Семь основных вертолётных схем. Что позволяет вертолетам летать

Использование: изобретение относится к несущим винтам вертолета. Сущность изобретения: лопасти несущих винтов включают лонжерон, хвостовые отсеки и на задних кромках некоторых отсеков пластины, используемые при отработке соконусности несущих винтов. Иногда пластины устанавливают по всей длине лопасти с целью увеличения хорды лопасти а, следовательно, ее несущей способности. Однако влияние пластин на относительных радиусах на несущую способность лопасти мало. С целью увеличения несущей способности лопасти, увеличения максимальной и крейсерской скоростей полета, а также максимальной полетной массы вертолета на относительных радиусах устанавливают пластины, увеличивающие хорду лопасти на 10%. 6 ил.

Изобретение относится к вертолетостроению, а именно к несущим винтам вертолетов. Лопасти несущих винтов вертолетов обычно включают лонжерон и хвостовую часть в виде отсеков с сотовым заполнителем. На лопастях несущих винтов используются также пластины, установленные на нескольких хвостовых отсеках в задней кромке. Такие пластины установлены, в частности, на лопастях вертолета Ка-26 на относительных радиусах 0,8 - 0,9 и на отсеках N 16, 17 лопастей вертолетов Ми-8, Ми-8МТ и модификаций этих вертолетов . Эти пластины используют для выравнивания шарнирных моментов лопастей путем их отгиба при отработке несущих винтов. В качестве прототипа выбрана лопасть несущего винта вертолета Ми-8 , которая содержит лонжерон, хвостовые отсеки, причем на задней кромке части хвостовых отсеков установлены пластины. На ряде вертолетов, например на вертолетах Ми-8МТ, Ми-17 и их модификациях, после установки более мощного двигателя появилась возможность увеличения полетной массы вертолета, максимальной и крейсерской скоростей. Однако такая возможность ограничивалась недостаточной несущей способностью лопастей и появлением срыва потока на отступающей лопасти при больших скоростях полета, что приводит к недопустимому возрастанию нагрузок в лопасти и элементах забустерного управления. Технической задачей изобретения является усовершенствование лопастей несущего винта вертолета, которое не требовало бы больших затрат и обеспечивало бы возможность увеличения максимальной и крейсерской скоростей вертолета или его максимальной взлетной массы без существенного увеличения нагрузок в лопасти и забустерном управлении. Технический результат достигается тем, что в лопасти, содержащей лонжерон, хвостовые отсеки и пластины, которые установлены на задней кроме отсеков на относительных радиусах более примерно 0,5, увеличивают хорду приблизительно на 10%. На фиг. 1 изображена схема конструкции лопасти; на фиг. 2 - сечение А-А на фиг. 1; на фиг. 3 - сечение Б-Б на фиг. 1; на фиг. 4 - граница срыва несущего винта вертолета Ми-8; на фиг. 5 - переменный поперечный момент на автомате перекоса вертолета Ми-8МТ с серийной и уширенной лопастями; на фиг. 6 - переменный продольный момент на автомате перекоса вертолета Ми-8МТ с серийной и уширенной лопастями. Лопасть содержит лонжерон 1, хвостовой отсек 2, пластины 3. Описанные выше пластины шириной 50 мм, увеличившие хорду лопасти с 520 до 570 мм, были установлены на отсеках N 10 - 21 лопастей вертолетов типа Ми-8МТ на длине L 4,8 м при относительных радиусах . Существенно, что это не потребовало изменения сборочной оснастки лопастей и поэтому может быть внедрено в серийное производство без существенных затрат. Проведены летные испытания вертолета Ми-8МТ с указанными лопастями. Некоторые результаты таких испытаний в виде зависимостей переменной нагрузки в забустерном управлении от скорости полета для серийного и доработанного комплектов лопастей приведены на фиг. 3, 4. Согласно этим результатам у доработанных лопастей резко уменьшился прирост переменных нагрузок на больших скоростях полета, связанный со срывом потока в лопастях. Напряжения в лопастях несущего винта изменились незначительно. Указанные результаты делают возможным увеличить максимальную и крейсерскую скорости вертолета Ми-8МТВ (Ми-17) на 20 км/ч (на 9%) либо увеличить максимальную взлетную массу и полезную нагрузку вертолета с модифицированными лопастями на 1 т (7,6% взлетной массы или на 25% массы груза), что на 9 - 20% повысит транспортную производительность и соответственно снизит стоимость перевозки тонно-километра груза. Технико-экономические характеристики вертолета приблизятся к уровню лучших мировых образцов и повысится конкурентоспособность вертолета.

Важным элементом конструкции модели вертолета являются лопасти несущего винта. Их весовые и аэродинамические характеристики определяют летные качества модели. В настоящее время фирмы предлагают большой ассортимент лопастей несущего винта, оптимизированных для определенного типа моделей и различных видов полета (высшего пилотажа, авторотации, перевернутого и т.п.). Фирменные лопасти обладают единственным недостатком - большой ценой для моделистов из стран СНГ (на один комплект лопастей может потребоваться среднемесячная зарплата). Как показывает практика, моделисты, особенно начинающие, могут в летный сезон вывести из строя до десятка пар лопастей. Даже опытные моделисты не застрахованы от поломки лопастей. При любой ошибке в пилотировании или при отказе материальной части модели в первую очередь "страдают" лопасти несущего винта. Поэтому естественно желание многих моделистов самостоятельно освоить технологию изготовления лопастей несущего винта модели вертолета.

На первых радиоуправляемых моделях вертолетов применялись лопасти, изготовленные полностью из дерева. Сегодня такие лопасти применяются, как правило, на тренировочных моделях. Основным материалом фирменных лопастей в настоящее время является стекло- и углепластик. Лопасти из такого материала самостоятельно в домашних условиях изготовить довольно проблематично. Для обеспечения необходимой центровки эти лопасти загружаются дополнительным балластом. При неправильном расположении этот груз, под воздействием центробежной силы (в лопасти несущего винта эта сила достигает несколько сотен килограмм), может вылететь и вызвать тяжелые последствия для моделиста и окружающих. Поэтому самостоятельно лучше изготавливать лопасти из дерева, при балансировке которых практически не нужно использовать балласт. Кроме того, при разрушении деревянные лопасти хорошо гасят энергию удара, предохраняя от поломки элементы головки ротора и привода модели. По форме профиля лопасти бывают симметричные и плосковыпуклые. Симметричные профили применяют для лопастей спортивных моделей, выполняющих высший пилотаж. Плосковыпуклые профили применяют на лопастях "хоббийных" моделей. Следует отметить, что в домашних условиях проще изготовить лопасти с плосковыпуклым профилем, постоянным по всей длине. Как показывает практика, для таких лопастей хорошо подходит профиль Clark-Y.

Геометрические размеры лопастей определяются специальным аэродинамическим расчетом. Однако методика расчета довольна сложна и выходит за рамки настоящей статьи. Для практики целесообразно пользоваться данными, полученными, например, при измерениях фирменных лопастей. Как правило, для моделей 30 класса применяют лопасти длиной 450-500 мм, шириной 49-50мм. Для 40 класса - 520-550 мм, шириной - 49-50 мм. Для 60 класса- 620-680 мм, шириной - 55-61 мм. Например, для вертолета Хеликс, упоминавшемся в ранних статьях, при весе модели около 4,3 кГ с двигателем 10 см 3 , при диаметре несущего винта, равном 1400 мм, лопасти имеют длину 625 мм и ширину 55 мм.

Кроме геометрических размеров важное значение имеет правильная поперечная и продольная балансировки лопастей. При несоблюдении условий балансировки, как правило, возникает сильная вибрация всего вертолета, разрушение тяг и рулевых машинок управления шагом, даже флаттер и разрушение лопастей. Для избежания флаттера и больших динамических нагрузок на органы управления точка крепления лопасти к головке ротора должна находиться на таком же расстоянии от передней кромки, как и центр тяжести лопасти. Кроме того, центр тяжести лопасти должен находиться ближе к передней кромке, чем фокус профиля (центр приложения подъемной силы). Для выполнения последнего условия в носик стекло- и углепластиковых лопастей несущего винта загружают балласт. Для деревянных же лопастей с этой целью переднюю часть изготавливают из твердой и тяжелой древесины (бук, дуб), а заднюю - из бальзы средней плотности или из легкой липы и даже твердого пенопласта. Для повышения прочности и избежания коробления переднюю кромку лопасти делают не из цельного куска бука, а из склеенных вдоль волокна отдельных брусков, ориентированных в разные стороны. Дерево должно быть хорошо высушенным и не иметь сучков и других дефектов.

Для примера рассмотрим технологию изготовления деревянных лопастей (рис.1) несущего винта модели вертолета Хеликс (журнал "Моделист - конструктор" №4 за 1984 год), которая успешно применялась автором и его коллегами на протяжении последних шести лет.

"...В основном из-за упрощения обработки лопасти имеют на всей своей длине постоянный профиль Clark-Y, геометрическая крутка отсутствует - установочный угол одинаков для всех сечений. Передняя половина каждой пластины буковая, задняя из бальзы средней плотности. Так как начинающему "вертолетчику" понадобится не один комплект лопастей, лучше изготовить сразу несколько пар, да и из большого количества заготовок проще выбрать пары одинаковой массы.

Единая заготовка склеивается из бальзовой пластины (толщина 30мм, длина 650 мм, ширина - максимально доступная) и трех буковых таких же размеров, но толщиной 8 мм, на эпоксидной смоле. На ленточной или циркулярной пиле заготовка разрезается на бруски толщиной 10 мм, затем обрабатывается по профилю лопасти. Эту операцию лучше выполнить специальной фигурной фрезой после фугования нижней плоскости. Ручная же обработка верней поверхности по шаблонам трудоемка, длительна и менее точна, чем механическая. Да и возможный разброс деталей по массе при ручном способе больше. После завершения работ заготовки несколько раз покрывают эмалитом, шпаклюются нитролаком с замешанной в нем детской присыпкой. Корневая часть каждой лопасти обтягивается тонкой стеклотканью на эпоксидной смоле, а на всю поверхность накладывается длинноволокнистая бумага на эмалите. Поочередным вышкуриванием и лакировкой добиваются получения несильного ровного блеска, затем следует основательная сушка.... После этого приступают к статической балансировке и окончательной обработке лопастей.

Простейшее приспособление для фугования лопастей можно изготовить на базе деревообрабатывающего станка "Умелые руки" (рис.2).


Для этого изготавливают из листа дюральки (2-3 мм) подвижный столик (выделен черным цветом на рисунке), один конец которого крепится к станку с помощью кусочков рояльных навесов. С другой стороны столик упирается в винт, поворачивая который, мы можем менять зазор между столиком и фрезой. В качестве фрезы можно использовать деревянную заготовку, обработанную на токарном станке по шаблону профиля, на поверхность которой наклеивают под углом 45 0 к торцу три-четыре полоски крупнозернистой наждачной бумаги. Как показал опыт, лучше всего наждачную бумагу приклеивать обычным канцелярским клеем, при фиксации концов на торце фрезы небольшими гвоздями. Другие клеи не выдерживали из-за сильного нагрева бумаги во время работы станка. Можно изготовить несколько фрез с различной зернистостью наждачной бумаги. Фрезу с более мелкой наждачной бумагой можно использовать для окончательной доводки поверхностей лопастей. Процесс фрезерования лопастей многократный, с постепенным поднятием столика. Фрезерование за один проход не получится из-за малой мощности станка. Вместо бальзы можно использовать легкую липу. В этом случае отфрезерованные лопасти просто покрывались лаком и полировались. Оправдало применение и жесткого пенопласта, но в этом случае всю лопасть необходимо обтягивать пленками. Современные пленки можно применять и при использовании бальзы.

Основную сложность при изготовлении лопастей представляет процесс балансировки лопастей. Не вдаваясь в теорию, отметим, что лопасти будут статически и динамически сбалансированы, если они имеют одинаковый вес и их центры тяжести находятся на одинаковом расстоянии от точки крепления к втулке и от передней кромки. Иными словами, только при выполнении одновременно этих двух условий лопасти не будут вызывать дополнительной вибрации. Существует множество методов балансировки лопастей несущего винта. Они отличаются применяемыми средствами и методами измерений и сравнений массы и координат центра тяжести лопастей. Так, например, для Хеликса предлагается ".. отбирать пары лопастей с разбросом по массе не более 5 г (большие устранить слишком сложно).Уже на данном этапе понадобятся лабораторные весы с точностью взвешивания не менее 0,1 г. Путем вывешивания на ребре дюралюминиевого уголка для каждой лопасти отыскивают положение центра тяжести по длине (радиусу ротора). Если эта величина окажется одинаковой для данной пары, можно заняться довешиванием более легкой лопасти путем нанесения на всю ее поверхность нескольких слоев жидкого лака с последующей шкуровкой. Но скорее всего, положения центров тяжести не совпадут. Совместить их лучше всего на счет высверливания двух-трех отверстий диаметром 4-5 мм в буковом концевом, более массивном торце на глубину до 70 мм. Сверловка в корне нежелательна - значительно ослабляет наиболее нагруженные участки ответственной детали. После продольной балансировки опять следует калибровка по массе каждой пары … и т.п. В приведенной методике требуются довольно точные весы, которые есть не у каждого моделиста.

Автор пользуется несколько иной методикой балансировки, без применения высокоточных весов и вывешивания лопастей на уголках. В этой методике применяются балансирные аптекарские весы (рис.3) и измеритель момента (рис.4). С помощью балансирных весов добиваемся равенства массы лопастей (путем нанесения лака или шлифования по всей длине лопасти и т.п.). Затем на измерителе моментов проверяем поочередно каждую лопасть. Если показания измерителя одинаковые, то это свидетельствует о том, что статический момент, т.е. произведение массы на расстояние от точки крепления до центра тяжести каждой лопасти, также одинаков. Если моменты от силы тяжести лопастей одинаковы при равенстве их масс, то и расстояние до центра тяжести каждой лопасти будет также равным. Иными словами, лопасти будут статически и динамически сбалансированы. Если же показания измерителя моментов отличаются, т.е. одна из лопастей по сравнению с другой создает больший или меньший момент от сил тяжести, то, при равенстве их масс, это свидетельствует о несовпадении расстояний от точки подвески до центра тяжести лопастей. Для лопасти, которая создает больший статический момент относительно точки подвести надо сдвинуть центр тяжести ближе к точке подвески, т.е. облегчить концевую часть лопасти. Или наоборот, для другой лопасти утяжелить концевую часть. Необходимо помнить, что любая такая операция (нанесение определенного количества лака или кусочков изоляционной ленты на концы лопастей, высверливанием в их торце отверстий и т.п.) изменяют массу лопастей. Поэтому необходимо вернуться к выравниванию масс лопастей на балансирных весах. Для этой цель автор, например, прикрепляет к лопастям, подвешенные к балансирным весам, одинаковые по массе куски изоляционной ленты. Затем на лопасть, которая создает больший момент, один из этих кусочков изоленты крепится непосредственно около корня её. На измерителе моментов находим точку крепления на другой лопасти второго кусочка изоленты, который обеспечивает равенство моментов от сил тяжести обеих лопастей. Если при такой балансировке количество изоленты получается значительным, то следует предварительно облегчать или утяжелять концы лопастей другими методами, например, нанесением лака или шпаклевки и шлифованием. Высверливание отверстий в торце, как показала практика, довольно трудоемкая и грубая операция, и к ней следует прибегать только в крайних случаях. Но никаких металлических балансиров (винтов, шурупов, кусков олова и т.п.) на концах лопастей устанавливать нельзя.

Следует отметить, что при использовании лаков и шпаклевок необходимо периодически проверять балансировку лопастей, поскольку со временем эти компоненты изменяют свои вес.

Можно применять и другие методики балансировки. Например, для выравнивания моментов от сил тяжести м ожно использовать головку ротора с прикрепленными лопастями. Для этого снятую головку с лопастями устанавливают на уголок и добиваются уже описанными методами равенства моментов, т.е. строгого горизонтального положения ротора. Но и в этом случае необходимо добиваться равенства не только моментов, но и масс лопастей.


Как показывает практика, выполнение этих условий позволяет быстро провести заключительную балансировку всего ротора на работающем вертолете, которую мы подробно рассмотрим в следующих статьях.

В заключение отметим, что приведенная методика позволят быстро изготовить лопасти, пригодные для начального обучения и простого пилотажа. Для других видов полета лопасти должны иметь, как правило, симметричный профиль и специальные утяжелители для повышения весо-динамических характеристик. Но это тема требует отдельного разговора.

Л опасти для вертолета как резина для автомобиля. Мягкие лопасти сглаживают реакции вертолета, делают его более ленивым. Жесткие, напротив, заставляют вертолет реагировать на управление без задержек. Тяжелые лопасти замедляют реакции, легкие обостряют. Лопасти с высоким профилем отбирают больше энергии, а с низким склонны к срыву потока, когда подъемная сила резко снижается. Выбирая лопасти, стоит учесть их параметры и выбрать те, что подойдут вашему стилю и опыту больше всего.

Когда мы выбираем лопасти, то в первую очередь смотрим на их длину, поскольку длина лопасти зависит от класса вертолета. Чаще под длиной подразумевается расстояние от крепежного отверстия лопасти до ее концевой части. Некоторые немногочисленные производители указывают полную длину лопасти от комля до концевой части. К счастью таких случаев мало.
От длины зависит подъемная сила, и сопротивление вращения которые создает лопасть. Длинная лопасть способна создать большую подъемную силу, но при этом отнимает больше энергии на вращение. С длинными лопастями модель стабильнее при висении и обладает большей "летучестью", т.е. способна на более крупные маневры и лучше выполняет авторотацию.

Хорда (ширина лопасти)

Важный параметр лопасти, который чаще всего не указывают вовсе, и остается только измерить хорду самостоятельно. Чем шире лопасть, тем больше подъемную силу она может создать при тех же углах атаки и тем резче вертолет при управлении по циклическому шагу. Широкая лопасть имеет более высокое сопротивление вращения и потому сильнее нагружает силовую установку. При использовании лопастей с широкой хордой важна точная работа шагом, иначе можно легко "задушить" мотор. Наибольший разброс ширины встречается у лопастей для вертолетов 50-ого класса и выше.


Длина и хорда.

Материал

Следующее, на что нужно обратить внимание, это материал, из которго сделаны лопасти. Сегодня наиболее распространенные материалы, из которых изготавливают лопасти вертолетов это карбон и стеклопластик. Деревянные лопасти постепенно сходят со сцены, так как не обладают достаточной прочностью и сильно ограничивают вертолет в летных возможностях. К тому же деревянные лопасти склонны к изменению формы, что приводит к постоянному появлению «бабочки». Пожалуй, наименьшее, на что сегодня стоит соглашаться, это стеклопластиковые лопасти. Они не страдают изменением формы, обладают достаточной жесткостью для выполнения легкого 3D и отлично подойдут начинающим вертолетчикам. Пилоты со стажем непременно выберут карбоновые лопасти как наиболее жесткие, позволяющие вертолету выполнять экстремальные фигуры высшего пилотажа и наделяют вертолет молниеносной реакцией на управление.

Важный параметр - вес лопасти. При прочих равных более тяжелая лопасть сделает вертолет более стабильным, снизит скорость управления по циклическому шагу. Тяжелая лопасть добавит стабильности и размеренности и запасет больше энергии при выполнении авторотации, что сделает маневр более комфортным. Если вы стремитесь к 3D полетам, выбирайте более легкие лопасти.

Форма лопасти

Прямая, трапециевидная. Чаще встречается прямая форма, трапециевидная скорее относится к экзотике. Последняя позволяет снизить сопротивление вращения ценой снижения отдачи.


Форма лопасти.

Симметричный - высота профиля одинаковая сверху и снизу лопасти. Лопасти с симметричным профилем способны создавать подъемную силу только при ненулевом шаге. Такие лопасти наиболее распространены среди современных вертолетов и используются на всех моделях, выполняющих 3D пилотаж.
Полусимметричный – снизу лопасти профиль имеет меньшую высоту. Такие лопасти способны создавать подъемную силу даже при нулевых углах атаки, т.е. Создают подъемную силу аналогично тому, как это делает крыло самолета. Такие лопасти используются редко, как правило, только на больших копийных вертолетах.

Высота профиля

Чем выше профиль, тем лучше он сопротивляется срыву потока, но тем выше его сопротивление. Деревянные лопасти обычно имеют более высокий профиль, но лишь для того, что бы обладать достаточной прочностью.


Форма профиля и его высота.

Толщина комля

Толщина комля напрямую связана с размером цапф вашего вертолета. Если комель толще, то лопасть не влезет в цапфу, если наоборот – будет болтаться. Обычно в пределах одного класса вертолетов толщина комля стандартна, тем не менее, при покупке лопастей убедитесь, что они подходят к вашему вертолету. Некоторые производители комплектуют лопасти шайбами-проставками, которые можно использовать, если посадочное место цапфы больше толщины комля. Такие шайбы надо устанавливать парами сверху и снизу комля, что бы лопасть была закреплена по центру цапфы.


Толщина комля.

Диаметр крепежного отверстия

Диаметр отверстия должен совпадать с диаметром крепежного винта цапфы. Как и толщина комля, этот параметр стандартный, тем не менее, стоит его проверить перед покупкой лопастей.

Положение крепежного отверстия относительно наступающей кромки.

Определяет то, насколько наступающая кромка лопасти выступает вперед цапфы. Смещенное назад отверстие приводит к тому, что при вращении лопасть отстает от цапфы, что делает такие лопасти более стабильными. Напротив, смещение отверстия к наступающей кромке заставляет лопасть при вращении выдвигаться вперед цапфы, и такое положение делает лопасть менее стабильной.


Положение крепежного отверстия.

Форма концевой части лопасти.

Форма концевой части влияет на сопротивление вращения ротора. Различают прямую, закругленную и скошенную форму. Более прямая форма создает подъемную силу по всей длине лопасть, но и имеет наибольшее сопротивление вращения.


Форма концевой части лопасти.

Продольный центр тяжести.

Положение центра тяжести в продольном направлении. Чем ближе центр тяжести к концевой части лопасти, тем лопасть более стабильна и лучше выполняет авторотацию. Наоборот, смещение центра тяжести к комлю делает лопасть более маневренной, но страдает накопление лопастью энергии при авторотации.

Поперечный центр тяжести.

Положение центра тяжесть поперек лопасти, от наступающей кромки к отступающей. Обычно стараются размещать центр тяжести так, чтобы при вращении лопасть не отставала от цапфы и не выступала вперед. Лопасть с сильно смещенным назад центром тяжести выступает при вращении вперед цапфы и, следовательно, более динамична.


Продольный и поперечный центр тяжести.

Динамическая балансировка: выступающая/отступающая лопасть.

Параметр зависит от положения крепежного отверстия, веса, положения поперечного и продольного центров тяжести. В целом, если лопасть при вращении выступает вперед цапфы, то такая лопасть более маневренная и больше подходит для 3D полетов, но отбирает больше энергии и делает вертолет недостаточно стабильным. Если напротив лопасть при вращении отстает от цапфы, то такая лопасть более стабильная. Если лопасть не отстает и не выступает, то это нейтральная лопасть. Такая лопасть наиболее универсальная и одинаково хорошо подходит как для маневров висения, так и для 3D полетов.


Динамическая балансировка.

Ночные лопасти.

Ночные лопасти со встроенными светодиодами и встроенным, либо съемным аккумулятором служат для комплектации вертолета для ночных полетов. Совместно с лопастями используются различные способы подсветки корпуса вертолета.

Лопасти с защитным стержнем.

Стержень не дает лопасти разлетаться на отдельные части в случае падения. Очень полезный элемент безопасности, который к сожалению присутствует только в дорогих лопастях известных производителей. Случается, что обломки лопастей, не оборудованных таким стержнем, разлетаются на расстояние до 10 метров от места падения и могут привести к травме.

Вертолет летает потому, что сверху у него крутится большой несущий винт. У винта есть лопасти. Они по форме напоминают крылья самолета. И когда лопасти быстро крутятся на винте, возникает сила, которая поднимает эту машину в воздух.

У разных вертолетов на несущем винте – по-другому он называется ротором – может быть разное количество лопастей.

У вертолета средних размеров обычно бывает три лопасти.

Самые большие вертолеты, у которых четыре лопасти на несущем винте, могут одновременно перевозить много людей или большие грузы.
Они могут летать в разных направлениях.
Пилот, управляя вертолетом, может наклонить несущий винт влево. И тогда его воздушная машина начнет двигаться в сторону левого бока. А стоит наклонить несущий винт вправо, и машина станет двигаться в сторону правого бока.
Если наклонить ротор вперед или назад, то и вертолет будет двигаться вперед или назад – вот такая это послушная машина.
Вертолеты умеют даже зависать в воздухе. Такое свойство очень полезно для разных дел. И оно недоступно другим крылатым машинам.

Это интересно:
На самом верху вертолета укреплен большой пропеллер – ротор. Если ротор из горизонтального положения наклонить в ту или иную сторону, что может с помощью рычагов управления сделать пилот, то вертолет начнет двигаться именно в сторону наклона ротора. Потому что к подъемной силе вращающихся лопастей прибавляется еще и сила их поступательного горизонтального движения. На хвосте у каждого вертолета есть дополнительный маленький пропеллер. Он расположен вертикально и нужен для того, чтобы вертолет не закручивало при работе главного несущего винта.

В настоящее время американские военные заняты оснащением парка своих вертолетов углеродно-волоконными композитными (карбоновыми) лопастями, так как эти новые материалы обладают повышенным сроком службы, хорошо переносят повреждения, у них отсутствуют проблемы с коррозией, и они обладают высокой надежностью.


Крайним военным вертолетом, оборудованным композитными лопастями, стал Boeing AH-64D Апачи Блок III. В Форт-Ирвине, штат Калифорния, Апачи Блок III прошел первоначальные эксплуатационные испытания и оценки, продемонстрировав тем самым новые технологии и их возможности.

Одним из ключевых аспектов этих возможностей является повышение летно-технических характеристик и надежности главного ротора с лопастями из углеродного волокна, однако, по мнению руководителя программы Апачи Блок III подполковника Даниэля Бэйли (Daniel Bailey), использование таких материалов вряд ли остановится только на лопастях. "Лопасти являются первым очевидным шагом", - сказал он изданию Defence Helicopter.

Структурный элемент
Хотя такой важный летный компонент как лопасти может показаться странной отправной точкой для внедрения новых технологий, но именно здесь в последние годы американские военные оттачивали свои навыки в композитных материалах. Бейли указывает на то, что эти материалы будут широко представлены на американских военных "вертолетах завтрашнего дня": "Следующим шагом станут композиты в фюзеляже, и мы уже идем по этому пути".

Апачи также получит новый хвостовой ротор примерно в следующем году. Вне зависимости от процесса Блок III, "наша программа композитных хвостовых роторов продолжается. Это параллельная программа Блок III, - объяснил Бэйли. - Мы находимся на заключительной стадии квалификации, но нам ещё предстоит провести множество летных испытаний. Вероятно, уже через год Апачи будет оснащен такой системой".

Новые хвостовые лопасти также будут установлены на модернизированные модели Блока II . Эта замена традиционных лопастей несущего и рулевого винтов происходит благодаря устареванию некоторых технологий. Эти лопасти, первое использование которых датируется 1970-ми годами, уже не были полностью металлическими. На вертолетах AH-64A и D Блок I и II для лопастей несущего и рулевого винтов используется композит из металла и стекловолокна.

В машиностроении композитным принято считать материал или структуру, состоящую более чем из одного элемента. Лопасти Апачи сделаны из экзотических сплавов в виде нержавеющей стали марки AM 355. Инженеры Boeing использовали различные многотрубчатые конфигурации AM 355, ламинированные и связанные вместе с трубками из стекловолокна в качестве препятствия распространению трещин, что придавало конструкции достаточно прочности для удовлетворения армейским требованиям по живучести. Эта сложная конструкция также является дорогой.

Нынешние композитные лопасти основного и хвостового винтов, представленные на Блоке III и его параллельной программе, состоят из углеродного волокна в полимерной матрице, именно это обычно имеют в виду, когда говорят о композитах.

Улучшенная конструкция
Углеродные волокна демонстрируют улучшения в том, как они изготовлены и как они функционируют. "По средствам изменения ориентации волокон и количества слоев и наполнителей вы можете довести композитные лопасти до уровней, которые были недосягаемы с металлами. По сути, вы можете изготовить лопасть с точки зрения её крутки, её аэродинамического профиля или функции хорды, оптимизируя её летные характеристики", - объяснил главный инженер вертолетных программ Боинга Джон Шиблер (John Schibler).

В композиционных материалах из углепластика слои из волокон часто расположены поочередно друг к другу под прямым углом. Правильно выбирая направление волокон в этих слоях, можно добиться необходимых характеристик в конкретных направлениях и областях.

"Преимущества заключаются в прочности материала и в том факте, что при равной прочности можно обеспечить до 30% снижения веса (по сравнению с металокомпозитами). При одинаковом весе он обеспечивает гораздо более высокую жесткость. Но обычно мы говорим об уменьшении веса", - сказал Даниэль Кагнатель (Daniele Cagnatel), вице президент современных композитных материалов GKN Aerospace North America. Компания поставляет фирме Сикорский современные углеродные волокна для лопастей основного ротора вертолета Black Hawk.

Кроме улучшения жесткости и прочности, Шиблер указывает и на экономическую выгоду: "Мы производим лопасти по сравнительно низкой закупочной стоимости, а также с низкими эксплуатационными расходами и более выгодной ремонтопригодностью".

Фирма Сикорский производит лопасти несущего и рулевого винтов с использованием лонжеронов из графитной смолы, оплетенных стекловолокном или углеродным волокном. Алан Валинг (Alan Walling), генеральный директор композитных лопастей Сикорского, сказал: "Сикорский способен производить полностью композитные лопасти несущего винта всего за треть времени, необходимого для производства металлических лопастей. При производстве композитных лопастей остается значительно меньше химических отходов. Это происходит потому, что металлические лопасти требуют травления в кислотной ванне для обеспечения необходимых летно-технических характеристик лопастей в течение долгого времени".

Улучшенные лопасти
По мнению Кагнателя: "Выбор углеродных волокон для лопастей является обязательным. Существующая структура лопастей доказала себя на практике, где углеродное волокно улучшило летно-технические характеристики по сравнению с металлом".

Выбор лопастей несущего винта Апачи Блок III, изготовленных из углеродного волокна, начался с программы Affordable Apache Rotor Program (AARP). В 2004-ом году Boeing завершила испытания лопастей в рамках программы AARP, доказав, что новые лопасти будут дешевле, прочнее и, с точки зрения усталостной долговечности, смогут служить в два раза дольше по сравнению с существующими металлическими лопастями. Бейли пояснил, что в 2006-ом году лопасти AARP были удлинены на 15 сантиметров для повышения летно-технических характеристик, а в 2008-ом году они были испытаны на Apache, в то время как квалификация лопастей Блок III была завершена в 2011-ом году.

"Композитные лопасти несущего винта для программы Апачи Блок III в настоящее время находятся в производстве. Мы изготавливаем около 20 лопастей в месяц и в ближайшее время нарастим их производство до 40 и до 60", - сказал Шиблер.

В 2013-ом году Блок III будет введен в эксплуатацию в 1-ом ударно-разведывательном батальоне американской армии (1-1 ARB), боевой авиационной бригаде, 1-й пехотной дивизии на базе Форт-Райли, штат Канзас. В мае пять вертолетов Апачи Блок III прибыли в 1-ый ударно-разведывательный батальон для подготовки пилотов и служб технического обслуживания, дополнительные вертолеты прибудут в ближайшие месяцы.

Британская армия летает на вертолетах моделей Апачи Блок I, но они могут быть модернизированы до уровня Блок III. Принятие решения по этому поводу ожидается в декабре. Если решение о модернизации до уровня Блок III будет принято, то Апачи Великобритании также могут получить лопасти несущего винта от британской экспериментальной программы ротора (British Experimental Rotor Programm IV, BERPV IV). Программа BERP IV была завершена в 2007-ом году, и композитные лопасти летают на EH101 Merlin Mk 3 Королевских ВВС.

Испытаны и проверены
Тем не менее, это не первый европейский военный вертолет, использующий карбоновые лопасти. Предшественник Eurocopter, Aérospatiale утверждает, что эта честь выпала на вертолет SA 330 Puma, летающий с 1970-х годов. С тех пор этот тип используется многими вооруженными силами, включая французскую армию и ВМС США. Композитные хвостовые лопасти также используются на вертолетах AS532 Cougar, AS565 Panther, NH90 и Tiger.

Сикорский UH-60M Black Hawk использует углеродные композитные лопасти несущего винта с 2008-ого года. Из вертолетов Сикорского только MH-60R и MH-60S Seahawk имеют лопасти несущего винта из металлического (титанового) лонжерона.

Подполковник Билли Джексон (Billy Jackson), руководитель программы модернизации UH-60M Black Hawk, сказал: "Мы поставили в войска 384 вертолета UH-60М, Сикорский поставил около 400 вертолетов UH-60М, и они находятся в эксплуатации со второй половины 2008-го года. Некоторые из них уже вернулись из своего второго развертывания в Афганистане".

Армия использует более широкие композитные лопасти несущего винта, также известные как лопасти с широкой хордой благодаря их улучшенным весовым характеристикам. Экономия в весе составила 204 килограмма. "Это было основной причиной создания композитных лопастей, а не создание их просто потому, что они композитные. Главное - это их летно-технические характеристики", - объяснил Джексон.

"В течение некоторого времени они работают на Сикорском S-92 в несколько иной конфигурации, благодаря этому у нас уже был хороший объем данных. В решении перейти к полностью композитным лопастям не было много риска", - продолжил он. Фирма Сикорский применила полностью композитные лонжероны и обшивку лопастей несущего винта на своих вертолетах S-92 в конце 1990-х годов.

Летно-технические характеристики вертолетов UH-60M были проверены при двух развертываниях в Афганистане, и Джексон настаивает, что они показали хорошие результаты: "В настоящее время мы заняты сбором данных о надежности лопастей. У нас были поврежденные лопасти, а также отремонтированные и восстановленные. Что касается вопроса, обнаружили ли мы трещины в лопастях или непредвиденные сбои по причине новых композитных конструкций, ответ- нет". Основываясь на нынешнем успехе, следующим шагом могут стать полностью композитные цельноповоротные стабилизаторы.

Планы по уменьшению веса
В дополнение к тому что пояснил Бейли, что лопасти были первым шагом, а композитный фюзеляж являются следующим, Джексон сообщил: "Мы ищем другие области применения композитных материалов. Сейчас мы разрабатываем полностью композитный цельноповоротный стабилизатор, который обеспечит значительное снижение веса".

Армия приступила к разработке композитной хвостовой балки вертолета Black Hawk с целью снижения её веса, однако в настоящее время особый акцент делается на создании полностью композитного цельноповоротного стабилизатора, включающего внутренние компоненты. "Мы намерены сделать полностью композитный цельноповоротный стабилизатор для значительного уменьшения веса в области вертолета, имеющей основное воздействие на центр тяжести вертолета".

Джексон заявил, что, как уже отмечалось в предложении фирмы Сикорский, решение о создании полностью композитного цельноповоротного стабилизатора не было обусловлено стремлением улучшить его летно-технические характеристики, а лишь ставило цель сократить расходы на его производство.

"Мы ещё должны выполнить некоторые испытания, баллистические и другие виды летно-технических испытаний с целью убедиться, что новое изделие будет настолько же хорошо или даже лучше оригинального, а затем принять финансовое решение о том, как мы хотим внедрить его на существующую платформу, внедрить его в перспективное производство или пополнить им список существующих запасных частей".

Компанией, поставляющей композитную хвостовую балку, но не лопасти хвостовых винтов, является BLR Aerospace из штата Вашингтон. Вице-президент компании по сбыту и маркетингу Дэйв Мароне (Dave Marone) подтвердил изданию Defence Helicopter, что его компания производит полностью композитную хвостовую балку по заказу одного из военных заказчиков, но не согласился предоставить дополнительную информацию.

Планы на будущее
Ещё одним вертолетом, которому придется ждать до 2016-го года, чтобы получить композитные лопасти несущего винта из углеродного волокна, является американский армейский CH-47 Chinook. "Новые композитные лопасти называются Advanced Chinook Rotor Blade (ACRB). Программа успешно завершила стадию критического анализа проекта (critical design review, CDR) в январе 2012 года", - сообщил руководитель проекта модернизации CH-47 Chinook подполковник армии США Джо Хочерл (Joe Hoecherl). Летные и баллистические испытания были завершены в 2011-ом году.

Программа ACRB принесет изменения в форме лопастей и их летно-технических характеристиках, не затронув их крепления. "Эти лопасти будут взаимозаменяемыми на всех вертолетах Chinook", - сказал Хочерл. Были завершены масштабные тестирования в аэродинамической трубе, которые продемонстрировали, что новые лопасти способны обеспечить до 900 кг дополнительной вертикальной тяги, что позволит вертолету зависать с полной загрузкой на высоте в 1200 метров при температуре воздуха в 35° C.

Лопасти ACRB в аэродинамической трубе.

Предсерийное производство лопастей запланировано на апрель 2014-го года, летные испытания на третий квартал 2015-го года, а серийное производство на 2016-ый год. В феврале нынешнего года было объявлено, что Boeing разрабатывает композитные лопасти с повышенным сроком службы и требующие значительно меньше времени, необходимого для устранения несоконусности лопастей несущего винта и их балансировки. Эти лопасти также могут быть установлены на модели вертолетов CH-47D, однако эти вертолеты запланировано списать уже к 2019-му году.

Интеллектуальные композиты
Скорее всего, к 2019-му году лопасти из углеродного волокна потребуют более сложного подхода для достижения дальнейшего улучшения летно-технических характеристик. Промышленность сходится во мнении, что лопасти не будут состоять только из углеродного волокна. Кагнатель считает, что в них будут встроены датчики, способные следить за состоянием лопастей и позволяющие более точно прогнозировать срок их службы.

"Тенденции всё более указывают на встроенные системы, элементы подогрева передней кромки лопасти, а также датчики напряжения и деформации лопастей. В будущем такие датчики будут составной частью лопастей, нежели их внешними элементами", - сказал он.

Тем не менее, на лопасти также могут быть установлены движущиеся части. Директор по исследованиям и профессор инженерного факультета Бристольского Университета Пол Уивер (Paul Weaver) как раз работает над таким проектом для правительства Великобритании. Проект называется Интеллектуальные Реагирующие Композитные Структуры (Intelligent Responsive Composite Structures, IRCS). "Национальное агентство инноваций финансировало проект, завершившийся два года назад изменением формы закрылков", - сказал он изданию DH.

Национальное агентство инноваций принадлежит британскому правительству, оно занимается финансированием исследований, разработок и их коммерциализацией. В рамках программы IRCS было обнаружено, что щиткообразное устройство на задней кромке лопасти может быть использовано для повышения летно-технических характеристик при переходе от зависания к горизонтальному полету.

Фирма Сикорский также занята исследованиями в этой области. Она разрабатывает активные технологии лопастей несущего винта совместно с Министерством обороны США. На сегодняшний день не планируется установка этих устройств на существующие лопасти.

Американские военные не являются первопроходцами в развертывании углеволоконных лопастей, но тот факт, что они активно оснащают свой вертолетный парк новыми лопастями, подтверждает, что новые композиты активно внедряются в жизнь. Для Бейли важность углеродного волокна является очевидной: "Эти технологии будут стимулировать развитие будущих армейских вертолетов, будь то новые Apache, Black Hawk или Chinook".

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека