Главные плоскости и точки.

276. Теперь мы постараемся обобщить выводы § 136 главы IV. Установим следующую теорему:

Каково бы ни было напряженное состояние, всегда существуют три взаимно перпендикулярные плоскости, на которых касательные компоненты напряжения равны нулю, а нормальные компоненты имеют стационарные значения (максимум, минимум или минимакс). Плоскости, о которых идет речь, называются главными плоскостями

напряжений, а нормальные напряжения на них называются главными напряжениями.

Это основная теорема теории напряжений. Из нее следует, что, когда направление главных плоскостей безразлично (а это случается часто), любое общее напряженное состояние будет известно, если задать значения трех главных напряжений. Для того чтобы в общем случае полностью характеризовать напряженное состояние, мы должны, конечно, определить направления главных плоскостей. Для этого мы должны фиксировать еще три величины, а именно, два независимых направляющих косинуса, определяющих первую плоскость, и один, определяющий вторую плоскость.

В § 267 мы «задавали» напряженное состояние девятью компонентами (4), потом число их с помощью соотношений (5) уменьшилось до шести. Итак, мы видим, что согласно обоим способам мы будем знать напряженное состояние, если зададим шесть величин.

277. Выражение для нормального напряжения на плоскости, перпендикулярной а именно

показывает, что является функцией в которую входят заданные (и, следовательно, независимые) величины Направляющие косинусы не независимы, так как они удовлетворяют соотношению

Таким образом, мы можем рассматривать в соотношении как независимые переменные, которым можно давать произвольные значения, и будут функциями

Продифференцируем (1) по считая функций от

Воспользовавшись равенствами (5), мы можем условия (III) написать следующим образом:

Исключив из них с помощью (II) производные, мы как эквивалентные условия получим уравнения:

а они, согласно (7), эквивалентны следующим уравнениям:

Уравнения (10) весьма легко интерпретировать. Они показывают, что на той плоскости, где имеет стационарное значение, компоненты результирующего напряжения по направлениям пропорциональны т. е. направляющим косинусам плоскости. Отсюда следует, что результирующее напряжение на такой плоскости является чисто нормальным. Мы видим, что это чисто нормальное напряжение и является тем главным напряжением, которое определялось в § 276. Интенсивность его равна:

278. Покажем, что главные плоскости действительно существуют. Для этого запишем (V) в форме

Не могут обращаться в нуль одновременно, и мы должны иметь

Это кубическое относительно уравнение. Все коэффициенты его действительны. Следовательно, оно имеет, по крайней мере, один действительный корень, откуда вытекает, что всякое возможное напряженное состояние имеет, по крайней мере, одно главное напряжение (скажем, Подставив вместо в (VI), мы определим направление, соответствующее одной главной плоскости.

Возьмем новые оси координат. Направим новую ось по направлению главного напряжения которое, как мы только что показали, существует. Значения компонентов напряжения изменятся так, как изменились оси. Согласно нашему выбору оси мы будем иметь:

Будут тоже иметь новые значения, и уравнения (VI) в новых осях запишутся так:

Откуда мы имеем или уже найденное решение.

Центрированная система задана, если заданы радиусы кривизны преломляющих поверхностей, расстояния между ними и коэффициенты преломления всех веществ, разграничиваемых поверх­ностями. Главные плоскости каждой преломляющей поверхности, по сказанному в предыдущем параграфе, совпадают с касательной

Рис. 255. Положение главных плоскостей и главных фокусов центрированной системы.

плоскостью, проведенной через вершину этой поверхности. Глав­ные фокусные расстояния отдельных преломляющих поверхностей могут быть вычислены по формулам (7) и (8) § 316. По этим дан­ным можно найти положение главных плоскостей и главных фоку­сов всей системы.

Пусть две центрированные системы I и II (рис. 255) заданы каждая своими главными плоскостями и своими главными фокусными расстояниями fu f[ и /2, fr Расположение этих двух систем друг относительно друга определим расстоянием А между вторым глав­ным фокусом F[ системы I и первым главным фокусом Fq системы II. Последовательно рассматривая прохождение луча через обе системы, можно найти главные фокусные расстояния / и fx образуемой ими системы и положение ее главных плоскостей (см. мелкий шрифт). Для главных фокусных расстояний получаем

Положение первой главной плоскости Н всей системы опреде­лится отрезком Хну отсчитанным от первой главной плоскости системы I (рис. 255):

Также положение второй главной плоскости всей системы опреде­лится отрезком

х№ =/;А+/г/8, (3)

отсчитанным от второй главной плоскости системы II.

Поскольку главные плоскости и главные фокусы отдель­ных преломляющих поверхностей известны, можно путем последо­вательного применения формул (1), (2) и (3) найти главные пло­скости и главные фокусы любой сложной центрированной системы. Рассмотрим ряд частных случаев.

1. Толстая линза. Пусть толстая линза ограничена двумя сферическими поверхностями АВ и NB" (рис. 256) с радиусами кри-

Рис. 256. Нахождение главных фокусов и главных поверхно­стей толстой линзы.

визны гх и гъ отстоящими друг от друга на расстоянии d. Коэффи­циент преломления вещества, заключенного между поверхностями АВ и АГВ\ обозначим через п. Пусть линза находится в воздухе, для которого коэффициент преломления будем считать равным еди­нице. Главные плоскости первой и второй преломляющих поверхно­стей совпадают с плоскостями, касательными к преломляющим по­верхностям в точках О и О" (отмечены на рис. 256 пунктиром).

Сравним между собою первое и второе главные фокусные рас­стояния линзы. Воспользовавшись формулой (9) § 316, получим для первой и второй сферической поверхности:

К _ п f\_ _ _ L

откуда следует

На основании этого равенства и формулы (1) заключаем, что первое и второе главные фокусные расстояния линзы (окруженной

однородной средой) равны по величине и отличаются знаком: 1

В соответствии с определением оптической силы преломляющей поверхности [формула (10) § 316] под оптической силой линзы (или центрированной системы линз), находящейся в однородном веществе

с показателем преломления л0, подразумевается величина:

В нашем случае п0 - п1=п"2-\ и

Найдем оптическую силу Ф линзы. По формуле (1): .Из рис. 256 имеем

откуда для оптической силы линзы находим

ф_±_ * _ rf-/;+/i

Подставляя это значение в выражение для Ф, получим

но уг = Фх и jr = Ф$» где Ф! и Ф2 - оптические силы первой и

второй преломляющих поверхностей линзы. Воспользовавшись этими соотношениями, окончательно получим для оптической силы толстой линзы Ф:

Ф = Ф1 + Ф2- ~ Ф,Ф2. (5)

1 Равенство / =-/", где / и /"-главные фокусные расстояния, имеет место не только для линзы, но и для любой центрированной системы линз, помещенной в однородную среду. В этом легко убедиться, использовав фор­мулы (6) и (6а) и учтя, что для линзы любого номера k имеет место равен­ство = - /V

Для определения положения первой главной плоскости толстой линзы воспользуемся формулой (2). Подставляя в нее вместо А его значение по (4), получим

что перепишем в виде

Величина /1/2/Д, по (1), равна первому главному фокусному рас­стоянию линзы, откуда получим

где Ф - оптическая сила линзы, и j- -

Замечая, что / Ф.

Получим для Хц следующее окончательное выражение:

Величина Хн представляет собою расстояние, отсчитанное от вер­шины линзы О до ее первой главной плоскости.

Рис. 257. Положение главных плоскостей двояковыпуклой толстой линзы.

Аналогично найдем положение второй главной плоскости линзы. Из (3) имеем:

Г d ипи у _f}

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека