образом для неотложных потребностей энергообмена.

Процесс образования и накопления гликогена регулируется гормоном поджелудочной железы инсулином. Процесс расщепления гликогена до глюкозы происходит под влиянием другого гормона поджелудочной железы -- глюкагона.

Содержание глюкозы в крови, а также запасы гликогена регулируются и центральной нервной системой. Нервное воздействие от центров углеводного обмена поступает к органам по вегетативной нервной системе. В частно?ти, импульсы, идущие от центров по симпатическим нервам, непосредственно усиливают расщепление гликогена в печени и мышцах, а также выделение из надпочечников адреналина. Последний способствует преобразованию гликогена в глюкозу и усиливает окислительные процессы в клетках. В регуляции углеводного обмена также принимают участие гормоны коры надпочечников, средней доли гипофиза и щитовидной железы.

Оптимальное количество углеводов в сутки составляет около 500 г, но эта величина в зависи?о?ти от энергетических потребностей организма может значительно изменяться. Необходимо учитывать, что в организме процессы обмена углеводов, жиров и белков взаимосвязаны, возможны их преобразования в определенных границах. Дело в том, что межуточный обмен углеводов, белков и жиров образует общие промежуточные вещества для всех обменов. Основным же продуктом обмена белков, жиров и углеводов является ацетилкоэнзим А. При его помощи обмен белков, жиров и углеводов сводится к циклу трикарбоновых кислот, в котором в результате окисления высвобождается около 70 % всей энергии превращений.

Конечные продукты обмена веществ составляют незначительное количество простых соединений. Азот выделяется в виде азотсодержащих соединений (?лавным образом мочевина и аммиак), углерод -- в виде СО2, водород -- в виде Н2О.

Основным источником углеводного обмена является гликоген, который легко окисляется во время мышечной работы. Только когда полностью использован запас гликогена в мышцах, происходит непосредственное окисление глюкозы, доставляемой с кровью. После мышечной работы запас гликогена в мышцах и в печени восстанавливается за счет моносахаридов, всосавшихся в пищеварительном канале и образовавшихся при распаде белков и жиров.

Углеводы легко окисляются до углекислоты и воды, но расщепление углеводов в организме может (происходить и без кислорода с образованием молочной кислоты (гликолиз). Большое значение имеет бескислородный распад углеводов с участием фосфорной кислоты -- фосфорилирование.

Количество глюкозы в крови поддерживается благодаря ее поступлению с пищей на уровне 0,1%,а при повышении этогоурозня до 0,15% она выводится с мочой. Потребность в углеводах зависит главным образом от энергетических затрат. Углеводы должны составлять около 56% энергии суточного рациона. Средняя суточная потребность взрослого человека 400--500 г, а у работников физического труда -- 700--1000 г, увеличиваясь в зависимости от интенсивности мышечной работы. Чистым углеводом является сахар. Большое количество углеводов содержится в растительных продуктах, например, в ржаном хлебе примерно 45% углеводов, пшеничном -- 50%, гречневой крупе -- 64%, манной -- 70%, в рисе -- 72%, картофеле -- 20%.

Углеводный обмен -- совокупность процессов превращения моносахаридов и их производных, а также гомополисахаридов, гетерополисахаридов и различных углеводсодержащих биополимеров (гликоконъюгатов) в организме человека и животных. В результате У. о. происходит снабжение организма энергией (см. Обмен веществ и энергии ), осуществляются процессы передачи биологической информации и межмолекулярные взаимодействия, обеспечиваются резервные, структурные, защитные и другие функции углеводов. Углеводные компоненты многих веществ, например гормонов , ферментов , транспортных гликопротеинов, являются маркерами этих веществ, благодаря которым их «узнают» специфические рецепторы плазматических и внутриклеточных мембран.

Синтез и превращения глюкозы в организме . Один из наиболее важных углеводов -- глюкоза -- является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. Глюкоза образуется из гликогена и углеводов пищи -- сахарозы, лактозы, крахмала, декстринов. Кроме того, глюкоза синтезируется в организме из различных неуглеводных предшественников. Этот процесс носит название глюконеогенеза и играет важную роль в поддержании гомеостаза . В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках.

Существуют два пути расщепления глюкозы в организме: гликолиз (фосфоролитический путь, путь Эмбдена -- Мейергофа -- Парнаса) и пентозофосфатный путь (пентозный путь, гексозомонофосфатный шунт). Схематически пентозофосфатный путь выглядит так: глюкозо-6-фосфат 6-фосфатглюконолактон рибулозо-5-фосфат рибозо-5-фосфат. В ходе пентозофосфатного пути происходит последовательное отщепление от углеродной цепи сахара по одному атому углерода в виде СО 2 . В то время как гликолиз играет важную роль не только в энергетическом обмене, но и вобразовании промежуточных продуктов синтеза липидов , пентозофосфатный путь приводит к образованию рибозы и дезоксирибозы, необходимых для синтеза нуклеиновых кислот (ряда коферментов .

Синтез и распад гликогена . В синтезе гликогена -- главного резервного полисахарида человека и высших животных -- участвуют два фермента: гликогенсинтетаза (уридиндифосфат (УДФ) глюкоза: гликоген-4?-глюкозилтрансфераза), катализирующая образование полисахаридных цепей, и ветвящий фермент, образующий в молекулах гликогена так называемые связи ветвлении. Для синтеза гликогена необходимы так называемые затравки. Их роль могут выполнять либо глюкозиды с различной степенью полимеризации, либо белковые предшественники, к которым при участии особого фермента глюкопротеинсинтетазы присоединяются глюкозные остатки уридиндифосфатглюкозы (УДФ-глюкозы).

Распад гликогена осуществляется фосфоролитическим (гликогенолиз) или гидролитическим путями. Гликогенолиз представляет собой каскадный процесс, в котором участвует ряд ферментов фосфорилазной системы -- протеинкиназа, киназа фосфорилазы b, фосфорилаза b, фосфорилаза а, амило-1,6-глюкозидаза, глюкозо-6-фосфатаза. В печени в результате гликогенолиза образуется глюкоза из глюкозо-6-фосфата благодаря действию на него глюкозо-6-фосфатазы, отсутствующей в мышцах, где превращения глюкозо-6-фосфата приводят к образованию молочной кислоты (лактата). Гидролитический (амилолитический) распад гликогена обусловлен действием ряда ферментов, называемых амилазами (глюкозидазами). Глюкозидазы в зависимости от локализации в клетке делят на кислые (лизосомные) и нейтральные.

Синтез и распад углеводсодержащих соединений . Синтез сложных сахаров и их производных происходит с помощью специфических гликозилтрансфераз, катализирующих перенос моносахаридов от доноров -- различных гликозилнуклеотидов или липидных переносчиков к субстратам-акцепторам, которыми могут быть углеводный остаток, полип ептид или липид в зависимости от специфичности трансфераз. Нуклеотидным остатком является обычно дифосфонуклеозид.

В организме человека и животных много ферментов, ответственных за превращение одних углеводов в другие, как в процессах гликолиза и глюконеогенеза, так и в отдельных звеньях пентозофосфатного пути.

Ферментативное расщепление углеводсодержащих соединений происходит в основном гидролитическим путем с помощью гликозидаз, отщепляющих углеводные остатки (экзогликозидазы) или олигосахаридные фрагменты (эндогликозидазы) от соответствующих гликоконъюгатов. Гликозидазы являются чрезвычайно специфическими ферментами. В зависимости от природы моносахарида, конфигурации его молекулы (их D или L-изомеров) и типа гидролизуемой связи различают D-маннозидазы, L-фукозидазы, D-галактозидазы и т.д. Гликозидазы локализованы в различных клеточных органеллах; многие из них локализованы в лизосомах. Лизосомные (кислые) гликозидазы отличаются от нейтральных не только локализацией в клетках, оптимальным для их действия значением рН и молекулярной массой, но и электрофоретической подвижностью и рядом других физико-химических свойств.

Гликозидазы играют важную роль в различных биологических процессах; они могут, например, оказывать влияние на специфический рост трансформированных клеток, на взаимодействие клеток с вирусами и др.

Имеются данные о возможности неферментативного гликозилирования белков in vivo, например гемоглобина, белков хрусталика, коллагена. Есть сведения, что неферментативное гликозилирование (гликирование) играет важную патогенетическую роль при некоторых заболеваниях (сахарном диабет е, галактоземии и др.).

Транспорт углеводов . Переваривание углеводов начинается в ротовой полости при участии гидролитических ферментов слюны . Гидролиз ферментами слюны продолжается в желудке (сбраживание углеводов пищевого комка предотвращается соляной кислотой желудочного сока). В двенадцатиперстнойкишке полисахариды пищи (крахмал, гликоген и др.) и сахара (олиго- и дисахариды) расщепляются при участии глюкозидаз и других гликозидаз сока поджелудочной железы до моносахаридов, которые всасываются в тонкой кишке в кровь. Скорость всасывания углеводов различна, быстрее всасываются глюкоза и галактоза, медленнее -- фруктоза, манноза и другие сахара.

Транспорт углеводов через эпителиальные клетки кишечника и поступление в клетки периферических тканей осуществляются с помощью особых транспортных систем, функция которых заключается и переносе молекул сахаров через клеточные мембраны. Существуют особые белки-переносчики -- пермеазы (транслоказы), специфические по отношению к сахарам и их производным. Транспорт углеводов может быть пассивным и активным. При пассивном транспорте перенос углеводов осуществляется по направлению градиента концентрации, так что равновесие достигается тогда, когда концентрации сахара в межклеточном веществе или межклеточной жидкости и внутри клеток выравниваются. Пассивный транспорт сахаров характерен для эритроцитов человека. При активном транспорте углеводы могут накапливаться в клетках и концентрация их внутри клеток становится выше, чем в окружающей клетки жидкости. Предполагают, что активное поглощение сахаров клетками отличается от пассивного тем, что последнее является Na + -независимым процессом. В организме человека и животных активный транспорт углеводов происходит главным образом в клетках эпителия слизистой оболочки кишечника и в извитых канальцах (проксимальных отделах нефрона) почек.

Регуляция углеводного обмена осуществляется при участии очень сложных механизмов, которые могут оказывать влияние на индуцирование или подавление синтеза различных ферментов У. о. либо способствовать активации или торможению их действия. Инсулин , катехоламины , глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез. Антагонист инсулина -- глюкагон стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями. В регуляции глюконеогенеза принимают участие ацетил-КоА и восстановленный никотинамидадениндинуклеотид. Повышение содержания жирных кислот в плазме крови тормозит активность ключевых ферментов гликолиза. В регуляции ферментативных реакций У. о. важную цель играют ионы Са 2+ , непосредственно или при участии гормонов, часто в связи с особым Са 2+ -связывающим белком -- калмодулином. В регуляции активности многих ферментов большое значение имеют процессы их фосфорилирования -- дефосфорилирования. В организме существует прямая связь между У. о. и обменом белков (см. Азотистый обмен ), липидов (см. Жировой обмен ) и минеральных веществ (см. Минеральный обмен ).

Патология углеводного обмена. Увеличение содержания глюкозы в крови -- гипергликемия может происходить вследствие чрезмерно интенсивного глюконеогенеза либо в результате понижения способности утилизации глюкозы тканями, например при нарушении процессов ее транспорта через клеточные мембраны. Понижение содержания глюкозы в крови -- гипогликемия -- может являться симптомом различных болезней и патологических состояний, причем особенно уязвимым в этом отношении является мозг: следствием гипогликемии могут быть необратимые нарушения его функций.

Генетически обусловленные дефекты ферментов У. о. являются причиной многих наследственных болезней . Примером генетически обусловленного наследственного нарушения обмена моносахаридов может служить галактоземия , развивающаяся в результате дефекта синтеза фермента галактозо-1-фосфатуридилтрансферазы. Признаки галактоземии отмечают также при генетическом дефекте УДФ-глюкоза-4-эпимеразы. Характерными признаками галактоземии являются гипогликемия , галактозурия, появление и накопление в крови наряду с галактозой галактозо-1-фосфата, а также снижение массы тела, жировая дистрофия и цирроз печени, желтуха , катаракта , развивающаяся в раннем возрасте, задержка психомоторного развития. При тяжелой форме галактоземии дети часто погибают ни первом году жизни вследствие нарушений функций печени или пониженной сопротивляемости инфекциям.

Примером наследственной непереносимости моносахаридов является непереносимость фруктозы, которая вызывается генетическим дефектом фруктозофосфатальдолазы и в ряде случаев -- снижением активности Фруктоза-1,6-дифосфат-альдолазы. Болезнь характеризуется поражениями печени и почек. Для клинической картины характерны судороги, частая рвота, иногда коматозное состояние. Симптомы заболевания появляются в первые месяцы жизни при переводе детей на смешанное или искусственное питание. Нагрузка фруктозой вызывает резкую гипогликемию.

Заболевания, вызванные дефектами в обмене олигосахаридов, в основном заключаются в нарушении расщепления и всасывания углеводов пищи, что происходит главным образом в тонкой кишке. Мальтоза и низкомолекулярные декстрины, образовавшиеся из крахмала и гликогена пищи под действием амилазы слюны и сока поджелудочной железы, лактоза молока и сахароза расщепляются дисахаридазами (мальтазой, лактазой и сахаразой) до соответствующих моносахаридов в основном в микроворсинках слизистой оболочки тонкой кишки, а затем, если процесс транспорта моносахаридов не нарушен, происходит их всасывание. Отсутствие или снижение активности дисахаридаз к слизистой оболочке тонкой кишки служит главной причиной непереносимости соответствующих дисахаридов, что часто приводит к поражению печени и почек, является причиной диареи, метеоризм а (см. Мальабсорбции синдром ). Особенно тяжелыми симптомами характеризуется наследственная непереносимость лактозы, обнаруживающаяся обычно с самого рождения ребенка. Для диагностики непереносимости сахаров применяют обычно нагрузочные пробы с введением натощак per os углевода, непереносимость которого подозревают. Более точный диагноз может быть поставлен путем биопсии слизистой оболочки кишечника и определения в полученном материале активности дисахаридаз. Лечение состоит в исключении из пищи продуктов, содержащих соответствующий дисахарид. Больший эффект наблюдают, однако, при назначении ферментных препаратов, что позволяет таким больным употреблять обычную пищу. Например, в случае недостаточности лактазы, содержащий ее ферментный препарат, желательно добавлять в молоко перед употреблением его в пищу. Правильный диагноз заболеваний, вызванных недостаточностью дисахаридаз, крайне важен. Наиболее частой диагностической ошибкой в этих случаях являются установление ложного диагноза дизентерии, других кишечных инфекций, и лечение антибиотиками, приводящее к быстрому ухудшению состояния больных детей и тяжелым последствиям.

Заболевания, вызванные нарушением обмена гликогена, составляют группу наследственных энзимопатий, объединенных под названием гликогенозов . Гликогенозы характеризуются избыточным накоплением гликогена в клетках, которое может также сопровождаться изменением структуры молекул этого полисахарида. Гликогенозы относят к так называемым болезням накопления. Гликогенозы (гликогенная болезнь) наследуются по аутосомно-рецессивному или сцепленному с полом типу. Почти полное отсутствие в клетках гликогена отмечают при агликогенозе, причиной которого является полное отсутствие или сниженная активность гликогенсинтетазы печени.

Заболевания, вызванные нарушением обмена различных гликоконъюгатов, в большинстве случаев являются следствием врожденных нарушений распада гликолипидов, гликопротеинов или гликозаминогликанов (мукополисахаридов) в различных органах. Они также являются болезнями накопления. В зависимости от того, какое соединение аномально накапливается в организме, различают гликолипидозы, гликопротеиноды, мукополисахаридозы. Многие лизосомные гликозидазы, дефект которых лежит в основе наследственных нарушений углеводного обмена, существуют в виде различных форм,

так называемых множественных форм, или изоферментов. Заболевание может быть вызвано дефектом какого-либо одного изофермента. Так, например. болезнь Тея -- Сакса -- следствие дефекта формы AN-ацетилгексозаминидазы (гексозаминидазы А), в то время как дефект форм А и В этого фермента приводит к болезни Сандхоффа.

Большинство болезней накопления протекает крайне тяжело, многие из них пока неизлечимы. Клиническая картина при различных болезнях накопления может быть сходной, и, напротив, одно и то же заболевание может проявляться по-разному у разных больных. Поэтому необходимо в каждом случае устанавливать ферментный дефект, выявляемый большей частью в лейкоцитах и фибробластах кожи больных. В качестве субстратов применяют гликоконьюгаты или различные синтетические гликозиды. При различных мукополисахаридозах , а также при некоторых других болезнях накопления (например, при маннозидозе) выводятся с мочой в значительных количествах различающиеся по структуре олигосахариды. Выделение этих соединений из мочи и их идентификацию проводят с целью диагностики болезней накопления. Определение активности фермента в культивируемых клетках, выделенных из амниотической жидкости, получаемой при амниоцентезе при подозрении на болезнь накопления, позволяет ставить пренатальный диагноз.

При некоторых заболеваниях серьезные нарушения У. о. возникают вторично. Примером такого заболевания является диабет сахарный , обусловленный либо поражением клеток островков поджелудочной железы, либо дефектами в структуре самого инсулина или его рецепторов на мембранах клеток инсулинчувствительных тканей. Алиментарные гипергликемия и гиперинсулинемия ведут к развитию ожирения, что увеличивает липолиз и использование неэтерифицированных жирных кислот (НЭЖК) в качестве энергетического субстрата. Это ухудшает утилизацию глюкозы в мышечной ткани и стимулирует глюконеогенез. В свою очередь, избыток в крови НЭЖК и инсулина ведет к увеличению синтеза в печени триглицеридов (см. Жиры ) и холестерины и, соответственно, к увеличению концентрации в крови липопротеинов очень низкой и низкой плотности. Одной из причин, способствующих развитию таких тяжелых осложнений при диабет е, как катаракта , нефропатия , англопатия и гипоксия тканей, является неферментативное гликозилирование белков.

Особенности углеводного обмена у детей. Состояние У. о. у детей в норме определяется зрелостью эндокринных механизмов регуляции и функций других систем и органов. В поддержании гомеостаза плода важную роль играет поступление к нему глюкозы через плаценту. Количество глюкозы, поступающей через плаценту к плоду, непостоянно, т.к. ее концентрация в крови матери может неоднократно меняться в течение дня. Изменение соотношения инсулин/глюкоза у плода может вызвать у него острые или длительные нарушения обмена веществ. В последнюю треть внутриутробного периода у плода значительно увеличиваются запасы гликогена в печени и мышцах, в этот период глюкогенолиз и глюконеогенез уже имеют для плода существенное значение и как источник глюкозы.

Особенностью У. о. у плода и новорожденного является высокая активность процессов гликолиза, позволяющая лучше адаптироваться к условиям гипоксии. Интенсивность гликолиза у новорожденных на 30--35% выше, чем у взрослых; в первые месяцы после рождения она постепенно снижается. О высокой интенсивности гликолиза у новорожденных свидетельствуют высокое содержание лактата в крови и моче и более высокая, чем у взрослых, активность лактатдегидрогеназы в крови. Значительная часть глюкозы у плода окисляется по пентозофосфатному пути.

Родовой стресс, изменение температуры окружающей среды, появление самостоятельного дыхания у новорожденных, возрастание мышечной активности и усиление деятельности мозга увеличивают расход энергии во время родов и в первые дни жизни, приводя к быстрому снижению содержания глюкозы в крови. Через 4--6 ч после рождения ее содержание снижается до минимума (2,2--3,3 ммоль/л ), оставаясь на таком уровне в течение последующих 3--4 дней. Повышенное потребление глюкозы тканями у новорожденных и период голодания после родов приводят к усилению гликогенолиза и использованию резервного гликогена и жира. Запас гликогена в печени у новорожденного в первые 6 ч жизни резко (примерно в 10 раз) сокращается, особенно при асфиксии и голодании. Содержание глюкозы в крови достигает возрастной нормы у доношенных новорожденных к 10--14-му дню жизни, а у недоношенных детей устанавливается лишь к 1--2-му месяцу жизни. В кишечнике новорожденных ферментативный гидролиз лактозы (основного углевода пищи в этот период) несколько снижен и увеличивается в грудномвозрасте. Обмен галактозы у новорожденных интенсивнее, чем у взрослых.

Нарушения У. о. у детей при различных соматических заболеваниях носят вторичный характер и связаны с влиянием основного патологического процесса на этот вид обмена.

Лабильность механизмов регуляции углеводного и жирового обмена в раннем детском возрасте создает предпосылки для возникновения гипо- и гипергликемических состояний, ацетонемической рвоты. Так, например, нарушения У. о. при пневмонии у детей раннего возраста проявляются повышением в крови натощак концентраций глюкозы и лактата в зависимости от степени дыхательной недостаточности. Непереносимость углеводов выявляется при ожирении и обусловливается изменением секреции инсулина. У детей с кишечными синдромами часто выявляют нарушение расщепления и всасывания углеводов, при целиакии (см. Глютеновая болезнь ) отмечают уплощение гликемической кривой после нагрузки крахмалом, дисахаридами и моносахаридами, а у детей раннею возраста с острыми энтероколитами и соледефицитным состоянием при обезвоживании наблюдают склонность к гипогликемии.

В крови детей старшего возраста в норме отсутствуют галактоза, пентозы и дисахариды, у детей грудного возраста они могут появляться в крови после приема пищи, богатой этими углеводами, а также при генетически обусловленных аномалиях обмена соответствующих углеводов или углеводсодержащих соединений; в подавляющем большинстве случаев симптомы таких заболеваний проявляются у детей в раннем возрасте.

Для ранней диагностики наследственных и приобретенных нарушений У. о. у детей применяют этапную систему обследования с использованием генеалогического метода (см. Медицинская генетика ), различных скрининг-тестов (см. Скрининг ), а также углубленных биохимических исследований. На первом этапе обследования проводят определение в моче глюкозы, фруктозы, сахарозы, лактозы качественными и полуколичественными методами, проверяют значение рН кала . При получении результатов, заставляющих подозревать патологии) У. о., переходят ко второму этапу обследования: определению содержания глюкозы в моче и крови натощак количественными методами, построению гликемических и глюкозурических кривых, исследованию гликемических кривых после дифференцированных сахарных нагрузок, определению содержания глюкозы в крови после введения адреналина, глюкагона, лейцина, бутамида, кортизона, инсулина; в части случаев осуществляют прямое определение активности дисахаридаз в слизистой оболочки двенадцатиперстной и тонкой кишок и хроматографическую идентификацию углеводов крови и мочи. Для выявления нарушений переваривания и всасывания углеводов после установления значения рН кала определяют толерантность к моно- и дисахаридам с обязательным измерением содержания сахаров в кале и их хроматографической идентификацией до и после нагрузочных проб с углеводами При подозрении на энзимопатию (см. Ферментопатии ) в крови и тканях определяют активность ферментов У. о., дефект синтеза (или снижение активности) которых подозревают клиницисты.

Для коррекции нарушенного У. о. при тенденции к гипергликемии применяют диетотерапию с ограничением жиров и углеводов. При необходимости назначают инсулин или другие гипогликемизирующие препараты; средства, способствующие повышению содержания глюкозы в крови, отменяют. При гипогликемии показана диета, богатая углеводами и белками. углеводный обмен человек мышечный

Во время приступов гипогликемии вводят глюкозу, глюкагон, адреналин. При непереносимости отдельных углеводов назначают индивидуальную диету с исключением соответствующих сахаров из пищи больных. В случаях нарушений У. о., носящих вторичный характер, необходимо лечение основного заболевания.

Профилактика выраженных нарушений У. о. у детей заключается в их своевременном обнаружении. При вероятности наследственной патологии У. о. рекомендуется медико-генетическое консультирование . Выраженное неблагоприятное влияние декомпенсации сахарного диабет а у беременных женщин на У. о. у плода и новорожденного диктует необходимость тщательной компенсации заболевания у матери на всем протяжении беременности и родов.

Библиогр афия

1. Видершайн Г.Я. Биохимические основы гликозидозов, М., 1980;

2. Гормональная регуляция функций детского организма в норме и патологии, под ред. М.Я. Студеникина и др., с. 33, М., 1978;

3. Комаров Ф.И., Коровкин Б.Ф. и Меньшиков В.В. Биохимические исследования в клинике, с. 407, Л., 1981;

4. Мецлер Д. Биохимия, пер. с англ., т. 2, М., 1980;

5. Николаев А.Я. Биологическая химия, М., 1989;

6. Розенфельд Е.Л. и Попова И.А. Врожденные нарушения обмена гликогена, М., 1989;

7. Справочник по функциональной диагностике в педиатрии, под ред. Ю.Е. Вельтищева и Н.С. Кисляк, с. 107, М., 1979.

Размещено на Allbest.ru

...

Подобные документы

    Рассмотрение этапов обмена углеводов: переваривание и всасывание, депонирование, промежуточный обмен, выделение глюкозы почками и ее реабсорбция. Основная причина инсулинрезистентности: нарушение функций мембранных рецепторов инсулина при ожирении.

    презентация , добавлен 26.04.2015

    Молекулярные нарушения углеводного обмена. Нарушение распада галактозы в печени из-за недостатка галактозо-1-фосфата. Фруктозонемия и фруктозоурия. Патологические типы гипергликемий и гипогликемий. Нарушение инсулинзависимой реабсорбции глюкозы.

    презентация , добавлен 27.09.2016

    Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена.

    курсовая работа , добавлен 06.12.2008

    Понятие пищи как единственного источника энергии в организме, влияние ее состава на здоровье и самочувствие человека. Сущность процессов ассимиляции и диссимиляции в организме, их и значение. Характеристика обмена белков, жиров и углеводов у детей.

    контрольная работа , добавлен 20.02.2009

    Нарушение расщепления и всасывания углеводов. Врожденная недостаточность лактазы. Основные типы регуляции углеводного обмена. Этиопатогенез, основные причины и признаки сахарного диабета, хронические осложнения. Гипергликемические состояния у человека.

    лекция , добавлен 13.04.2009

    Белки. Жиры. Углеводы. Потребность в них. Витамины - биологически активные органические соединения разнообразной химической природы. Жирорастворимыевитамины. Водорастворимые витамина. Витаминоподобные соединения.

    лекция , добавлен 25.02.2002

    Низкий уровень концентрации гормонов щитовидной железы. Патологические процессы, влияющие на гормональный обмен. Основные причины спонтанного гипотиреоза. Нарушение белкового, углеводного обмена, уплощение сахарной кривой после нагрузки глюкозой.

    презентация , добавлен 09.06.2014

    Классификация сахарного диабета по наличию зависимости, тяжести течения, степени компенсации углеводного обмена, осложнениям. Этиология, основные симптомы, патогенез заболевания. Диагностика диабета с помощью глюкозотолерантного теста, методы его лечения.

    реферат , добавлен 28.01.2013

    Обмен веществ как сложный процесс превращения химических элементов в организме, обеспечивающих его рост, развитие и деятельность. Воздействие тренировок на метаболизм организма. Факторы, воздействующие на уровень метаболизма. Что ускоряет обмен веществ.

    статья , добавлен 07.06.2010

    Классификация процессов метаболизма: ассимиляция и диссимиляция. Схема обмена веществ. Энергетический и пластический обмен. Автотрофы и гетеротрофы. Функции белков в организме. Насыщенные и ненасыщенные жирные кислоты. Регуляция обмена углеводов.

Углеводный обмен

совокупность процессов превращения моносахаридов и их производных, а также гомополисахаридов, гетерополисахаридов и различных углеводсодержащих биополимеров (гликоконъюгатов) в организме человека и животных. В результате У. о. происходит снабжение организма энергией (см. Обмен веществ и энергии), осуществляются процессы передачи биологической информации и межмолекулярные взаимодействия, обеспечиваются резервные, структурные, защитные и другие функции углеводов. Углеводные компоненты многих веществ, например гормонов (Гормоны), ферментов (Ферменты), транспортных гликопротеинов, являются маркерами этих веществ, благодаря которым их «узнают» специфические плазматических и внутриклеточных мембран.

Синтез и превращения глюкозы в организме . Один из наиболее важных углеводов - Глюкоза - является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. образуется из гликогена и углеводов пищи - сахарозы, лактозы, крахмала, декстринов. Кроме того, синтезируется в организме из различных неуглеводных предшественников (рис. 1 ). Этот процесс носит название глюконеогенеза и играет важную роль в поддержании Гомеостаз а. В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках.

Существуют два пути расщепления глюкозы в организме: Гликолиз (фосфоролитический путь, путь Эмбдена - Мейергофа - Парнаса) и пентозофосфатный путь (пентозный путь, гексозомонофосфатный шунт). Схематически пентозофосфатный путь выглядит так: глюкозо-6-фосфат → 6-фосфатглюконолактон → рибулозо-5-фосфат → рибозо-5-фосфат. В ходе пентозофосфатного пути происходит последовательное отщепление углеродной цепи по одному атому углерода в виде СО 2 . В то время как играет важную роль не только в энергетическом обмене, но и вобразовании промежуточных продуктов синтеза липидов (Липиды), пентозофосфатный путь приводит к образованию рибозы и дезоксирибозы, необходимых для синтеза нуклеиновых кислот (Нуклеиновые кислоты) (ряда коферментов (Коферменты).

Синтез и распад гликогена . В синтезе гликогена - главного резервного полисахарида человека и высших животных - участвуют два фермента: гликогенсинтетаза (уридиндифосфат (УДФ) глюкоза: гликоген-4α-глюкозилтрансфераза), катализирующая образование полисахаридных цепей, и ветвящий , образующий в молекулах гликогена так называемые связи ветвлении. Для синтеза гликогена необходимы так называемые затравки. Их роль могут выполнять либо с различной степенью полимеризации, либо белковые предшественники, к которым при участии особого фермента глюкопротеинсинтетазы присоединяются глюкозные остатки уридиндифосфатглюкозы (УДФ-глюкозы).

Распад гликогена осуществляется фосфоролитическим () или гидролитическим путями. представляет собой каскадный процесс, в котором участвует ряд ферментов фосфорилазной системы - протеинкиназа, киназа b, фосфорилаза b, фосфорилаза а, амило-1,6-глюкозидаза, глюкозо-6-фосфатаза. В печени в результате гликогенолиза образуется глюкоза из глюкозо-6-фосфата благодаря действию на него глюкозо-6-фосфатазы, отсутствующей в мышцах, где превращения глюкозо-6-фосфата приводят к образованию молочной кислоты (лактата). Гидролитический (амилолитический) распад гликогена (рис. 2 ) обусловлен действием ряда ферментов, называемых амилазами (Амилазы) (α-глюкозидазами). Известны α-, β- и γ-амилазы. α-Глюкозидазы в зависимости от локализации в клетке делят на кислые (лизосомные) и нейтральные.

Синтез и распад углеводсодержащих соединений . Синтез сложных сахаров и их производных происходит с помощью специфических гликозилтрансфераз, катализирующих перенос моносахаридов от доноров - различных гликозилнуклеотидов или липидных переносчиков к субстратам-акцепторам, которыми могут быть углеводный остаток, или липид в зависимости от специфичности трансфераз. Нуклеотидным остатком является обычно дифосфонуклеозид.

В организме человека и животных много ферментов, ответственных за превращение одних углеводов в другие, как в процессах гликолиза и глюконеогенеза, так и в отдельных звеньях пентозофосфатного пути.

Патология углеводного обмена. Увеличение содержания глюкозы в крови - может происходить вследствие чрезмерно интенсивного глюконеогенеза либо в результате понижения утилизации глюкозы тканями, например при нарушении процессов ее транспорта через клеточные мембраны. Понижение содержания глюкозы в крови - - может являться симптомом различных болезней и патологических состояний, причем особенно уязвимым в этом отношении является мозг: следствием гипогликемии могут быть необратимые нарушения его функций.

Генетически обусловленные дефекты ферментов У. о. являются причиной многих наследственных болезней (Наследственные болезни). Примером генетически обусловленного наследственного нарушения обмена моносахаридов может служить Галактоземия , развивающаяся в результате дефекта синтеза фермента галактозо-1-фосфатуридилтрансферазы. Признаки галактоземии отмечают также при генетическом дефекте УДФ-глюкоза-4-эпимеразы. Характерными признаками галактоземии являются гипогликемия, появление и накопление в крови наряду с галактозой галактозо-1-фосфата, а также снижение массы тела, жировая и цирроз печени, катаракта, развивающаяся в раннем возрасте, задержка психомоторного развития. При тяжелой форме галактоземии дети часто погибают ни первом году жизни вследствие нарушений функций печени или пониженной сопротивляемости инфекциям.

Примером наследственной непереносимости моносахаридов является , которая вызывается генетическим дефектом фруктозофосфатальдолазы и в ряде случаев - снижением активности Фруктоза-1,6-дифосфат-альдолазы. характеризуется поражениями печени и почек. Для клинической картины характерны , частая , иногда коматозное состояние. Симптомы заболевания появляются в первые месяцы жизни при переводе детей на смешанное или искусственное . Нагрузка фруктозой вызывает резкую гипогликемию.

Заболевания, вызванные дефектами в обмене олигосахаридов, в основном заключаются в нарушении расщепления и всасывания углеводов пищи, что происходит главным образом в тонкой кишке. и низкомолекулярные , образовавшиеся из крахмала и гликогена пищи под действием α-амилазы слюны и сока поджелудочной железы, молока и сахароза расщепляются дисахаридазами (мальтазой, лактазой и сахаразой) до соответствующих моносахаридов в основном в микроворсинках слизистой оболочки тонкой кишки, а затем, если процесс транспорта моносахаридов не нарушен, происходит их . Отсутствие или снижение активности дисахаридаз к слизистой оболочке тонкой кишки служит главной причиной непереносимости соответствующих дисахаридов, что часто приводит к поражению печени и почек, является причиной диареи, метеоризма (см. Мальабсорбции синдром). Особенно тяжелыми симптомами характеризуется наследственная , обнаруживающаяся обычно с самого рождения ребенка. Для диагностики непереносимости сахаров применяют обычно нагрузочные пробы с введением натощак per os углевода, непереносимость которого подозревают. Более точный может быть поставлен путем биопсии слизистой оболочки кишечника и определения в полученном материале активности дисахаридаз. состоит в исключении из пищи продуктов, содержащих соответствующий дисахарид. Больший эффект наблюдают, однако, при назначении ферментных препаратов, что позволяет таким больным употреблять обычную пищу. Например, в случае недостаточности лактазы, содержащий ее ферментный , желательно добавлять в молоко перед употреблением его в пищу. Правильный диагноз заболеваний, вызванных недостаточностью дисахаридаз, крайне важен. Наиболее частой диагностической ошибкой в этих случаях являются установление ложного диагноза дизентерии, других кишечных инфекций, и антибиотиками, приводящее к быстрому ухудшению состояния больных детей и тяжелым последствиям.

Заболевания, вызванные нарушением обмена гликогена, составляют группу наследственных энзимопатий, объединенных под названием гликогенозов (Гликогенозы). Гликогенозы характеризуются избыточным накоплением гликогена в клетках, которое может также сопровождаться изменением структуры молекул этого полисахарида. Гликогенозы относят к так называемым болезням накопления. Гликогенозы (гликогенная ) наследуются по аутосомно-рецессивному или сцепленному с полом типу. Почти полное отсутствие в клетках гликогена отмечают при агликогенозе, причиной которого является полное отсутствие или сниженная активность гликогенсинтетазы печени.

Заболевания, вызванные нарушением обмена различных гликоконъюгатов, в большинстве случаев являются следствием врожденных нарушений распада гликолипидов, гликопротеинов или гликозаминогликанов (мукополисахаридов) в различных органах. Они также являются болезнями накопления. В зависимости от того, какое соединение аномально накапливается в организме, различают , гликопротеиноды, . Многие лизосомные гликозидазы, которых лежит в основе наследственных нарушений углеводного обмена, существуют в виде различных форм, так называемых множественных форм, или изоферментов. может быть вызвано дефектом какого-либо одного изофермента. Так, например. болезнь Тея - Сакса - следствие дефекта формы AN-ацетилгексозаминидазы (гексозаминидазы А), в то время как дефект форм А и В этого фермента приводит к болезни Сандхоффа.

Большинство болезней накопления протекает крайне тяжело, многие из них пока неизлечимы. при различных болезнях накопления может быть сходной, и, напротив, одно и то же может проявляться по-разному у разных больных. Поэтому необходимо в каждом случае устанавливать ферментный дефект, выявляемый большей частью в лейкоцитах и фибробластах кожи больных. В качестве субстратов применяют гликоконьюгаты или различные синтетические . При различных мукополисахаридозах (Мукополисахаридозы), а также при некоторых других болезнях накопления (например, при маннозидозе) выводятся с мочой в значительных количествах различающиеся по структуре . Выделение этих соединений из мочи и их идентификацию проводят с целью диагностики болезней накопления. Определение активности фермента в культивируемых клетках, выделенных из амниотической жидкости, получаемой при амниоцентезе при подозрении на болезнь накопления, позволяет ставить пренатальный диагноз.

При некоторых заболеваниях серьезные нарушения У. о. возникают вторично. Примером такого заболевания является Диабет сахарный , обусловленный либо поражением β-клеток островков поджелудочной железы, либо дефектами в структуре самого инсулина или его рецепторов на мембранах клеток инсулинчувствительных тканей. Алиментарные гипергликемия и ведут к развитию ожирения, что увеличивает липолиз и использование неэтерифицированных жирных кислот (НЭЖК) в качестве энергетического субстрата. Это ухудшает утилизацию глюкозы в мышечной ткани и стимулирует глюконеогенез. В свою очередь, избыток в крови НЭЖК и инсулина ведет к увеличению синтеза в печени триглицеридов (см. Жиры) и Холестерин ы и, соответственно, к увеличению концентрации в крови липопротеинов (Липопротеины) очень низкой и низкой плотности. Одной из причин, способствующих развитию таких тяжелых осложнений при диабете, как катаракта, англопатия и тканей, является .

Особенности углеводного обмена у детей. Состояние У. о. у детей в норме определяется зрелостью эндокринных механизмов регуляции и функций других систем и органов. В поддержании гомеостаза плода важную роль играет поступление к нему глюкозы через плаценту. Количество глюкозы, поступающей через плаценту к плоду, непостоянно, т.к. ее концентрация в крови матери может неоднократно меняться в течение дня. Изменение соотношения инсулин/глюкоза у плода может вызвать у него острые или длительные нарушения обмена веществ. В последнюю треть внутриутробного периода у плода значительно увеличиваются запасы гликогена в печени и мышцах, в этот период глюкогенолиз и глюконеогенез уже имеют для плода существенное значение и как источник глюкозы.

Особенностью У. о. у плода и новорожденного является высокая активность процессов гликолиза, позволяющая лучше адаптироваться к условиям гипоксии. Интенсивность гликолиза у новорожденных на 30-35% выше, чем у взрослых; в первые месяцы после рождения она постепенно снижается. О высокой интенсивности гликолиза у новорожденных свидетельствуют высокое содержание лактата в крови и моче и более высокая, чем у взрослых, активность лактатдегидрогеназы (Лактатдегидрогеназа) в крови. Значительная часть глюкозы у плода окисляется по пентозофосфатному пути.

Родовой , изменение температуры окружающей среды, появление самостоятельного дыхания у новорожденных, возрастание мышечной активности и усиление деятельности мозга увеличивают расход энергии во время родов и в первые дни жизни, приводя к быстрому снижению содержания глюкозы в крови. Через 4-6 ч после рождения ее содержание снижается до минимума (2,2-3,3 ммоль/л ), оставаясь на таком уровне в течение последующих 3-4 дней. Повышенное потребление глюкозы тканями у новорожденных и период голодания после родов приводят к усилению гликогенолиза и использованию резервного гликогена и жира. Запас гликогена в печени у новорожденного в первые 6 ч жизни резко (примерно в 10 раз) сокращается, особенно при асфиксии (Асфиксия) и голодании. Содержание глюкозы в крови достигает возрастной нормы у доношенных новорожденных к 10-14-му дню жизни, а у недоношенных детей устанавливается лишь к 1-2-му месяцу жизни. В кишечнике новорожденных ферментативный лактозы (основного углевода пищи в этот период) несколько снижен и увеличивается в грудномвозрасте. галактозы у новорожденных интенсивнее, чем у взрослых.

Нарушения У. о. у детей при различных соматических заболеваниях носят вторичный и связаны с влиянием основного патологического процесса на этот обмена. Лабильность механизмов регуляции углеводного и жирового обмена в раннем детском возрасте создает предпосылки для возникновения гипо- и гипергликемических состояний, ацетонемической рвоты. Так, например, нарушения У. о. при пневмонии у детей раннего возраста проявляются повышением в крови натощак концентраций глюкозы и лактата в зависимости от степени дыхательной недостаточности. Непереносимость углеводов выявляется при ожирении и обусловливается изменением секреции инсулина. У детей с кишечными синдромами часто выявляют нарушение расщепления и всасывания углеводов, при целиакии (см. Глютеновая болезнь) отмечают уплощение гликемической кривой после нагрузки крахмалом, дисахаридами и моносахаридами, а у детей раннею возраста с острыми энтероколитами и соледефицитным состоянием при обезвоживании наблюдают склонность к гипогликемии.

В крови детей старшего возраста в норме отсутствуют галактоза, пентозы и дисахариды, у детей грудного возраста они могут появляться в крови после приема пищи, богатой этими углеводами, а также при генетически обусловленных аномалиях обмена соответствующих углеводов или углеводсодержащих соединений; в подавляющем большинстве случаев симптомы таких заболеваний проявляются у детей в раннем возрасте.

Для ранней диагностики наследственных и приобретенных нарушений У. о. у детей применяют этапную систему обследования с использованием генеалогического метода (см. Медицинская генетика), различных скрининг-тестов (см. Скрининг), а также углубленных биохимических исследований. На первом этапе обследования проводят определение в моче глюкозы, фруктозы, сахарозы, лактозы качественными и полуколичественными методами, проверяют значение рН кала (Кала-азар). При получении результатов, заставляющих подозревать патологии) У. о., переходят второму этапу обследования: определению содержания глюкозы в моче и крови натощак количественными методами, построению гликемических и глюкозурических кривых, исследованию гликемических кривых после дифференцированных сахарных нагрузок, определению содержания глюкозы в крови после введения адреналина, глюкагона, лейцина, бутамида, кортизона, инсулина; в части случаев осуществляют прямое определение активности дисахаридаз в слизистой оболочки двенадцатиперстной и тонкой кишок и хроматографическую идентификацию углеводов крови и мочи. Для выявления нарушений переваривания и всасывания углеводов после установления значения рН кала определяют к моно- и дисахаридам с обязательным измерением содержания сахаров в кале и их хроматографической идентификацией до и после нагрузочных проб с углеводами При подозрении на энзимопатию (см. Ферментопатии) в крови и тканях определяют активность ферментов У. о., дефект синтеза (или снижение активности) которых подозревают клиницисты.

Для коррекции нарушенного У. о. при тенденции к гипергликемии применяют диетотерапию с ограничением жиров и углеводов. При необходимости назначают инсулин или другие гипогликемизирующие препараты; средства, способствующие повышению содержания глюкозы в крови, отменяют. При гипогликемии показана , богатая углеводами и белками.

Во время приступов гипогликемии вводят глюкозу, глюкагон, . При непереносимости отдельных углеводов назначают индивидуальную диету с исключением соответствующих сахаров из пищи больных. В случаях нарушений У. о., носящих вторичный характер, необходимо лечение основного заболевания.

Профилактика выраженных нарушений У. о. у детей заключается в их своевременном обнаружении. При вероятности наследственной патологии У. о. рекомендуется Медико-генетическое консультирование . Выраженное неблагоприятное влияние декомпенсации сахарного диабета у беременных женщин на У. о. у плода и новорожденного диктует необходимость тщательной компенсации заболевания у матери на всем протяжении беременности и родов.

Библиогр.: Видершайн Г.Я. Биохимические основы гликозидозов, М., 1980; функций детского организма в норме и патологии, под ред. М.Я. Студеникина и др., с. 33, М., 1978; Комаров Ф.И., Коровкин Б.Ф. и Меньшиков В.В. Биохимические исследования в клинике, с. 407, Л., 1981; Мецлер Д. , пер. с англ., т. 2, М., 1980; Николаев А.Я. Биологическая химия, М., 1989; Розенфельд Е.Л. и Попова И.А. Врожденные нарушения обмена гликогена, М., 1989; Справочник по функциональной диагностике в педиатрии, под ред. Ю.Е. Вельтищева и Н.С. Кисляк, с. 107, М., 1979.

реакция образования лактата из глюкозо-6-фосфата в мышцах в условиях отсутствия активности глюкозо-6-фосфатазы">

Рис. 2. Схема распада в организме гликогена до глюкозы; цифрами обозначены реакции, катализируемые следующими ферментами: 1 - фосфорилазой; 2 - амило-1,6-глюкозидазой; 3 - фосфоглюкомутазой; 4 - глюкозо-6-фосфатазой; 5 - α-амилазой; 6 - нейтральными α-глюкозидазами; 7 - кислой α-глюкозидазой α-амилазой); пунктиром обозначена реакция образования лактата из глюкозо-6-фосфата в мышцах в условиях отсутствия активности глюкозо-6-фосфатазы.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Углеводный обмен в организме человека - процесс тонкий, но имеющий важное значение. Без глюкозы организм слабеет, а в центральной нервной системе снижение ее уровня вызывает галлюцинации, головокружения и потери сознания. Нарушение углеводного обмена в организме человека проявляется почти сразу, а длительные сбои уровня глюкозы в крови вызывают опасные патологии. В связи с этим уметь регулировать концентрацию углеводов необходимо каждому человеку.

Как усваиваются углеводы

Углеводный обмен в организме человека заключается в его преобразовании в энергию, необходимую для жизни. Это происходит в несколько этапов:

  1. На первом этапе углеводы, попавшие в организм человека, начинают расщепляться на простые сахариды. Происходит это уже во рту под воздействием слюны.
  2. В желудке на нераспавшиеся во рту сложные сахариды начинает воздействовать желудочный сок. Он расщепляет даже лактозу до состояния галатозы, которая впоследствии преобразуется в необходимую глюкозу.
  3. В кровь глюкоза всасывается через стенки тонкого кишечника. Часть ее, даже минуя этап накопления в печени, сразу преображается в энергию для жизни.
  4. Далее процессы переходят на клеточный уровень. Глюкоза заменяет собой молекулы кислорода в крови. Это становится сигналом для поджелудочной железы о начале выработки и выброса в кровь инсулина - вещества, необходимого для доставки гликогена, в который преобразовалась глюкоза, внутрь клеток. То есть гормон помогает организму усваивать глюкозу на молекулярном уровне.
  5. Гликоген синтезируется в печени, именно она перерабатывает углеводы в необходимое вещество и даже способна делать небольшой запас гликогена.
  6. Если глюкозы слишком много, печень превращает их в простые жиры, связав их в цепочку нужными кислотами. Такие цепочки при первой необходимости расходуются организмом для превращения в энергию. Если они остаются невостребованными, то переводятся под кожу в виде жировых тканей.
  7. Доставленный инсулином в клетки мышечных тканей гликоген при необходимости, а именно при дефиците кислорода, означающего физическую нагрузку, вырабатывает энергию для мышц.

Регулировка обмена углеводов

Кратко об углеводном обмене в организме человека можно сообщить следующее. Все механизмы расщепления, синтеза и усвоения углеводов, глюкозы и гликогена регулируются различными ферментами и гормонами. Это соматотропный, стероидный гормон и самое главное - инсулин. Именно он помогает гликогену преодолеть клеточную оболочку и проникнуть внутрь клетки.

Нельзя не упомянуть об адреналине, регулирующем весь каскад фосфоролиза. В регулировании химических процессов по усвоению углеводов принимают участие ацетил-КоА, жирные кислоты, ферменты и другие вещества. Нехватка или переизбыток того или иного элемента обязательно вызовет сбой во всей системе усвоения и переработки углеводов.

Нарушения углеводного обмена

Трудно переоценить важность углеводного обмена в организме человека, ведь без энергии нет и жизни. И любое нарушение процесса усвоения углеводов, а значит и уровня глюкозы в организме приводит к опасным для жизни состояниям. Два основных отклонения: гипогликемия - уровень глюкозы критически низкий, и гипергликемия - концентрация углевода в крови превышена. И то и другое крайне опасно, например, пониженный уровень глюкозы сразу же отрицательно сказывается на функциях мозга.

Причины отклонений

Причины отклонений в регулировке уровня глюкозы имеют различные предпосылки:

  1. Наследственное заболевание - галактоземия. Симптомы патологии: дефицит веса, заболевание печени с пожелтением кожного покрова, задержка психического и физического развития, нарушение зрения. Данная болезнь часто приводит к смерти еще на первом году жизни. Это красноречиво говорит о значении углеводного обмена в организме человека.
  2. Другой пример генетического заболевания - фруктозная непереносимость. У больного при этом нарушается работа почек и печени.
  3. Синдром мальабсорбации. Характеризуется заболевание невозможностью усваивать моносахариды через слизистую оболочку тонкого кишечника. Приводит к нарушению почечной и печеночной функции, проявляется диарея, метеоризм. К счастью, болезнь поддается лечению путем приема больным ряда необходимых ферментов, снижающих характерную при данной патологии лактозную непереносимость.
  4. Болезнь Сандахоффа характеризуется нарушением выработки фермента А и В.
  5. Болезнь Тея-Сакса развивается в результате нарушения выработки в организме AN-ацетилгексозаминидазы.
  6. Самое известное заболевание - диабет. При этом недуге глюкоза не попадает в клетки, так как поджелудочная железа перестала выделять инсулин. Тот самый гормон, без которого невозможно проникновение глюкозы в клетки.

Большинство болезней, сопровождаемых нарушением уровня глюкозы в организме, являются неизлечимыми. В лучшем случае врачам удается стабилизировать состояние больных путем введения в их организмы недостающих ферментов или гормонов.

Нарушения углеводного обмена у детей

Особенности метаболизма и питания новорожденных приводит к тому, что в их организмах гликолиз протекает на 30 % интенсивнее, чем у взрослого человека. Поэтому важно определить причины появления нарушений углеводного обмена у малыша. Ведь первые дни человека наполнены событиями, требующими массы энергии: рождение, стресс, возросшая физическая активность, потребление пищи, дыхание кислородом. Нормализуется уровень гликогена только через несколько дней.

Помимо наследственных заболеваний, связанных с обменом веществ, которые могут проявиться с первых дней жизни, ребенок подвержен самым разным состояниям, способным привести к глютеновой болезни. Например, расстройство желудка или тонкого кишечника.

Для того чтобы не допустить развития глютеновой болезни, уровень глюкозы в крови малыша подвергается изучению еще в период внутриутробного развития. Именно поэтому будущая мать должна во время беременности сдавать все назначаемые врачом анализы и проходить инструментальные обследования.

Восстановление углеводного обмена

Как восстановить углеводный обмен в организме человека? Все зависит от того, в какую сторону сместился уровень глюкозы.

Если у человека наблюдается гипергликемия, то ему назначают диету по снижению в рационе жиров и углеводов. А при гипогликемии, то есть низком уровне глюкозы, наоборот, предписывается употреблять большее количество углеводов и белков.

Следует понимать, что восстановить углеводный обмен в организме человека довольно трудно. Одной диеты обычно не хватает, часто больной должен пройти курс лечения медицинскими препаратами: гормонами, ферментами и так далее. Например, при сахарном диабете больной должен до конца жизни получать инъекции гормона инсулина. Причем дозировка и схема приема препарата назначаются индивидуально в зависимости от состояния пациента. Ведь в целом лечение направлено на устранение причины нарушения углеводного обмена в организме человека, а не только на его временную нормализацию.

Специальная диета и гликемический индекс

Что такое углеводный обмен в организме человека, знают те, кто вынужден жить с хроническим неизлечимым заболеванием, характеризующимся нарушением уровня глюкозы в крови. Такие люди на собственном опыте узнали, что такое гликемический индекс. Эта единица определяет, сколько глюкозы в том или ином продукте.

Кроме ГИ любой врач или больной диабетик знают наизусть, в каком продукте и сколько содержится углеводов. На основе всей этой информации составляется особый план питания.

Вот, например, несколько позиций из рациона таких людей (на 100 г):

  1. Сухие - 15 ГИ, 3,4 г углеводов, 570 ккал.
  2. Земляной орех - 20 ГИ, 9,9 г углеводов, 552 ккал.
  3. Брокколи - 15 ГИ, 6,6 г углеводов, 34 ккал.
  4. Белый гриб - 10 ГИ, 1,1 г углеводов, 34 ккал.
  5. Листья салата- 10 ГИ, 2 г углеводов, 16 ккал.
  6. Латук - 10 ГИ, 2,9 г углеводов, 15 ккал.
  7. Томаты - 10 ГИ, 4,2 г углеводов, 19,9 ккал.
  8. Баклажан - 10 ГИ, 5,9 г углеводов, 25 ккал.
  9. Перец болгарский -10 ГИ, 6,7 г углеводов, 29 ккал.

В данном списке приведены продукты с низким ГИ. При диабете человек может смело есть пищу с ингредиентами, в которых ГИ не превышает 40, максимум 50. Остальное находится под строжайшим запретом.

Что будет, если самостоятельно регулировать углеводный обмен

Есть еще один аспект, о котором нельзя забывать в процессе регулирования углеводного обмена. Организм обязательно должен получать предназначенную для жизни энергию. И если пища не попадает в организм вовремя, то он начнет расщеплять жировые клетки, а затем клетки мышц. То есть наступит физическое истощение организма.

Увлечение монодиетами, вегитарианством, фруторианством и другими экспериментальными методиками питания, призванными регулировать обмен веществ, приводит не просто к плохому самочувствию, но к нарушению жизненно важных функций в организме и разрушению внутренних органов и структур. Разрабатывать рацион и назначать препараты может только специалист. Любое самолечение приводит к ухудшению состояния или даже смерти.

Заключение

Углеводный обмен играет важнейшую роль в организме, при его нарушении происходят сбои в работе многих систем и органов. Важно поддерживать в норме количество поступающих в организм углеводов.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека