Системы боинг 737. С какой скоростью летит самолет

Вопрос о том, какую скорость развивает самолет при взлете, интересует многих пассажиров. Мнения непрофессионалов всегда расходятся – кто-то ошибочно предполагает, что скорость всегда одинаковая для всех видов данной авиатехники, другие правильно считают, что она различная, но не могут объяснить почему. Постараемся разобраться в этой теме.

Взлет

Взлет – это процесс, занимающий временную шкалу от начала движения самолета до его полного отрыва от взлетно-посадочной полосы. Взлет возможно только при соблюдении одного условия: подъемная сила должна приобрести значение больше значения массы взлетающего объекта.

Виды взлета

Различные «мешающие» факторы, которые приходится преодолевать для поднятия самолета в воздух (погодные условия, направление ветра, ограниченная взлетная полоса, ограниченная мощность двигателя и т.д.), побудили авиаконструкторов к созданию множества способов их обхода. Усовершенствовалась не только конструкция летающих аппаратов, но и сам процесс их взлета. Таким образом, были разработаны несколько видов взлета:
  • С тормозов. Разгон самолета начинается только после того, как двигатели достигнут установленного режима тяги, а до тех пор аппарат удерживается на месте при помощи тормозов;
  • Простой классический взлет, предполагающий постепенный набор тяги двигателя во время движения самолета по взлетной полосе;
  • Взлет с использованием вспомогательных средств. Характерно для самолетов, несущих боевую службу на авианосцах. Ограниченная дистанция взлетной полосы компенсируется использованием трамплинов, катапультными устройствами или даже установленными на самолет дополнительными ракетными двигателями;
  • Вертикальный взлет. Возможен при наличии у самолета двигателей с вертикальной тягой (пример – отечественный Як-38). Такие аппараты, аналогично вертолетам, сначала набирают высоту с места по вертикали либо при разгоне с очень малого расстояния, а затем плавно переходят в горизонтальный полет.

Рассмотрим в качестве примера фазы взлета турбовентиляторного самолета Боинг 737.

Взлет пассажирского Boeing 737

Практически каждый гражданский самолет поднимается в воздух по классической схеме, т.е. двигатель набирает нужную тягу непосредственно в самом процессе взлета. Выглядит это следующим образом:
  • Движение самолета начинается после достижения двигателем около 800 оборотов/мин. Летчик постепенно отпускает тормоза, держа при этом ручку управления нейтрально. Разбег начинается на трех колесах;
  • Для начала отрыва от земли Боинг должен приобрести скорость около 180 км/ч. При достижении этого значения пилот плавно тянет ручку, что ведет к отклонению щитков-закрылков и, как следствие, поднятию носа аппарата. Дальше самолет разгоняется уже на двух колесах;
  • С приподнятым носом на двух колесах самолет продолжает разгон до тех пор, пока скорость не достигнет 220 км/ч. При достижении этого значения самолет отрывается от земли.

На протяжении многих десятилетий корпорация Boeing держит марку самой крупнейшей в своей отрасли. Основные ее мощности, занимающиеся производством военной и гражданской техники, используемой в авиации и космосе, расположены в Сиэтле. Самолеты Боинг 737 800 выпускает подразделение Boeing Commercial Airplanes.

Обзор

Гражданские турбовентиляторные узкофюзеляжные лайнеры семейства 737 корпорация Boeing начала выпускать с 1967 года. Рассматриваемая модель относится к многочисленному семейству Next Generation, которое должно было стать достойной конкуренцией Airbus A320.

Первый заказ корпорации на создание Боинг 737 800 поступил в 1994 г., и уже через 4 года авиакомпания «TUIfly» (называвшаяся тогда «Hapag-Lloyd Flug») получила данную модель. После этого начался усиленный выпуск новой модификации самолетов семейства NG, и многие ведущие авиаперевозчики мира благодаря этим машинам обновили свой парк.

Не осталась в стороне и Россия. Ее авиалинии также обслуживаются данными лайнерами:

  • пользуется Боингами 737 800 Аэрофлот – на текущий момент их в парке компании 25 штук;
  • у авиакомпании «ЮТэйр» несколько модификаций Боингов, из них 737-800 – 9 шт.;
  • наряду с Эйрбусами компания «S7» использует и Боинги, среди которых насчитывается 19 самолетов модели 737-800;

  • лоукостовская авиакомпания Победа летает исключительно на самолетах семейства Next Generation – их в парке 12 шт.

Дополнительная информация. Пассажирских Боингов 737 800 корпорация выпустила за эти годы порядка 2135 шт., плюс несколько модификаций – бизнес вариант с приставкой BBJ2 и военную технику 737-800ERX. Модели гражданской авиации данного семейства до сих пор стоят на потоке в виду их востребованности.

Технические характеристики

В техническом плане лайнер Боинг 737 800 оказался удачным вариантом, что сделало модель популярной среди авиаперевозчиков. Это говорит о конкурентоспособности самолетов семейства 737 Next Generation – они практически не уступают по своим характеристикам Эйрбусам.

Сравнительные параметры самолетов 2-х брендов приведены в таблице ниже.

Обзор характеристик Боинга 737 800 и Airbus A320

Параметры Ед. изм. Боинг Эйрбус
Наличие мест в самолете, 2 варианта: стандартный и с разбивкой на классы шт. 189; 160 189; 160
Салон, ширина м 3,6 3,7
Расстояние перелета загруженного лайнера тыс. м 5,4 6,1
Скорость мax (крейсерская) км/ч 850 840
Пробег, расстояние тыс. м 1,63 1,53
Вес пустого самолета тн 41,14 42,1
Mасса мax взлетная тн 78,24-79,0 73,5-78
Лайнер в длину м 39,5 37,6
Лайнер в высоту м 12,5 11,8
Крылья в размахе м 34,3 34,1-35,8

Модель Боинга оснащена 2-мя моторами CFMI CFM56-7B24/26 с максимальными мощностями в 11930 кгс, с баками для топлива емкостью в 26020 л. Моторы, размещенные под крыльями, издают меньше шума и более экономичны, по сравнению с предыдущими моделями.

Боинг 737 800 отличается от других самолетов своего семейства модифицированным крылом, площадь которого стала на 25% больше. Это помогло увеличить размах крыла почти на 5 м, что привело к возможности брать дополнительно на борт на 30% больше запас топлива. Технические характеристики Боинга данной модели позволяют использовать его для трансконтинентальных перелетов.

Внешне же данная модель ничем не отличается от других представителей семейства 737. Едины для всех модификаций носовая секция и сечение фюзеляжа. Но имеется и дополнение: под передней левой дверью встроен трап на электроприводе, которым пользуются в своей работе авиатехники. Хотя в ряде случаев некоторые авиакомпании используют его и для высадки пассажиров.

Схема посадочных мест в салоне самолета

Изначально интерьер салона Боинга 737 800 создавался под экономический класс, что позволяет увеличивать количество посадочных мест и экономить на эксплуатационных расходах. Таким вариантом как раз пользуется бюджетная отечественная авиакомпания «Победа».

Крупные международные авиакомпании заключают договор с производителем на поставку самолетов с разбивкой салона на 2 класса – экономический и бизнес. На лайнерах российских перевозчиков схемы самолета Боинг 737 800 могут немного отличаться между собой.

Здесь для примера будет рассматриваться салон одной из машин компании «S7», где под приоритетные места отведено 12 кресел, расположенные в 3 ряда попарно с двух сторон прохода.


В экономическом классе идет тройная компоновка кресел. Только у средней серии аварийных выходов, в 13 ряду расположение мест попарное. Отсеки общепита и туалеты размещены вначале салона (перед бизнес-классом) и в хвостовой части (за последними рядами). Схема салона самолета Боинг 737 800 компании «S7» приведена на рис. выше.

Описание мест по блокам рядов

В любом из салонов одни места в самолете Боинг 737 более комфортны, другие наделены массой неудобств. Когда есть возможность выбрать себе подходящее место в лайнере, не ошибиться сможет только пассажир с опытом или знающий досконально план расположения кресел в салоне.

Класс бизнес

Даже в приоритетном отсеке лайнера есть свои особенности, определяющие хорошие и не очень зоны. Чтобы угадать с лучшим местом в самолете Боинг 737 800 авиаперевозчика « S 7», стоит рассмотреть каждый из 3-х рядов:

  • 1-й ряд может похвастаться свободным пространством и отсутствием откидывающихся впереди кресел. Но весь полет пассажирам придется лицезреть перегородку, отделяющую бизнес-салон от кухни и гардеробной;
  • Неудобства 2-го ряда заключаются только в откидывающихся креслах впереди сидящих пассажиров;
  • За 3-м рядом размещена перегородка, которая отделяет от эконом-класса. Она достаточно тонкая, поэтому будет хорошо слышен доносящийся из заднего салона шум.

Но на все эти нюансы можно закрыть глаза, взяв во внимание повышенный комфорт, удобные кресла и высокое обслуживание.

Эконом-класс

В салоне экономического класса самолета boeing 737 большинство мест можно назвать стандартными. Несколько кресел считаются неудобными, но имеется и очень хорошее расположение сидений:

  1. 1-й ряд экономического салона (или 4-й по нумерации) расположен сразу за перегородкой, которая помешает достаточно комфортно разместиться в кресле. Весь полет придется рассматривать разделяющую ширму. Здесь имеются крепления для детских люлек, поэтому с маленькими детьми лучше сидеть в этом ряду, но такое соседство может показаться слишком шумным другим пассажирам; из преимуществ можно выделить 2 нюанса:
  • впереди нет откидывающихся кресел;
  • обслуживание начинается с начала салона, поэтому есть приоритетная возможность выбора блюд.
  1. В 9-м ряду крайние места у бортов можно смело назвать плохими; если вы любите смотреть в окно, здесь отсутствуют иллюминаторы;
  2. К ряду 12 можно предъявить некоторые замечания – он находится перед средними выходами. Поэтому спинки кресел здесь либо имеют небольшой угол наклона, либо вообще не откидываются;
  3. 13-й ряд одним нравится, другие пассажиры от него не в восторге:
  • расположение кресел неудобно – ряд находится между 2-мя сериями выходов, поэтому спинки на этих сиденьях не откидываются;
  • зато есть дополнительное пространство, позволяющее выпрямить ноги;
  • эти места привлекают тех, кто путешествует парой;
  • на данном ряду нельзя путешествовать с детьми, перевозить животных, не допускаются сюда и люди с ограниченными возможностями;
  • негде разместить ручную кладь.
  1. Ряду 14 отдают предпочтение – здесь самые лучшие места в самолете. Впереди достаточно пространства, чтобы комфортно разместиться в кресле. Но боковые сиденья (у бортов) слегка скошены, и на них со стороны аварийного выхода нет подлокотника;
  2. В 27-м ряду неудобными оказываются крайние к проходу места из-за близости туалета. Мешать может не только частое хождение пассажиров по салону, но и создаваемая ими очередь в санузел;
  3. Самым дискомфортным рядом является последний – 28-й. Спинки кресел не откидываются, упираясь в перегородку, за которой находится туалет. Пассажирам мешают хлопанье дверей, движение пассажиров и шум сливного бачка.

Взяв во внимание особенности некоторых сидений в экономическом и бизнес салоне, легче будет подбирать себе место в самолете boeing 737 800 для комфортного полета (особенно, если предстоит путешествие с детьми).

Людям, имеющим проблемы с вестибулярным аппаратом, лучше выбирать кресла в носу лайнера – здесь меньше ощущается турбулентность. Люди, путешествующие в одиночку, могут чувствовать себя дискомфортно на центральных местах.

Обратите внимание! Тем, кто боится самолетов или страдает клаустрофобией, стоит выбирать сиденья у проходов в зонах, расположенных ближе к выходам. Особенно нежелательны для них кресла у бортов, где нет иллюминаторов.

Удобства

В салонах самолетов Боинг 737 800 кресла оборудованы розетками для подзарядки электронных устройств. Что касается Интернета, то отечественные авиаперевозчики рассматривают проекты подключения wi-fi в самолетах, которые они эксплуатируют.

В салонах некоторых лайнеров, эксплуатируемых «Аэрофлотом», на задних панелях кресел вмонтированы мониторы. Есть возможность подключить свои гаджеты к мобильному приложению компании. Развлекательная система Panasonic eXW заполнена большой видео,- и фонотекой, которая не даст скучать во время полета.

В самолетах компании «S7» в подлокотники, помимо подзарядки, вмонтирована система для прослушивания музыки. Других развлечений не предусмотрено. В Боингах рассматриваемой модели, которыми пользуются российские перевозчики «ЮТэйр» и «Победа», никакой электронной системы, обеспечивающей пассажирам увлекательное путешествие, не имеется.

В целом 737-ая модель Боингов 800-й модификации – вполне удобный, комфортабельный транспорт для путешествия заграницу, обладающий хорошими аэродинамическими свойствами. Самолеты семейства Next Generation штатовской корпорации Boeing вносят достойную лепту в развитие мировой авиации.

Видео

Несмотря на то, что первый Боинг 737 американская корпорация произвела полвека назад, самолет до сих пор востребован у авиаперевозчиков. Лайнер продолжает изготавливаться до настоящего времени, насчитывая уже более 9500 выпущенных единиц. Воздушные суда 737-ой серии обладают узким фюзеляжем и рассчитаны на полеты по маршрутам средней протяженности.

Модификации Боинга 737

За долгую историю лайнера разработано и выпущено несколько модификаций самолета, принадлежащих к четырем поколениям.

Модификация Год выпуска Дальность полета, км Число пассажиров, чел. Поколение
Боинг 737-100 1967 2592 103 Original
Боинг 737-200 1967 3518 133 Original
Боинг 737-300 1984 5000 149 Classic
Боинг 737-400 1988 5000 168 Classic
Боинг 737-500 1990 5200 132 Classic
Боинг 737-600 1998 5648 130 New Generation
Боинг 737-700/700ER 1997 6230 148 New Generation
Боинг 737-800 1998 5765 189 New Generation
Боинг 737-900 2001 5800 189 New Generation
Боинг 737-900ER 2007 5925 215 New Generation
Боинг 737 MAX −7/8/9 2016 7038/6704/6658 максимальная −140/200/220 MAX

Original

Лайнеры Boeing 737 первого поколения не приобрели большого коммерческого успеха, так как потребляли много горючего, были шумные и дорогие в обслуживании. Последний самолет 737-100 перестал эксплуатироваться с 2007 г., а 737-200 ещё используется авиаперевозчиками стран Африки и некоторых других.

На базе Boeing 737-200 были созданы грузовые и грузопассажирские варианты, выпускался 737-200 Executive Jet для частных владельцев.

Интересно! До выпуска Боинга 737 пассажирский самолет пилотировали 3 человека, включая бортинженера. Здесь впервые использовали кабину с двумя пилотами, что стало революционным решением и было принято за основу во всех последующих моделях пассажирских лайнеров.

Classic

Несмотря на все усовершенствования самолетов поколения Original, они стали значительно проигрывать конкурентам. Новая модель была разработана со значительными изменениями. Воздушное судно получило новые двигатели, фюзеляж стал длиннее, возросло количество перевозимых пассажиров. Изменилась аэродинамика, лайнер оснастили новой цифровой авионикой (бортовыми электронными системами).

У модели 737-400 из-за увеличенного салона изменилась система кондиционирования внутреннего воздуха и добавилась вторая пара аварийных выходов в районе крыла.

Версия 737-500 обладает укороченным фюзеляжем, меньшей вместимостью, но большей дальностью.

New Generation

Новое поколение Boeing 737 переработали еще более кардинально. Размах крыльев не только вырос, но и изменилась их геометрия. Внесли поправки в хвостовое оперение. В пассажирских салонах самолетов New Generation и Боингов 757, 767 много общего, так как в основу устройства внутреннего пространства Boeing 737 легли конструкторские наработки для этих лайнеров.

Каждая последующая версия New Generation имеет большую длину при практически неизменном диаметре фюзеляжа, а двигатели последней модификации 737-900ER, благодаря улучшенной конструкции крыла, расходуют меньше горючего при крейсерской скорости.

Интересно! На базе Боинг 737-700, 737-800 и 737-900 производятся BBJ, BBJ2 BBJ3 (Boeing Business Jet), являющиеся самыми популярными в мире у частных клиентов. На борту по желанию заказчика устраиваются спальня, душевая(ванна), зал для деловых заседаний и т. д.).

Компоновка пассажирского салона

Устройство пассажирского салона зависит от его габаритов, которые могут отличаться значительно в различных модификациях. Кроме того, разные варианты компоновки заказывают авиакомпании. Наиболее распространенный вариант салона - двухклассовый:

  • бизнес-класс;
  • эконом-класс.

Встречаются варианты с одним салоном эконом-класса. Общая вместимость колеблется от 103 пассажиров в версии 737-100 до 220 человек в 737 МАХ-9.

Бизнес-класс

В бизнес-классе установлены мягкие комфортные кресла с большим углом раскладывания. Расположение мест в большинстве вариантов компоновок - по схеме 2-2. Всего в носовом салоне насчитывается от 2 до 5 рядов. Чаще всего - 4 ряда.

В передней части самолета, перед сидениями, имеется кухня для клиентов элитного салона и туалетные комнаты. Наиболее спокойными местами являются кресла 2-го и 3-го ряда. Сидения 1-го и 4-го ряда могут показаться не такими комфортными из-за наличия поблизости туалетов, кухни, а в случае последнего ряда - более многолюдного эконом-класса. В самолетах некоторых авиакомпаний эконом-класс отделен только занавесом.

Эконом-класс

Почти во всех салонах эконом-класса кресла скомпонованы по схеме 3-3. Сверху расположены багажные полки. Туалетные комнаты и кухня находятся в хвосте самолета.

Наиболее удобными в Boeing 737 все авиакомпании считают кресла первого ряда, сразу позади бизнес-класса. Там обеспечивается больше пространства для ног. Часто билеты на этот ряд стоят дороже или продаются держателям бонусных карт.

Внутри салона, в средней части, расположен один парный аварийный выход или два в зависимости от версии лайнера. Места около аварийных выходов также имеют увеличенное расстояние между креслами, но пассажирам может причинить неудобство жесткая фиксация спинок кресел и боковые выпуклости на стенке самолета. Зато сидения сразу за аварийными выходами откидываются полностью и обладают расширенным пространством. Нумерация рядов уточняется у перевозчика.

Важно: Худшие места находятся в последнем ряду воздушного судна. Близость санузлов и кухни создает суету и шум, а спинки сидений не раскладываются или откидываются слегка.

Конструктивные особенности и преимущества

Каждый узел самолета обладает своими характерными особенностями и связанными с этим преимуществами:

  1. Конструкция лайнера представляет собой моноплан с двумя двигателями, размещенными на пилонах, и крыльями стреловидной формы.
  2. Трехопорные шасси имеют переднюю поворотную стойку. Основная опора не закрывается створками после окончания складывания. Это можно заметить по виднеющимся колесам. Такое решение упростило конструкцию и уменьшило массу лайнера, но несколько ухудшило аэродинамику.
  3. Так как двигатели расположены низко, требовалось немного сократить их вертикальные габариты. Для этого частично нижнее оборудование для двигателя разместили с боков и немного вытянули по горизонтали воздухозаборник. Двигатели получили приплюснутую форму, особенно заметную у последних версий.
  4. Винглеты (законцовки) на крыльях претерпевали изменения по ходу эволюции Боинга 737. Сначала винглеты минимальных размеров сделали на модификации 737-200. Последующие поколения Classic и New Generation получили большие законцовки, широко распространенные сейчас. На самолетах поколения МАХ используются двойные винглеты.
Интересно: Потребление горючего снижается на 3,3% при использовании больших законцовок и на 5,5 % при двойных винглетах.
  • Компания Messier-Bugatti оснастила лайнер в 2008 г. карбоновыми тормозами. Это позволило снизить массу на 320 кг и примерно на полпроцента снизить расход топлива.
  • Кабина с местами для двух пилотов первоначально имела аналоговые устройства и приборы. Теперь на все самолеты устанавливаются цифровые системы управления с жидкокристаллическими дисплеями. Раньше в кабине присутствовали дополнительные окна сверху, что улучшало обзор при маневрировании и позволяло ориентироваться по звездному небу. В дальнейшем их убрали из-за установки современных приборов ориентирования.
  • Наиболее серьезным изменениям подвергалось внутреннее устройство салона. Практически для каждого поколения лайнеров оно перерабатывалось с учетом повышения комфортабельности и оптимального расположения пассажирских кресел.

Общие преимущества Боинг 737:

  • легкость взлета, набора высоты, посадки;
  • высокая грузоподъемность;
  • надежность и длительный срок эксплуатации;
  • невысокие расходы на обслуживание;
  • удобный, отлично оборудованный салон.

Технические характеристики

Эксплуатационно-технические характеристики Boeing 737 наиболее значительные изменения претерпевали с каждым новым поколением.

Original

New Generation

Тип 737-600 737-700 737-800 737-900 737-900ER
Длина, м 31,24 33,63 39,47 42,11
Размах крыльев, м 34,32
Ширина фюзеляжа, м 3,76
Ширина салона, м 3,54
Высота салона, м 2,20
Максимальная взлетная масса, кг 56 245 70 080 79 015 74 389
Крейсерская скорость, км/ч 852
Двигатели CFM56-7B18 CFM56-7B20 CFM56-7B24
Максимальная высота полета, м 12 500
Длина разбега, м 1799 1677 2241 2408 2450
Запас топлива, л 20 894

История создания

Когда начались проектные работы по созданию нового лайнера Боинг 737 в 1964 г., конкуренты из British Aircraft Corporation и Douglas Aircraft уже значительно продвинулись в производстве своих машин. Они были готовы сертифицировать новые ближнемагистральные самолеты с небольшой вместимостью. Компания Boeing, стремясь сократить время разработки лайнера, взяла за основу использовавшиеся технологии при производстве самолетов предыдущих моделей - 707 и 727. Но испытания показали непригодность прежних крыльев для новой версии. Вновь созданное крыло помогло воздушному судну летать на большей высоте, уменьшив расход авиационного керосина.

Кресла в Боинге 737-100 располагались по 6 в каждом ряду, обеспечив большую вместимость, чем у конкурирующих авиапроизводителей.

Интересно! Первоначально проектировалось 60 пассажирских кресел внутри салона Boeing 737-100, но впоследствии остановились на варианте со 103-мя сидениями по настоянию первого заказчика, компании Lufthansa.

Программа по разработке завершилась быстро и без вложения больших материальных средств. Сборка первого самолета закончилась зимой 1967 г. В апреле лайнер впервые поднялся в воздух, а в августе совершил пробный полет Boeing 737-200.

Решение об управлении самолета двухпилотным экипажем вызвало нешуточные дискуссии и сопротивление профсоюзов, так как сокращалась единица бортинженера или третьего пилота. Однако, после разбирательств и летных испытаний компания доказала возможность использования двух человек для пилотирования, а авиакомпании были даже заинтересованы в этом из-за экономии расходов.

В конце 1967 г. обе версии нового Боинга прошли сертификацию, а через 2 месяца Люфтганза начала эксплуатировать лайнер.

Параллельно шла доработка самолета для того, чтобы он мог садиться на грунтовую посадочную полосу. Испытания завершились успешно и Боинг 737 сразу стал востребован для полетов в далекие городки на севере США и Канады. Удлиненная модель 737-200 пользовалась большим спросом и производилась вплоть до 1988 г.

В 80-х годах прошлого века Boeing 737 переработали, оснастив его новыми двигателями и усовершенствовав кабину. Первый полет воздушного судна следующего поколения Classic состоялся в 1984 г. Впоследствии к модификации 737-300 добавили еще две - 737-400, 737-500.

Европейский лайнер А-320 в 90-е годы потеснил Боинг 737 в сегменте узкофюзеляжных воздушных судов, обладая техническим превосходством. И авиакорпорация приступила к созданию новой серии модификаций - New Generation. Всего было выпущено 5 модификаций - 737-600/700/800/900/900ER. Возросшая крейсерская скорость, большее количество топлива на борту позволили совершать протяженные полеты при сокращенном времени в пути. Благодаря этому компания открыла новые рынки.

Интересно! Самолеты New Generation, кроме устройства фюзеляжа, полностью отличаются от первых лайнеров 737. У них модифицированные двигатели, совершенно новые крылья, другая авионика. Идеи для внутреннего устройства салона для пассажиров даже были позаимствованы при проектировании Boeing 777.

Последняя версия NG Boeing 737-900 ER была выпущена в 2007 г.

В январе 2016 г. Боинг 737 МАХ 8 отправился в первый полет. Самолеты этой серии призваны заменить лайнеры New Generation.

Место производства

География производства комплектующих для самолета обширна. Это многие европейские и азиатские страны. Сборочные работы проводятся в Соединенных Штатах.

  1. Фюзеляж для Боинга 737 собирают на предприятии компании в г. Уичито (штат Канзас).
  2. На втором этапе корпус самолета перевозится в г. Рентон (штат Вашингтон), где производится финишная сборка. Продолжительность окончательной сборки примерно 2 недели.
Интересно! Сборка одного самолета требует установки 3 млн 670 тысяч деталей, и прокладки 58 тысяч метров электрических кабелей.

Компании-эксплуатанты

Boeing 737 эксплуатируют мировые авиакомпании в 115 странах. Наибольшее число лайнеров подобного типа принадлежит авиаперевозчикам:

Самолет используют и для трансконтинентальных перелетов, и для сверхкоротких рейсов. Это основной лайнер для полетов на Аляску, в северные регионы Канады, на острова Тихого океана.

Интересно! Маршрут самой маленькой протяженности, выполняемый Боингом 737 - 14 км. Перевозки осуществляет японская Japan TransOcean Air между двумя островами в Тихом океане (Минами Дайто - Кита Дайто). Air Tanzania обслуживает рейсы Дар-эс-Салам - о.Занзибар (65 км).

Стоимость разных моделей

Стоимость моделей первых поколений начиналась от 49, 5 миллионов долларов, но цена может разниться в зависимости от комплектации. Сейчас производятся только модификации New Generation и МАХ.

Перспективы развития

Перспективы развития модели 737 связаны с новым поколением самолетов - MAX. Их производство уже стартовало.

Основные изменения и особенности:

  1. Установлены новые мощные двигатели. При увеличенной мощности они расходуют меньше горючего.
  2. Внесены изменения в геометрию планера воздушного судна.
  3. На двигателях сзади устанавливаются зубцы-шевроны, значительно снижающие шум работы.
  4. Кабина пилотов почти не изменится, но интерьер пассажирского салона будет производиться с багажными полками и подсветкой из светодиодов, как у Дримлайнера.

Последние усовершенствования вдохнули новую жизнь в уже завоевавшие широкую популярность лайнеры Boeing 737. Портфель заказов компании непрерывно пополняется. К надежности и безопасности добавляется все большая комфортабельность для пассажиров.

Уважаемые посетители сайта Aviawiki! Ваших вопросов стало так много, что, к сожалению, у наших специалистов не всегда есть время ответить на все. Напомним, что мы отвечаем на вопросы абсолютно бесплатно и в порядке очереди. Однако у вас есть возможность гарантированно получить оперативный ответ за символическую сумму .

Профиль на середине размаха крыла

  • Относительная толщина (отношение максимального расстояния между верхней и нижней дужкой профиля к длине хорды крыла) 0.1537
  • Относительный радиус передней кромки (отношение радиуса к длине хорды) 0.0392
  • Относительная кривизна (отношение максимального расстояния между средней линией профиля и хордой к длине хорды) 0.0028
  • Угол задней кромки 14.2211 градусов

Профиль на середине размаха крыла

Профиль крыла ближе к концевой части

  • Относительная толщина 0.1256
  • Относительный радиус передней кромки 0.0212
  • Относительная кривизна 0.0075
  • Угол задней кромки 13.2757 градусов

Профиль крыла ближе к концевой части

Профиль крыла концевой части

  • Относительная толщина 0.1000
  • Оотносительный радиус передней кромки 0.0100
  • Относительная кривизна 0.0145
  • Угол задней кромки 11.2016 градусов

Профиль крыла концевой части

  • Относительная толщина 0.1080
  • Относительный радиус передней кромки 0.0117
  • Относительная кривизна 0.0158
  • Угол задней кромки 11.6657 градусов

Параметры крыла

  • Площадь крыла 1135 ft² или 105.44м².
  • Размах крыла 94’9’’ или 28.88 м (102’5’’ или 31.22 м с winglets)
  • Относительное удлинение крыла 9.16
  • Корневая хорда 7.32 %
  • Концевая хорда 1.62 %
  • Сужение крыла 0.24
  • Угол стреловидности 25 градусов

К вспомогательному управлению относится механизация крыла и переставной стабилизатор.

Рулевые поверхности основного управления отклоняются гидроприводами , работу которых обеспечивают две независимые гидросистемы А и В. Любая из них обеспечивает нормальную работу основного управления. Рулевые приводы (гидроприводы) включены в проводку управления по необратимой схеме, т. е. аэродинамические нагрузки от рулевых поверхностей не передаются на органы управления. Усилия на штурвале и педалях создают загрузочные механизмы.

При отказе обеих гидросистем руль высоты и элероны управляются пилотами вручную, а руль направления управляется с помощью резервной гидросистемы (standby hydraulic system).

Поперечное управление

Поперечное управление

Поперечное управление осуществляется элеронами и отклоняемыми в полете интерцепторами (flight spoilers).

При наличии гидропитания на рулевых приводах элеронов поперечное управление работает следующим образом:

  • перемещение штурвальных колес штурвалов по тросовой проводке передается на рулевые приводы элеронов и далее на элероны;
  • кроме элеронов, рулевые приводы элеронов перемещают пружинную тягу (aileron spring cartridge), связанную с системой управления интерцепторами и таким образом приводят её в движение;
  • движение пружинной тяги передается на устройство изменения передаточного коэффициента (spoiler ratio changer). Здесь управляющее воздействие уменьшается в зависимости от величины отклонения рукоятки управления интерцепторами (speed brake lever). Чем больше отклонены интерцепторы в режиме воздушных тормозов, тем меньше коэффициент передачи перемещения штурвалов по крену;
  • далее перемещение передается на механизм управления интерцепторами (spoiler mixer), где оно суммируется с перемещением рукоятки управления интерцепторами. На крыле с поднятым элероном интерцепторы приподнимаются, а на другом крыле – приспускаются. Таким образом, одновременно выполняются функции воздушного тормоза и поперечного управления. Интерцепторы включаются в работу при повороте штурвального колеса более 10 градусов;
  • также, вместе со всей системой, движется тросовая проводка от устройства изменения передаточного коэффициента до устройства зацепления (lost motion device) механизма связи штурвалов.

Устройство зацепления соединяет правый штурвал с тросовой проводкой управления интерцепторами при рассогласовании более 12 градусов (поворота штурвального колеса).

При отсутствии гидропитания на рулевых приводах элеронов, они будут отклоняться пилотами вручную, а при повороте штурвала на угол более 12 градусов будет приводиться в движение тросовая проводка системы управления интерцепторами. Если при этом рулевые машины интерцепторов будут работать, то интерцепторы будут работать в помощь элеронам.

Эта же схема позволяет второму пилоту управлять интерцепторами по крену при заклинении штурвала командира или тросовой проводки элеронов. При этом ему необходимо приложить усилие порядка 80-120 фунтов (36-54 кг), чтобы преодолеть усилие предварительной затяжки пружины в механизме связи штурвалов (aileron transfer mechanism), отклонить штурвал более 12 градусов и тогда вступят в работу интерцепторы.

При заклинении правого штурвала или тросовой проводки интерцепторов командир имеет возможность управлять элеронами, преодолевая усилие пружины в механизме связи штурвалов.

Рулевой привод элеронов соединен тросовой проводкой с левой штурвальной колонкой через загрузочный механизм (aileron feel and centering unit). Данное устройство имитирует аэродинамическую нагрузку на элеронах, при работающем рулевом приводе, а также смещает положение нулевых усилий (механизм триммерного эффекта). Пользоваться механизмом триммерного эффекта элеронов можно только при отключенном автопилоте, поскольку автопилот управляет рулевым приводом напрямую, и будет пересиливать любые перемещения загрузочного механизма. Зато в момент отключения автопилота эти усилия сразу же передадутся на проводку управления, что приведет к неожидаемому кренению самолета. Для уменьшения вероятности непреднамеренного триммирования элеронов, установлено два переключателя. При этом триммирование произойдет только при нажатии на оба переключателя одновременно.

Для уменьшения усилий при ручном управлении (manual reversion) элероны имеют кинематические сервокомпенсаторы (tabs) и балансировочные панели (balance panel).

Сервокомпенсаторы кинематически связаны с элеронами и отклоняются в противоположную отклонению элерона сторону. Это уменьшает шарнирный момент элерона и усилия на штурвале.

Балансировочная панель

Балансировочные панели представляют собой панели соединяющие переднюю кромку элерона с задним лонжероном крыла с помощью шарнирных соединений. При отклонении элерона, например, вниз - на нижней поверхности крыла в зоне элерона возникает зона повышенного давления, а на верхней – разрежения. Этот перепад давления распространяется в зону между передней кромкой элерона и крылом и, воздействуя на балансировочную панель, уменьшает шарнирный момент элерона.

При отсутствии гидропитания рулевой привод работает как жесткая тяга. Механизм триммерного эффекта реального уменьшения усилий не обеспечивает. Триммировать усилия на рулевой колонке можно с помощью руля направления или, в крайнем случае, разнотягом двигателей.

Управление по тангажу

Управляющими поверхностями продольного управления являются: руль высоты, обеспеченный гидравлическим рулевым приводом, и стабилизатор, обеспеченный электрическим приводом. Штурвалы пилотов связаны с гидравлическими приводами руля высоты с помощью тросовой проводки. Кроме этого, на вход гидроприводов воздействует автопилот и система триммирования по числу М.

Нормальное управление стабилизатором осуществляется от переключателей на штурвалах или автопилотом.Резервное управление стабилизатором - механическое с помощью колеса управления на центральном пульте управления.

Две половины руля высоты механически соединены между собой с помощью трубы. Гидроприводы руля высоты питаются от гидросистем А и В. Подачей гидрожидкости к приводам управляют переключатели в кабине пилотов (Flight Control Switches).

Одной работающей гидросистемы достаточно для нормальной работы руля высоты. В случае отказа обоих гидросистем (manual reversion) руль высоты отклоняется вручную от любого из штурвалов. Для уменьшения шарнирного момента руль высоты оснащен двумя аэродинамическими сервокомпенсаторами и шестью балансировочными панелями.

Наличие балансировочных панелей приводит к необходимости установки стабилизатора полностью на пикирование (0 units) перед обливом против обледенения. Такая установка предотвращает попадание слякоти и противообледенительной жидкости в вентиляционные отверстия балансировочных панелей (см. балансировочные панели элеронов).

Шарнирный момент руля высоты,при работающем гидроприводе, на штурвал не передается, а усилия на штурвале создаются с помощью пружины механизма триммерного эффекта (feel and centering unit) на который, в свою очередь, передаются усилия от гидравлического имитатора аэродинамической нагрузки (elevator feel computer).

Механизм триммерного эффекта

При отклонении штурвала поворачивается центрирующий кулачок и подпружиненный ролик выходит из своей «ямки» на боковую поверхность кулачка. Стремясь под действием пружины вернуться обратно, он создает усилие в поводке управления, препятствующее отклонению штурвала. Кроме пружины на ролик воздействует исполнительный механизм имитатора аэродинамической нагрузки (elevator feel computer). Чем больше скорость, тем сильнее ролик будет прижиматься к кулачку, что будет имитировать возрастание скоростного напора.

Особенностью двухпоршневого цилиндра является то, что он воздействует на feel and centering unit максимальным из двух командных давлений. Это легко понять по рисунку, поскольку между поршнями давления нет, и цилиндр будет находиться в нарисованном состоянии только при одинаковых командных давлениях. Если же одно из давлений станет больше, то цилиндр сместится в сторону большего давления, пока один из поршней не упрется в механическую преграду, исключив, таким образом, цилиндр с меньшим давлением из работы.

Имитатор аэродинамической нагрузки

На вход elevator feel computer поступает скорость полета (от приемников воздушного давления, установленных на киле) и положение стабилизатора.

Под действием разности полного и статического давлений мембрана прогибается вниз, смещая золотник командного давления. Чем больше скорость, тем больше командное давление.

Изменение положения стабилизатора передается на кулачок стабилизатора, который через пружину воздействует на золотник командного давления. Чем больше стабилизатор отклонен на кабрирование, тем меньше командное давление.

Предохранительный клапан срабатывает при избыточном командном давлении.

Таким образом гидравлическое давление из гидросистем А и В (210 атм.) преобразуется в соответствующее командное давление (от 14 до 150 атм.), воздействующее на feel and centering unit.

Если разница в командных давлениях становится более допустимой, пилотам выдается сигнал FEEL DIFF PRESS, при убранных закрылках. Эта ситуация возможна при отказе одной из гидросистем или одной из веток приемников воздушного давления. Никаких действий от экипажа не требуется поскольку система продолжает нормально функционировать.

Система улучшения устойчивости по скорости (Mach Trim System)

Данная система является встроенной функцией цифровой системы управления самолетом (DFCS). Система MACH TRIM обеспечивает устойчивость по скорости при числе М более 0,615. При увеличении числа М электромеханизм MACH TRIM ACTUATOR смещает нейтраль механизма триммерного эффекта (feel and centering unit) и руль высоты автоматически отклоняется на кабрирование, компенсируя пикирующий момент от смещения аэродинамического фокуса вперед. При этом на штурвал никакие перемещения не передаются. Подключение и отключение системы происходит автоматически в функции числа М.

Система получает число М от Air Data Computer. Система двухканальная. При отказе одного канала индицируется MACH TRIM FAIL при нажатии Master Caution и гаснет после Reset. При двойном отказе система не работает и сигнал не гасится, необходимо выдерживать число М не более 0.74.

Стабилизатор управляется электродвигателями триммирования: ручного и автопилота, а также механически, с помощью колеса управления. На случай заклинивания электродвигателя предусмотрена муфта, разъединяющая трансмиссию от электродвигателей при приложении усилий к колесу управления.

Управление стабилизатором

Управление электродвигателем ручного триммирования выполняется от нажимных переключателей на штурвалах пилотов, при этом при выпущенных закрылках стабилизатор перекладывается с большей скоростью, чем при убранных. Нажатие этих переключателей приводит к отключению автопилота.

Система улучшения устойчивости по скорости (Speed Trim System)

Данная система является встроенной функцией цифровой системы управления самолетом (DFCS). Система управляет стабилизатором с помощью сервопривода автопилота для обеспечения устойчивости по скорости. Её срабатывание возможно вскоре после взлета или при уходе на второй круг. Условиями, способствующими срабатыванию, являются малый вес, задняя центровка и высокий режим работы двигателей.

Система улучшения устойчивости по скорости работает на скоростях 90 – 250 узлов. Если компьютер улавливает изменение скорости, то система автоматически включается при отключенном автопилоте, выпущенных закрылках (на 400/500 независимо от закрылков), оборотах двигателей N1 более 60%. При этом должно пройти более 5 секунд после предыдущего ручного триммирования и не менее 10 секунд после отрыва от ВПП.

Принцип работы заключается в перекладывании стабилизатора в зависимости от изменения скорости самолета, таким образом, чтобы при разгоне самолет имел тенденцию к задиранию носа и наоборот. (При разгоне 90 – 250 узлов стабилизатор автоматически перекладывается на 8 градусов на кабрирование). Кроме изменений скорости компьютер учитывает обороты двигателей, вертикальную скорость и приближение к сваливанию.

Чем выше режим двигателей, тем быстрее начнет срабатывать система. Чем больше вертикальная скорость набора высоты, тем больше стабилизатор отрабатывает на пикирование. При приближении к углам сваливания система автоматически отключается.

Система двухканальная. При отказе одного канала полет разрешается. При двойном отказе вылетать нельзя. Если двойной отказ произошел в полете, QRH не требует никаких действий, но логично было бы повысить контроль за скоростью на этапах захода на посадку и ухода на второй круг.

Путевое управление

Путевое управление самолетом обеспечивается рулем направления. На руле отсутствует сервокомпенсатор. Отклонение руля обеспечивается с помощью одного главного рулевого привода и резервного рулевого привода. Главный рулевой привод работает от гидросистем А и В, а резервный от третьей (standby) гидросистемы. Работа любой из трех гидросистем полностью обеспечивает путевое управление.

Триммирование руля направления с помощью ручки на центральном пульте осуществляется смещением нейтрали механизма триммерного эффекта.

На самолетах серии 300-500 производилась модификация схемы управления рулем направления (RSEP modification). RSEP –Rudder System Enhancement Program.

Внешний признак выполнения данной модификации – дополнительное табло «STBY RUD ON» в левом верхнем углу панели FLIGHT CONTROL.

Путевое управление осуществляется педалями. Их перемещение передается тросовой проводкой на трубу, которая, вращаясь, перемещает тяги управления главного и резервного рулевых приводов. К этой же трубе прикреплен механизм триммерного эффекта.

Механизация крыла

Механизация крыла и рулевые поверхности

Переходный процесс двигателя

На рисунке показан характер переходных процессов двигателя с выключенным и работающим РМС.

Таким образом, при работающем РМС положение РУД определяет заданный N1. Поэтому в процессе взлета и набора высоты тяга двигателя будет оставаться постоянной, при неизменном положении РУД.

Особенности управления двигателями при выключенном РМС

При выключенном РМС, МЕС выдерживает заданные обороты N2, и в процессе роста скорости на взлете обороты N1 будут возрастать. В зависимости от условий рост N1 может составить до 7 %. От пилотов не требуется уменьшать режим в процессе взлета, если не будут превышаться ограничения по двигателю.

При выборе режима двигателям на взлете, при выключенном РМС, нельзя использовать технологию имитации температуры наружного воздуха (assumed temperature).

В наборе высоты после взлета необходимо следить за оборотами N1 и своевременно корректировать их рост приборкой РУД.

Автомат тяги

Автомат тяги - это управляемая компьютером электромеханическая система, которая управляет тягой двигателей. Автомат перемещает РУДы так, чтобы поддерживать заданные обороты N1 или заданную скорость полета в течение всего полета от взлета до касания ВПП. Он рассчитан для работы совместно с автопилотом и навигационным компьютером (FMS, Flight Management System).

Автомат тяги имеет следующие режимы работы: взлет (TAKEOFF); набор высоты (CLIMB); занятие заданной высоты (ALT ACQ); крейсерский полет (CRUISE); снижение (DESCENT); заход на посадку (APPROACH); уход на второй круг (GO-AROUND).

FMC передает на автомат тяги информацию о требуемом режиме работы, заданных оборотах N1, оборотах максимально продолжительного режима работы двигателя, максимальных оборотов для набора высоты, крейсерского полета и ухода на второй круг, а также другую информацию.

Особенности работы автомата тяги при отказе FMC

В случае отказа FMC компьютер автомата тяги рассчитывает собственные предельные обороты N1 и индицирует пилотам сигнал «A/T LIM». Если автомат тяги в этот момент будет работать в режиме взлета, то произойдет его автоматическое отключение с индикацией отказа «A/T».

Рассчитанные автоматом обороты N1 могут быть в пределах (+0 % −1 %) от рассчитанных FMC оборотов набора высоты (FMC climb N1 limits).

В режиме ухода на второй круг, рассчитанные автоматом обороты N1, обеспечивают более плавный переход от захода на посадку к набору высоты и рассчитываются из условий обеспечения положительного градиента набора высоты.

Особенности работы автомата тяги при неработающем РМС

При неработающем РМС положение РУД уже не соответствует заданным оборотам N1 и, чтобы не допустить заброса оборотов, автомат тяги уменьшает передний предел отклонения РУД с 60 до 55 градусов.

Скорость полета

Номенклатура скоростей, используемых в руководствах Боинг:

  • Приборная скорость (Indicated или IAS) - показание указателя воздушной скорости без учёта поправок.
  • Индикаторная земная скорость (Calibrated или CAS). Индикаторная земная скорость равна приборной скорости, в которую внесены аэродинамическая и инструментальная поправки.
  • Индикаторная скорость (Equivalent или EAS). Индикаторная скорость равна индикаторной земной скорости, в которую внесена поправка на сжимаемость воздуха.
  • Истинная скорость (True или TAS). Истинная скорость равна индикаторной скорости, в которую внесена поправка на плотность воздуха.

Пояснения к скоростям начнем в обратном порядке. Истинная скорость самолета – это его скорость относительно воздуха. Измерение воздушной скорости на самолете осуществляется с помощью приемников воздушного давления (ПВД). В них замеряется полное давление заторможенного потока p * (pitot) и статическое давление p (static). Предположим, что ПВД на самолете – идеальное и не вносит никаких погрешностей и, что воздух несжимаем. Тогда прибор, измеряющий разность полученных давлений, измерит скоростной напор воздуха p * − p = ρ * V 2 / 2 . Скоростной напор зависит как от истинной скорости V , так и от плотности воздуха ρ . Поскольку градуировка шкалы прибора производится в земных условиях при стандартной плотности, то в этих условиях прибор будет показывать истинную скорость. Во всех остальных случаях прибор будет показывать отвлечённую величину, называемую индикаторной скоростью .

Индикаторная скорость V i играет важную роль не только как величина, необходимая для определения воздушной скорости. В горизонтальном установившемся полете при заданной массе самолета она однозначно определяет его угол атаки и коэффициент подъемной силы.

Учитывая, что при скоростях полета более 100 км/час начинает проявляться сжимаемость воздуха, реальная разница давлений, замеренная прибором, будет несколько больше. Данная величина будет называться земной индикаторной скоростью V i 3 (calibrated). Разность V i V i 3 называется поправкой на сжимаемость и увеличивается по мере роста высоты и скорости полета.

Летящий самолет искажает статическое давление вокруг себя. В зависимости от точки установки приемника давления прибор будет замерять несколько разные статические давления. Полное давление практически не искажается. Поправка на расположение точки замера статического давления называется аэродинамической (correction for static source position). Также возможна инструментальная поправка на отличие данного прибора от стандарта (у Боинга принята равной нулю). Таким образом, величина, показанная реальным прибором, подключенным к реальному ПВД, называется приборной скоростью (indicated).

На совмещенных указателях скорости и числа М индицируется земная индикаторная (calibrated) скорость от компьютера высотно-скоростных параметров (Air data computer). На комбинированном указателе скорости и высоты индицируется приборная (indicated) скорость, полученная по давлениям, взятым непосредственно из ПВД.

Рассмотрим типичные неисправности, связанные с ПВД. Обычно экипаж распознает проблемы в процессе взлета или вскоре после отрыва от земли. В большинстве случаев это проблемы, связанные с замерзанием воды в трубопроводах.

В случае закупорки трубопровода полного давления (pitot probes) указатель скорости не покажет увеличения скорости в процессе разбега на взлете. Однако после отрыва скорость начнет расти, поскольку статическое давление будет уменьшаться. Высотомеры будут работать практически правильно. При дальнейшем наборе скорость будет расти через правильное значение и далее превысит ограничение с соответствующим срабатыванием сигнализации (overspeed warning). Сложность данного отказа в том, что какое-то время приборы будут показывать практически нормальные показания, что может вызвать иллюзию восстановления нормальной работы системы.

В случае закупорки трубопровода статического давления (static ports) в процессе разбега система будет работать нормально, но в процессе набора высоты покажет резкое уменьшение скорости вплоть до нуля. Показания высотомеров останутся на высоте аэродрома. Если пилоты пытаются сохранить требуемые показания скорости путем уменьшения тангажа в наборе высоты, то, как правило, это заканчивается выходом за ограничения по максимальной скорости.

Кроме случаев полной закупорки возможна частичная закупорка или разгерметизация трубопроводов. При этом распознать отказ может быть значительно сложнее. Ключевым моментом является распознание систем и приборов, не затронутых отказом и завершение полета с их помощью. Если есть индикация угла атаки – пилотировать внутри зеленого сектора, если нет – установить тангаж и обороты двигателей N1 в соответствие с режимом полета по таблицам Unrelaible airspeed в QRH. По возможности выйти из облаков. Попросить помощь у службы движения, учитывая, что они могут иметь неправильную информацию о вашей высоте полета. Не доверять приборам, показания которых были под подозрением, но в данный момент, кажется, работают правильно.

Как правило, надежная информация в этом случае: инерциальная система (положение в пространстве и путевая скорость), обороты двигателей, радиовысотомер, срабатывание stick shaker (приближение к сваливанию), срабатывание EGPWS (опасное сближение с землей).

На графике показана потребная тяга двигателя (сила сопротивления самолета) в горизонтальном полете на уровне моря в стандартной атмосфере. Тяга указана в тысячах фунтов, а скорость – в узлах.

Взлет самолета

Траектория взлета простирается от точки старта до набора высоты 1500 футов, или окончания уборки закрылков с достижением скорости V F T O (final takeoff speed), какая из этих точек выше.

Максимальный взлетный вес самолета ограничивается следующими условиями:

  1. Максимально-допустимой энергией, поглощаемой тормозами, в случае прерванного взлета .
  2. Минимально-допустимым градиентом набора высоты.
  3. Максимально-допустимым временем работы двигателя на взлетном режиме (5 минут), в случае продолженного взлета для набора необходимой высоты и разгона для уборки механизации.
  4. Располагаемой дистанцией взлета.
  5. Максимально-допустимой сертифицированной взлетной массой.
  6. Минимально-допустимой высотой пролета над препятствиями.
  7. Максимально-допустимой путевой скоростью отрыва от ВПП (по прочности пневматиков). Обычно 225 узлов, но возможно 195 узлов. Эта скорость написана прямо на пневматиках .
  8. Минимальной эволютивной скоростью разбега; V M C G (minimum control speed on the ground)

Минимально-допустимый градиент набора высоты

В соответствии с нормами летной годности FAR 25 (Federal Aviation Regulations) градиент нормируется по трем сегментам:

  1. С выпущенными шасси , закрылки во взлетном положении - градиент должен быть более нуля.
  2. После уборки шасси, закрылки во взлетном положении - минимальный градиент 2,4 %. Взлетный вес ограничивается, как правило, выполнением данного требования.
  3. В крейсерской конфигурации - минимальный градиент 1,2 %.

Дистанция взлета

В располагаемую дистанцию взлета (takeoff field length) входит рабочая длина взлетно-посадочной полосы с учетом концевой полосы безопасности (Stopway) и полосы, свободной от препятствий (Clearway).

Располагаемая дистанция взлета не может быть меньше любой из трех дистанций:

  1. Дистанции продолженного взлета от начала движения до набора высоты условного препятствия (screen height) 35 футов и безопасной скорости V 2 при отказе двигателя на скорости принятия решения V 1 .
  2. Дистанции прерванного взлета , при отказе двигателя на V E F . Где V E F (engine failure) - скорость в момент отказа двигателя, при этом предполагается, что пилот распознает отказ и выполнит первое действие по прекращению взлета на скорости принятия решения V 1 . На сухой ВПП не учитывается влияние реверса работающего двигателя.
  3. Дистанции взлета с нормально работающими двигателями от начала движения до набора высоты условного препятствия 35 футов, умноженной на коэффициент 1,15.

В располагаемую дистанцию взлета входят рабочая длина ВПП и длина концевой полосы безопасности (Stopway).

Длину полосы, свободной от препятствий (Clearway), разрешается прибавлять к располагаемой дистанции взлета, но не более половины воздушного участка траектории взлета от точки отрыва до набора высоты 35 футов и безопасной скорости.

Если мы прибавляем к длине ВПП длину КБП, то мы можем увеличить взлетный вес, при этом скорость принятия решения увеличится, для обеспечения набора высоты 35 футов над концом КБП.

Если мы используем полосу свободную от препятствий, то мы также можем увеличить взлетный вес, но при этом скорость принятия решения уменьшится, поскольку нам необходимо обеспечить остановку самолета в случае прерванного взлета с увеличенным весом в пределах рабочей длины ВПП. В случае продолженного взлета в этом случае самолет наберет высоту 35 футов за пределами ВПП, но над полосой, свободной от препятствий.

Минимально-допустимая высота пролета над препятствиями

Минимально-допустимая высота пролета над препятствиями по «чистой» (net) траектории взлета равна 35 футов.

«Чистая» - это траектория взлета, градиент набора высоты которой уменьшен на 0,8 % по сравнению с реальным градиентом для данных условий.

При построении схемы стандартного выхода из района аэродрома после взлета (SID) закладывается минимальный градиент «чистой» траектории 2,5 %. Таким образом, чтобы выполнить схему выхода, максимальный взлетный вес самолета должен обеспечить градиент набора высоты 2,5 +0,8 = 3,3 %. Некоторые схемы выхода могут требовать более высокого градиента, что требует уменьшения взлетного веса.

Минимальная эволютивная скорость разбега

Это земная индикаторная скорость в ходе разбега, при которой в случае внезапного отказа критического двигателя, возможно сохранять управление самолетом, используя только руль направления (без использования управления передним колесом шасси) и сохранять поперечное управление в такой степени, чтобы удерживать крыло в близком к горизонтальному положении для обеспечения безопасного продолжения взлета. V M C G не зависит от состояния ВПП, поскольку при ее определении не учитывается реакция ВПП на самолет.

В таблице представлена V M C G в узлах для взлета с двигателями с тягой 22К. Где Actual OAT- температура наружного воздуха, а Press ALT- превышение аэродрома в футах. Приписка снизу касается взлета с выключенными отборами воздуха от двигателей (no engine bleeds takeoff), поскольку тяга двигателей возрастает, то возрастает и V M C G .

Actual OAT Press ALT
C 0 2000 4000 6000 8000
40 111 107 103 99 94
30 116 111 107 103 99
20 116 113 111 107 102
10 116 113 111 108 104

For A/C OFF increase V1(MCG) by 2 knots.

Взлет с отказавшим двигателем может быть продолжен лишь в случае, если отказ двигателя произойдет при скорости не менее, чем V M C G .

Взлет с мокрой полосы

При расчете максимально-допустимой взлетной массы, в случае продолженного взлета, используется уменьшенная высота условного препятствия (screen height) 15 футов, вместо 35 футов для сухой ВПП. В связи с этим нельзя в расчет взлетной дистанции включать полосу, свободную от препятствий(Clearway).

Одним из самых используемых ныне авиалайнеров на маршрутах короткой и средней протяжённости у многих перевозчиков со всех уголков планеты, в том числе и России, является самолет Boeing 737-800. Отзывы экспертов характеризуют модель как воздушное судно, что полностью соответствует всем современным требованиям, которые касаются экологи, комфорта и безопасности.

Краткая история

Проектирование лайнера стартовало в сентябре 1994 года. За основу при его разработке была взята модель 737-300. Новинка стала вторым самолётом серии и должна была не просто составить на рынке должную конкуренцию европейскому аналогу - Airbus A320, но и заменить морально устаревшие модификации этой американской компании-производителя. Опытный образец Boeing 737-800 впервые поднялся в воздух 9 февраля 1997 года. После этого судно прошло все лётные испытания и получило соответствующие сертификаты, дающие право на его коммерческую эксплуатацию. Производство модели продолжается и в наше время.

Общее описание

Модель Boeing 737-800 представляет собой пассажирский авиалайнер с узким фюзеляжем, что предназначен для перевозки пассажиров на маршрутах малой и средней протяжённости. Длина самолёта, по сравнению с предшествующей модификацией, выросла почти на шесть метров, что позволило установить здесь две дополнительных секции. Помимо этого, машина получила крыло большей эффективности, обновлённое хвостовое оперение, мощные силовые установки и комплекс современной цифровой авионики. Что касается габаритов, то длина Boeing 737-800 составляет 39,5 метра, в то время как размах его крыла - 34,3 метра. В целом конструкторам удалось улучшить лётно-технические и экономические характеристики авиалайнера, что сделало его конкурентоспособным на мировом рынке. По состоянию на сегодняшний день существует сразу несколько модификаций судна. К примеру, к ним следует отнести салонную бизнес-версию, а также вариант для обеспечения потребностей военно-воздушных сил.

Технические характеристики

Главной особенностью модели Boeing 737-800 стала установка менее шумных и в то же время более экономичных, по сравнению с предшественником, турбореактивных двигателей, оборудованных системой электронного управления. Кроме этого, использование модифицированного крыла позволило улучшить аэродинамические показатели самолета. Максимальная его взлётная масса составляет 79 тонн, а крейсерская скорость - 852 км/ч. Дальность полёта авиалайнера ограничена отметкой в 5765 километров, при условии наличия запаса резервного топлива.

Салон

В зависимости от конфигурации у разных авиаперевозчиков салон Boeing 737-800 способен вместить одновременно от 162 до 189 человек, без учёта членов экипажа. Как показывает практика, в большинстве случаев это количество является максимально допустимым. Аналогично другим моделям из серии, самолет может похвастаться просторным салоном и низким уровнем шума, качественным освещением, а также некоторыми другими характеристиками, которые обеспечивают пассажирам должный уровень комфорта.

Выбор оптимальных мест

Главное, что интересует большинство пассажиров перед приобретением билетов на Boeing 737-800, - лучшие места. Это способствует созданию впечатления относительно безопасности авиалайнера. Немаловажным является и комфорт, поэтому позаботиться о нём лучше всего заблаговременно. Поскольку салон может иметь одноклассное либо двуклассное исполнение, прежде всего, необходимо разобраться с тем, самолет какой именно конфигурации используется на том или ином рейсе.

Места в бизнес-классе считаются наиболее комфортными. Здесь не просто установлены более удобные кресла, но и предоставляется сервис высочайшего уровня пассажирам. Если же они не предусмотрены конфигурацией салона, в модели Boeing 737-800 лучшие места находятся в пятнадцатом и шестнадцатом ряду. Они расположены прямо за аварийными выходами, поэтому пассажир имеет возможность вытянуть ноги максимально. Если говорить о менее удобных местах, то в этом случае следует помнить, что в тринадцатом и четырнадцатом ряду спинки сидений обычно не оборудованы раскладным механизмом. Это делается, чтоб не занимать свободное пространство, предназначенное для эвакуации пассажиров в случае возникновения такой необходимости. Многие путешественники также жалуются на то, что здесь немного холоднее, по сравнению с другими местами. Как бы там ни было, нельзя забывать, что это лишь вариант стандартной компоновки салона. У отдельных авиакомпаний она может несколько отличаться, поэтому схему необходимо изучать заблаговременно.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека