Дана матрица парных коэффициентов корреляции. Построение матрицы коэффициентов парной корреляции

Z 1 (t)

Z 2 (t)

t

y(t)

Z 1 (t)

Z 2 (t)

t

y(t)

Основная задача, стоящая при выборе факторов включаемых в корреляционную модель, заключается в том, чтобы ввести в анализ все основные факторы, влияющие на уровень изучаемого явления. Однако, введение в модель большого числа факторов нецелесообразно, правильнее отобрать только сравнительно небольшое число основных факторов, находящихся предположительно в корреляционной зависимости с выбранным функциональным показателем.

Это можно сделать с помощью так называемого двух стадийного отбора. В соответствии с ним в модель включаются все предварительно отобранные факторы. Затем среди них на основе специальной количественной оценки и дополнительно качественного анализа выявляются несущественно влияющие факторы, которые постепенно отбрасываются пока не останутся те, относительно которых можно утверждать, что имеющийся статистический материал согласуется с гипотезой об их совместном существенном влиянии на зависимую переменную при выбранной форме связи.

Свое наиболее законченное выражение двух стадийный отбор получил в методике так называемого многошагового регрессионного анализа, при котором отсев несущественных факторов происходит на основе показателей их значимости, в частности на основе величины t ф - расчетном значении критерия Стьюдента.

Рассчитаем t ф по найденным коэффициентам парной корреляции и сравним их с t критическим для 5% уровня значимости (двустороннего) и 18 степенями свободы (ν = n-2).

где r – значение коэффициента парной корреляции;

n – число наблюдений (n=20)

При сравнении t ф для каждого коэффициента с t кр = 2,101 получаем, что найденные коэффициенты признаются значимыми, т.к. t ф > t кр.

t ф для r yx 1 = 2, 5599 ;

t ф для r yx 2 = 7,064206 ;

t ф для r yx 3 = 2,40218 ;

t ф для r х1 x 2 = 4,338906 ;

t ф для r х1 x 3 = 15,35065;

t ф для r х2 x 3 = 4,749981

При отборе факторов включаемых в анализ к ним предъявляются специфические требования. Прежде всего, показатели, выражающие эти факторы должны быть количественно измеримы.

Факторы, включаемые в модель, не должны находиться между собой в функциональной или близкой к ней связи. Наличие таких связей характеризуется мультиколлинеарностью.

Мультиколлинеарность свидетельствует о том, что некоторые факторы характеризуют одну и ту же сторону изучаемого явления. Поэтому их одновременное включение в модель нецелесообразно, так как они в определённой степени дублируют друг друга. Если нет особых предположений говорящих в пользу одного из этих факторов, следует отдавать предпочтение тому из них, который характеризуется большим коэффициентом парной (или частной) корреляции.

Считается, что предельным является значение коэффициента корреляции между двумя факторами, равное 0,8.

Мультиколлинеарность обычно приводит к вырождению матрицы переменных и, следовательно, к тому, что главный определитель уменьшает свое значение и в пределе становится близок к нулю. Оценки коэффициентов уравнения регрессии становятся сильно зависимыми от точности нахождения исходных данных и резко изменяют свои значения при изменении количества наблюдений.

Матрица парных коэффициентов корреляции

Y X1 X2 X3 X4 X5
Y
X1 0,732705
X2 0,785156 0,706287
X3 0,179211 -0,29849 0,208514
X4 0,667343 0,924333 0,70069 0,299583
X5 0,709204 0,940488 0,691809 0,326602 0,992945

В узлах матрицы находятся парные коэффициенты корреляции, характеризующие тесноту взаимосвязи между факторными признаками. Анализируя эти коэффициенты, отметим, что чем больше их абсолютная величина, тем большее влияние оказывает соответствующий факторный признак на результативный. Анализ полученной матрицы осуществляется в два этапа:

1. Если в первом столбце матрицы есть коэффициенты корреляции, для которых /r / < 0,5, то соответствующие признаки из модели исключаются. В данном случае в первом столбце матрицы коэффициентов корреляции исключается фактор или коэффициент роста уровня инфляции. Данный фактор оказывает меньшее влияние на результативный признак, нежели оставшиеся четыре признака.

2. Анализируя парные коэффициенты корреляции факторных признаков друг с другом, (r XiXj), характеризующие тесноту их взаимосвязи, необходимо оценить их независимость друг от друга, поскольку это необходимое условие для дальнейшего проведения регрессионного анализа. В виду того, что в экономике абсолютно независимых признаков нет, необходимо выделить, по возможности, максимально независимые. Факторные признаки, находящиеся в тесной корреляционной зависимости друг с другом, называются мультиколлинеарными. Включение в модель мультиколлинеарных признаков делает невозможным экономическую интерпретацию регрессионной модели, так как изменение одного фактора влечет за собой изменение факторов с ним связанных, что может привести к «поломке» модели в целом.

Критерий мультиколлениарности факторов выглядит следующим образом:

/r XiXj / > 0,8

В полученной матрице парных коэффициентов корреляции этому критерию отвечают два показателя, находящиеся на пересечении строк и . Из каждой пары этих признаков в модели необходимо оставить один, он должен оказывать большее влияние на результативный признак. В итоге из модели исключаются факторы и , т.е. коэффициент роста себестоимости реализованной продукции и коэффициент роста объёма её реализации.

Итак, в регрессионную модель вводим факторы Х1 и Х2.

Далее осуществляется регрессионный анализ (сервис, анализ данных, регрессия). Вновь составляет таблица исходных данных с факторами Х1 и Х2. Регрессия в целом используется для анализа воздействия на отдельную зависимую переменную значений независимых переменных (факторов) и позволяет корреляционную связь между признаками представить в виде некоторой функциональной зависимости называемой уравнением регрессии или корреляционно-регрессионной моделью.

В результате регрессионного анализа получаем результаты расчета многомерной регрессии. Проанализируем полученные результаты.

Все коэффициенты регрессии значимы по критерию Стьюдента. Коэффициент множественной корреляции R составил 0,925, квадрат этой величины (коэффициент детерминации) означает, что вариация результативного признака в среднем на 85,5% объясняется за счет вариации факторных признаков, включенных в модель. Коэффициент детерминированности характеризует тесноту взаимосвязи между совокупностью факторных признаков и результативным показателем. Чем ближе значение R-квадрат к 1, тем теснее взаимосвязь. В нашем случае показатель, равный 0,855, указывает на правильный подбор факторов и на наличие взаимосвязи факторов с результативным показателем.

Рассматриваемая модель адекватна, поскольку расчетное значение F-критерия Фишера существенно превышает его табличное значение (F набл =52,401; F табл =1,53).

В качестве общего результата проведенного корреляционно-регрессионного анализа выступает множественное уравнение регрессии, которое имеет вид:

Полученное уравнение регрессии отвечает цели корреляционно-регрессионного анализа и является линейной моделью зависимости балансовой прибыли предприятия от двух факторов: коэффициента роста производительности труда и коэффициента имущества производственного назначения.

На основании полученной модели можно сделать вывод о том, что при увеличении уровня производительности труда на 1% к уровню предыдущего периода величина балансовой прибыли возрастет на 0,95 п.п.; увеличение же коэффициента имущества производственного назначения на 1% приведет к росту результативного показателя на 27,9 п.п. Слелдовательно, доминирующее влияние на рост балансовой прибыли оказывает увеличение стоимости имущества производственного назначения (обновление и рост основных средств предприятия).

По множественной регрессионной модели выполняется многофакторный прогноз результативного признака. Пусть известно, что Х1 = 3,0, а Х3 = 0,7. Подставим значения факторных признаков в модель, получим Упр = 0,95*3,0 + 27,9*0,7 – 19,4 = 2,98. Таким образом, при увеличении производительности труда и модернизации основных средств на предприятии балансовая прибыль в 1 квартале 2005 г. по отношению к предыдущему периоду (IV квартал 2004 г.) возрастет на 2,98%.

Экономические данные представляют собой количественные характеристики каких-либо экономических объектов или процессов. Они формируются под действием множества факторов, не все из которых доступны внешнему контролю. Неконтролируемые факторы могут принимать случайные значения из некоторого множества значений и тем самым обусловливать случайность данных, которые они определяют. Одной из основных задач в экономических исследованиях является анализ зависимостей между переменными.

Рассматривая зависимости между признаками, необходимо выделить прежде всего два типа связей:

  • функциональные - характеризуются полным соответствием между изменением факторного признака и изменением результативной величины: каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. Этот тип связи выражается в виде формульной зависимости. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Так, величина заработной платы при повременной оплате труда зависит от количества отработанных часов;
  • корреляционные - между изменением двух признаков нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем, при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака.

Изучая взаимосвязи между признаками, их классифицируют по направлению, форме, числу факторов:

  • по направлению связи делятся на прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора. При обратной связи направление изменения результативного признака противоположно направлению изменения признака- фактора. Например, чем выше квалификация рабочего, тем выше уровень производительности его труда (прямая связь). Чем выше производительность труда, тем ниже себестоимость единицы продукции (обратная связь);
  • по форме (виду функции) связи делят на линейные (прямолинейные) и нелинейные (криволинейные). Линейная связь отображается прямой линией, нелинейная - кривой (парабол ой, гиперболой и т.п.). При линейной связи с возрастанием значения факторного признака происходит равномерное возрастание (убывание) значения результативного признака;
  • по количеству факторов, действующих на результативный признак, связи подразделяют на однофакторные (парные) и многофакторные.

Изучение зависимости вариации признака от окружающих условий и составляет содержание теории корреляции .

При проведении корреляционного анализа вся совокупность данных рассматривается как множество переменных (факторов), каждая из которых содержит п наблюдений.

При изучении взаимосвязи между двумя факторами их, как правило, обозначают Х= (х р х 2 , ...,х п) и Y= (у { , у 2 , ...,у и).

Ковариация - это статистическая мера взаимодействия двух переменных. Например, положительное значение ковариации доходности двух ценных бумаг показывает, что доходности этих ценных бумаг имеют тенденцию изменяться в одну сторону.

Ковариация между двумя переменными X и Y рассчитывается следующим образом:

где- фактические значения переменных

X и г;

Если случайные величины Хи Y независимы, теоретическая ковариация равна нулю.

Ковариация зависит от единиц, в которых измеряются переменные Хи У, она является ненормированной величиной. Поэтому для измерения силы связи между двумя переменными используется другая статистическая характеристика, называемая коэффициентом корреляции.

Для двух переменных X и Y коэффициент парной корреляции

определяется следующим образом:

где SSy - оценки дисперсий величин Хи Y. Эти оценки характеризуют степень разброса значений х { ,х 2 , ...,х п (у 1 ,у 2 ,у п) вокруг своего среднего х (у соответственно), или вариабельность (изменчивость) этих переменных на множестве наблюдений.

Дисперсия (оценка дисперсии) определяется по формуле

В общем случае для получения несмещенной оценки дисперсии сумму квадратов следует делить на число степеней свободы оценки (п-р), где п - объем выборки, р - число наложенных на выборку связей. Так как выборка уже использовалась один раз для определения среднего X, то число наложенных связей в данном случае равно единице (р = 1), а число степеней свободы оценки (т.е. число независимых элементов выборки) равно (п - 1).

Более естественно измерять степень разброса значений переменных в тех же единицах, в которых измеряется и сама переменная. Эту задачу решает показатель, называемый среднеквадратическим отклонением (стандартным отклонением ) или стандартной ошибкой переменной X (переменной Y) и определяемый соотношением

Слагаемые в числителе формулы (3.2.1) выражают взаимодействие двух переменных и определяют знак корреляции (положительная или отрицательная). Если, например, между переменными существует сильная положительная взаимосвязь (увеличение одной переменной при увеличении второй), каждое слагаемое будет положительным числом. Аналогично, если между переменными существует сильная отрицательная взаимосвязь, все слагаемые в числителе будут отрицательными числами, что в результате дает отрицательное значение корреляции.

Знаменатель выражения для коэффициента парной корреляции [см. формулу (3.2.2)] просто нормирует числитель таким образом, что коэффициент корреляции оказывается легко интерпретируемым числом, не имеющим размерности, и принимает значения от -1 до +1.

Числитель выражения для коэффициента корреляции, который трудно интерпретировать из-за необычных единиц измерения, есть ковариация ХиУ. Несмотря на то что иногда она используется как самостоятельная характеристика (например, в теории финансов для описания совместного изменения курсов акций на двух биржах), удобнее пользоваться коэффициентом корреляции. Корреляция и ковариация представляют, по сути, одну и ту же информацию, однако корреляция представляет эту информацию в более удобной форме.

Для качественной оценки коэффициента корреляции применяются различные шкалы, наиболее часто - шкала Чеддока. В зависимости от значения коэффициента корреляции связь может иметь одну из оценок:

  • 0,1-0,3 - слабая;
  • 0,3-0,5 - заметная;
  • 0,5-0,7 - умеренная;
  • 0,7-0,9 - высокая;
  • 0,9-1,0 - весьма высокая.

Оценка степени тесноты связи с помощью коэффициента корреляции проводится, как правило, на основе более или менее ограниченной информации об изучаемом явлении. В связи с этим возникает необходимость оценки существенности линейного коэффициента корреляции, дающая возможность распространить выводы по результатам выборки на генеральную совокупность.

Оценка значимости коэффициента корреляции при малых объемах выборки выполняется с использованием 7-критерия Стьюдента. При этом фактическое (наблюдаемое) значение этого критерия определяется по формуле

Вычисленное по этой формуле значение / набл сравнивается с критическим значением 7-критерия, которое берется из таблицы значений /-критерия Стьюдента (см. Приложение 2) с учетом заданного уровня значимости ос и числа степеней свободы (п - 2).

Если 7 набл > 7 табл, то полученное значение коэффициента корреляции признается значимым (т.е. нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается). И таким образом делается вывод, что между исследуемыми переменными есть тесная статистическая взаимосвязь.

Если значение г у х близко к нулю, связь между переменными слабая. Если корреляция между случайными величинами:

  • положительная, то при возрастании одной случайной величины другая имеет тенденцию в среднем возрастать;
  • отрицательная, то при возрастании одной случайной величины другая имеет тенденцию в среднем убывать. Удобным графическим средством анализа парных данных является диаграмма рассеяния , которая представляет каждое наблюдение в пространстве двух измерений, соответствующих двум факторам. Диаграмму рассеяния, на которой изображается совокупность значений двух признаков, называют еще корреляционным полем. Каждая точка этой диаграммы имеет координаты х (. и у г По мере того как возрастает сила линейной связи, точки на графике будут лежать более близко к прямой линии, а величина г будет ближе к единице.

Коэффициенты парной корреляции используются для измерения силы линейных связей различных пар признаков из их множества. Для множества признаков получают матрицу коэффициентов парной корреляции.

Пусть вся совокупность данных состоит из переменной Y = = (у р у 2 , ..., у п) и т переменных (факторов) X, каждая из которых содержит п наблюдений. Значения переменных Y и X, содержащиеся в наблюдаемой совокупности, записываются в таблицу (табл. 3.2.1).

Таблица 3.2.1

Переменная

Номер

наблюдения

Х тЗ

Х тп

На основании данных, содержащихся в этой таблице, вычисляют матрицу коэффициентов парной корреляции R, она симметрична относительно главной диагонали:


Анализ матрицы коэффициентов парной корреляции используют при построении моделей множественной регрессии.

Одной корреляционной матрицей нельзя полностью описать зависимости между величинами. В связи с этим в многомерном корреляционном анализе рассматривается две задачи:

  • 1. Определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ.
  • 2. Определение тесноты связи между двумя величинами при фиксировании или исключении влияния остальных величин.

Эти задачи решаются соответственно с помощью коэффициентов множественной и частной корреляции.

Решение первой задачи (определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ) осуществляется с помощью выборочного коэффициента множественной корреляции по формуле

где R - R [см. формулу (3.2.6)]; Rjj - алгебраическое дополнение элемента той же матрицы R.

Квадрат коэффициента множественной корреляции Щ j 2 j _j J+l m принято называть выборочным множественным коэффициентом детерминации ; он показывает, какую долю вариации (случайного разброса) исследуемой величины Xj объясняет вариация остальных случайных величин Х { , Х 2 ,..., Х т.

Коэффициенты множественной корреляции и детерминации являются величинами положительными, принимающими значения в интервале от 0 до 1. При приближении коэффициента R 2 к единице можно сделать вывод о тесноте взаимосвязи случайных величин, но не о ее направлении. Коэффициент множественной корреляции может только увеличиваться, если в модель включать дополнительные переменные, и не увеличится, если исключать какие-либо из имеющихся признаков.

Проверка значимости коэффициента детерминации осуществляется путем сравнения расчетного значения /’-критерия Фишера

с табличным F raбл. Табличное значение критерия (см. Приложение 1) определяется заданным уровнем значимости а и степенями свободы v l = mnv 2 = n-m-l. Коэффициент R 2 значимо отличается от нуля, если выполняется неравенство

Если рассматриваемые случайные величины коррелируют друг с другом, то на величине коэффициента парной корреляции частично сказывается влияние других величин. В связи с этим возникает необходимость исследования частной корреляции между величинами при исключении влияния других случайных величин (одной или нескольких).

Выборочный частный коэффициент корреляции определяется по формуле

где R Jk , Rjj, R kk - алгебраические дополнения к соответствующим элементам матрицы R [см. формулу (3.2.6)].

Частный коэффициент корреляции, также как и парный коэффициент корреляции, изменяется от -1 до +1.

Выражение (3.2.9) при условии т = 3 будет иметь вид

Коэффициент г 12(3) называется коэффициентом корреляции между х { и х 2 при фиксированном х у Он симметричен относительно первичных индексов 1, 2. Его вторичный индекс 3 относится к фиксированной переменной.

Пример 3.2.1. Вычисление коэффициентов парной,

множественной и частной корреляции.

В табл. 3.2.2 представлена информация об объемах продаж и затратах на рекламу одной фирмы, а также индекс потребительских расходов за ряд текущих лет.

  • 1. Построить диаграмму рассеяния (корреляционное поле) для переменных «объем продаж» и «индекс потребительских расходов».
  • 2. Определить степень влияния индекса потребительских расходов на объем продаж (вычислить коэффициент парной корреляции).
  • 3. Оценить значимость вычисленного коэффициента парной корреляции.
  • 4. Построить матрицу коэффициентов парной корреляции по трем переменным.
  • 5. Найти оценку множественного коэффициента корреляции.
  • 6. Найти оценки коэффициентов частной корреляции.

1. В нашем примере диаграмма рассеяния имеет вид, приведенный на рис. 3.2.1. Вытянутость облака точек на диаграмме рассеяния вдоль наклонной прямой позволяет сделать предположение, что существует некоторая объективная тенденция прямой линейной связи между значениями переменных Х 2 Y (объем продаж).

Рис. 3.2.1.

2. Промежуточные расчеты при вычислении коэффициента корреляции между переменными Х 2 (индекс потребительских расходов) и Y (объем продаж) приведены в табл. 3.2.3.

Средние значения случайных величин Х 2 и Y, которые являются наиболее простыми показателями, характеризующими последовательности jCj, х 2 , ..., х 16 и y v y 2 , ..., у 16 , рассчитаем по следующим формулам:


Объем продаж Y, тыс. руб.

Индекс

потреби

тельских

расходов

Объем продаж Y, тыс. руб.

Индекс

потреби

тельских

расходов

Таблица 3.2.3

л:, - х

(И - У)(х, - х)

(х, - х) 2

(у,- - у) 2

Дисперсия характеризует степень разброса значений x v x 2 ,х :

Рассмотрим теперь решение примера 3.2.1 в Excel.

Чтобы вычислить корреляцию средствами Excel, можно воспользоваться функцией =коррел (), указав адреса двух столбцов чисел, как показано на рис. 3.2.2. Ответ помещен в D8 и равен 0,816.

Рис. 3.2.2.

(Примечание. Аргументы функции коррел должны быть числами или именами, массивами или ссылками, содержащими числа. Если аргумент, который является массивом или ссылкой, содержит текст, логические значения или пустые ячейки, то такие значения игнорируются; однако ячейки, которые содержат нулевые значения, учитываются.

Если массив! и массив2 имеют различное количество точек данных, то функция коррел возвращает значение ошибки #н/д.

Если массив1 либо массив2 пуст или если о (стандартное отклонение) их значений равно нулю, то функция коррел возвращает значение ошибки #дел/0 !.)

Критическое значение /-статистики Стьюдента может быть также получено с помощью функции стьюдраспробр 1 пакета Excel. В качестве аргументов функции необходимо задать число степеней свободы, равное п - 2 (в нашем примере 16 - 2= 14) и уровень значимости а (в нашем примере а = 0,1) (рис. 3.2.3). Если фактическое значение /-статистики, взятое по модулю, больше критического, то с вероятностью (1 - а) коэффициент корреляции значимо отличается от нуля.


Рис. 3.2.3. Критическое значение /-статистики равно 1,7613

В Excel входит набор средств анализа данных (так называемый пакет анализа), предназначенный для решения различных статистических задач. Для вычисления матрицы коэффициентов парной корреляции R следует воспользоваться инструментом Корреляция (рис. 3.2.4) и установить параметры анализа в соответствующем диалоговом окне. Ответ будет помещен на новый рабочий лист (рис. 3.2.5).

1 В Excel 2010 название функции стьюдраспробр изменено на стью-

ДЕНТ.ОБР.2Х.

Рис. 3.2.4.


Рис. 3.2.5.

  • Основоположниками теории корреляции считаются английские статистики Ф. Гальтон (1822-1911) и К. Пирсон (1857-1936). Термин «корреляция» был заимствован из естествознания и обозначает «соотношение, соответствие». Представление о корреляции как взаимозависимости между случайными переменными величинами лежит воснове математико-статистической теории корреляции.

По территориям Южного федерального округа РФ приводятся данные за 2011 год

Территории федерального округа

Валовой региональный продукт, млрд. руб., Y

Инвестиции в основной капитал, млрд. руб., X1

1. Респ. Адыгея

2. Респ. Дагестан

3. Респ. Ингушетия

4. Кабардино-БалкарскаяРесп.

5. Респ. Калмыкия

6. Карачаево-ЧеркесскаяРесп.

7. Респ. Северная Осетия - Алания

8. Краснодарский кра)

9. Ставропольский край

10. Астраханская обл.

11. Волгоградская обл.

12. Ростовская обл.

  • 1. Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость коэффициентов корреляции.
  • 2. Постройте поле корреляции результативного признака и наиболее тесно связанного с ним фактора.
  • 3. Рассчитайте параметры линейной парной регрессии для каждого фактора Х..
  • 4. Оцените качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Выберите лучшую модель.

составит 80% от его максимального значения. Представьте графически: фактические и модельные значения, точки прогноза.

  • 6. Используя пошаговую множественную регрессию (метод исключения или метод включения), постройте модель формирования цены квартиры за счёт значимых факторов. Дайте экономическую интерпретацию коэффициентов модели регрессии.
  • 7. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности,в - и -? коэффициентов.

При решении данной задачи расчеты и построение графиков и диаграмм будем вести с использованием настройки Excel Анализ данных.

1. Рассчитаем матрицу парных коэффициентов корреляции и оценим статистическую значимость коэффициентов корреляции

В диалоговом окне Корреляция в поле Входной интервал вводим диапазон ячеек, содержащих исходные данные. Так как мы выделили и заголовки столбцов, то устанавливаем флажок Метки в первой строке.

Получили следующие результаты:

Таблица 1.1 Матрица парных коэффициентов корреляции

Анализ матрицы коэффициентов парной корреляции показывает, что зависимая переменная Y, т.е валового регионального продукта имеет более тесную связь с Х1 (инвестиции в основной капитал). Коэффициент корреляции равен 0,936. Это означает, что на 93,6% зависимая переменная Y (валовой региональный продукт) зависит от показателя Х1 (инвестиции в основной капитал).

Статистическая значимость коэффициентов корреляции определим с помощью t-критерия Стьюдента. Табличное значение сравниваем с расчетными значениями.

Вычислим табличное значение с помощью функции СТЬЮДРАСПОБР.

t табл.=0,129 при доверительной вероятности равной 0,9 и степенью свободы (n-2).

Статистическим значимым является фактор Х1.

2. Построим поле корреляции результативного признака (валового регионального продукта) и наиболее тесно связанного с ним фактора (инвестиции в основной капитал)

Для этого воспользуемся инструментом построения точечной диаграммы программы Excel.

В результате получаем поле корреляции цены валового регионального продукта, млрд. руб. и инвестиции в основной капитал, млрд. руб. (рисунок 1.1.).

Рисунок 1.1

3. Рассчитаем параметры линейной парной регрессии для каждого фактора Х

Для расчета параметров линейной парной регрессии воспользуемся инструментом Регрессия, входящим в настойку Анализ данных.

В диалоговом окне Регрессия в поле Входной интервал Y вводим адрес диапазона ячеек, которые представляет зависимую переменную. В поле

Входной интервал Х вводим адрес диапазона, который содержит значения независимых переменных. Выполним вычисления параметры парной регрессии для фактора Х.

Для Х1 получили следующие данные, представленные в таблице 1.2:

Таблица 1.2

Уравнение регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал имеет вид:

4. Оценим качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Установим, какая модель является лучшей.

Коэффициент детерминации, среднюю ошибку аппроксимации мы получили в результате расчетов, проведенных в пункте 3. Полученные данные представлены в следующих таблицах:

Данные по Х1:

Таблица 1.3а

Таблица 1.4б

А) Коэффициент детерминации определяет, какая доля вариации признака У учтена в модели и обусловлена влиянием на него фактора Х. Чем больше значение коэффициента детерминации, тем теснее связь между признаками в построенной математической модели.

В программе Excel обозначается R-квадрат.

Исходя из данного критерия наиболее адекватной является модель уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

Б) Среднюю ошибку аппроксимации рассчитаем по формуле:

где числитель - сумма квадратов отклонения расчетных значений от фактических. В таблицах она находится в столбце SS, строке Остатки.

Среднее значение цены квартиры рассчитаем в Excel с помощью функции СРЗНАЧ. = 24,18182 млрд. руб.

При проведении экономических расчетов модель считается достаточно точной, если средняя ошибка аппроксимации меньше 5%, модель считается приемлемой, если средняя ошибка аппроксимации меньше 15%.

По данному критерию, наиболее адекватной является математическая модель для уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

В) Для проверки значимости модели регрессии используется F-тест. Для этого выполняется сравнение и критического (табличного)значений F-критерия Фишера.

Расчетные значения приведены в таблицах 1.4б (обозначены буквой F).

Табличное значение F-критерий Фишера рассчитаем в Excel с помощью функции FРАСПОБР. Вероятность возьмем равной 0,05. Получили: = 4,75

Расчетные значения F-критерий Фишера для каждого фактора сравним с табличным значением:

71,02 > = 4,75 модель по данному критерию адекватна.

Проанализировав данные по всем трем критериям, можно сделать вывод, что наиболее лучшей является математическая модель, построена для фактора валового регионального продукта, которая описана линейным уравнением

5. Для выбранной модели зависимости цены валового регионального продукта

осуществим прогнозирование среднего значения показателя при уровне значимости, если прогнозное значения фактора составит 80% от его максимального значения. Представим графически: фактические и модельные значения, точки прогноза.

Рассчитаем прогнозное значение Х, по условию оно составит 80% от максимального значения.

Рассчитаем Х max в Excel с помощью функции МАКС.

0,8 *52,8 = 42,24

Для получения прогнозных оценок зависимой переменной подставим полученное значение независимой переменной в линейное уравнение:

5,07+2,14*42,24 = 304,55 млрд. руб.

Определим доверительный интервал прогноза, который будет иметь следующие границы:

Для вычисления доверительного интервала для прогнозного значения рассчитываем величину отклонения от линии регрессии.

Для модели парной регрессии величина отклонения рассчитывается:

т.е. значение стандартной ошибки из таблицы 1.5а.

(Так как число степеней свободы равно единицы, то знаменатель будет равен n-2). корреляция парная регрессия прогноз

Для расчета коэффициента воспользуемся функцией Excel СТЬЮДРАСПОБР, вероятность возьмем равную 0,1, число степеней свободы 38.

Значение рассчитаем с помощью Excel, получим 12294.


Определим верхнюю и нижнюю границы интервала.

  • 304,55+27,472= 332,022
  • 304,55-27,472= 277,078

Таким образом, прогнозное значение = 304,55 тыс.долл., будет находиться между нижней границей, равной 277,078 тыс.долл. и верхней границей, равной 332,022 млдр. Руб.

Фактические и модельные значения, точки прогноза представлены графически на рисунке 1.2.


Рисунок 1.2

6. Используя пошаговую множественную регрессию (метод исключения), построим модель формирования цены валового регионального продукта за счёт значимых факторов

Для построения множественной регрессии воспользуемся функцией Регрессия программы Excel, включив в нее все факторы. В результате получаем результативные таблицы, из которых нам необходим t-критерий Стьюдента.

Таблица 1.8а

Таблица 1.8б

Таблица 1.8в.

Получаем модель вида:

Поскольку < (4,75 < 71,024), уравнение регрессии следует признать адекватным.

Выберем наименьшее по модулю значение t-критерия Стьюдента, оно равно 8,427, сравниваем его с табличным значением, которые рассчитываем в Excel, уровень значимости берем равным 0,10, число степеней свободы n-m-1=12-4=8: =1,8595

Поскольку 8,427>1,8595 модель следует признать адекватной.

7. Для оценки значимого фактора полученной математической модели, рассчитаем коэффициенты эластичности, и - коэффициенты

Коэффициент эластичности показывает, насколько процентов изменится результативный признак при изменении факторного признака на 1%:

Э X4 = 2,137 *(10,69/24,182) = 0,94%

То есть с ростом инвестиции в основной капитал 1% стоимость в среднем возрастает на 0,94%.

Коэффициент показывает на какую часть величины среднего квадратического отклонения меняется среднее значение зависимой переменной с изменением независимой переменной на одно среднеквадратическое отклонение.

2,137* (14.736/33,632) = 0,936.

Данные средних квадратических отклонений взяты из таблиц, полученных с помощью инструменты Описательная статистика.

Таблица 1.11 Описательная статистика (Y)

Таблица 1.12 Описательная статистика (Х4)

Коэффициент определяет долю влияния фактора в суммарном влиянии всех факторов:

Для расчета коэффициентов парной корреляции вычисляем матрицу парных коэффициентов корреляции в программе Excel с помощью инструмента Корреляция настройки Анализа данных.

Таблица 1.14

(0,93633*0,93626) / 0,87 = 1,00.

Вывод: Из полученных расчетов можно сделать вывод, что результативный признак Y (валовой региональный продукт) имеет большую зависимость от фактора X1 (инвестиции в основной капитал) (на 100%).

Список литературы

  • 1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. Учебное пособие. 2-е изд. - М.: Дело, 1998. - с. 69 - 74.
  • 2. Практикум по эконометрике: Учебное пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др. 2002. - с. 49 - 105.
  • 3. Доугерти К. Введение в эконометрику: Пер. с англ. - М.: ИНФРА-М, 1999. - XIV, с. 262 - 285.
  • 4. Айвызян С.А., Михтирян В.С. Прикладная математика и основы эконометрики. -1998., с 115-147 .
  • 5. Кремер Н.Ш., Путко Б.А. Эконометрика. -2007. с 175-251.
y x (1) x (2) x (3) x (4) x (5)
y 1.00 0.43 0.37 0.40 0.58 0.33
x (1) 0.43 1.00 0.85 0.98 0.11 0.34
x (2) 0.37 0.85 1.00 0.88 0.03 0.46
x (3) 0.40 0.98 0.88 1.00 0.03 0.28
x (4) 0.58 0.11 0.03 0.03 1.00 0.57
x (5) 0.33 0.34 0.46 0.28 0.57 1.00

Анализ матрицы парных коэффициентов корреляции показывает, что результативный показатель наиболее тесно связан с показателем x (4) - количество удобрений, расходуемых на 1 га ().

В то же время связь между признаками-аргументами достаточно тесная. Так, существует практически функциональная связь между числом колесных тракторов (x (1)) и числом орудий поверхностной обработки почвы .

О наличии мультиколлинеарности свидетельствуют также коэффициенты корреляции и . Учитывая тесную взаимосвязь показателей x (1) , x (2) и x (3) , в регрессионную модель урожайности может войти лишь один из них.

Чтобы продемонстрировать отрицательное влияние мультиколлинеарности, рассмотрим регрессионную модель урожайности, включив в нее все исходные показатели:

F набл = 121.

В скобках указаны значения исправленных оценок среднеквадратических отклонений оценок коэффициентов уравнения .

Под уравнением регрессии представлены следующие его параметры адекватности: множественный коэффициент детерминации ; исправленная оценка остаточной дисперсии , средняя относительная ошибка аппроксимации и расчетное значение -критерия F набл = 121.

Уравнение регрессии значимо, т.к. F набл = 121 > F kp = 2,85 найденного по таблице F -распределения при a=0,05; n 1 =6 и n 2 =14.

Из этого следует, что Q¹0, т.е. и хотя бы один из коэффициентов уравнения q j (j = 0, 1, 2, ..., 5) не равен нулю.

Для проверки гипотезы о значимости отдельных коэффициентов регрессии H0: q j =0, где j =1,2,3,4,5, сравнивают критическое значение t kp = 2,14, найденное по таблице t -распределения при уровне значимости a=2Q =0,05 и числе степеней свободы n=14, с расчетным значением . Из уравнения следует, что статистически значимым является коэффициент регрессии только при x (4) , так как ½t 4 ½=2,90 > t kp =2,14.



Не поддаются экономической интерпретации отрицательные знаки коэффициентов регрессии при x (1) и x (5) . Из отрицательных значений коэффициентов следует, что повышение насыщенности сельского хозяйства колесными тракторами (x (1)) и средствами оздоровления растений (x (5)) отрицательно сказывается на урожайности. Таким образом, полученное уравнение регрессии неприемлемо.

Для получения уравнения регрессии со значимыми коэффициентами используем пошаговый алгоритм регрессионного анализа. Первоначально используем пошаговый алгоритм с исключением переменных.

Исключим из модели переменную x (1) , которой соответствует минимальное по абсолютной величине значение ½t 1 ½=0,01. Для оставшихся переменных вновь построим уравнение регрессии:

Полученное уравнение значимо, т.к. F набл = 155 > F kp = 2,90, найденного при уровне значимости a=0,05 и числах степеней свободы n 1 =5 и n 2 =15 по таблице F -распределения, т.е. вектор q¹0. Однако в уравнении значим только коэффициент регрессии при x (4) . Расчетные значения ½t j ½ для остальных коэффициентов меньше t кр = 2,131, найденного по таблице t -распределения при a=2Q =0,05 и n=15.

Исключив из модели переменную x (3) , которой соответствует минимальное значение t 3 =0,35 и получим уравнение регрессии:

(2.9)

В полученном уравнении статистически не значим и экономически не интерпретируем коэффициент при x (5) . Исключив x (5) получим уравнение регрессии:

(2.10)

Мы получили значимое уравнение регрессии со значимыми и интерпретируемыми коэффициентами.

Однако полученное уравнение является не единственно “хорошей” и не “самой лучшей” моделью урожайности в нашем примере.

Покажем, что в условии мультиколлинеарности пошаговый алгоритм с включением переменных является более эффективным. На первом шаге в модель урожайности y входит переменная x (4) , имеющая самый высокий коэффициент корреляции с y , объясняемой переменной -r (y , x (4))=0,58. На втором шаге, включая уравнение наряду с x (4) переменные x (1) или x (3) , мы получим модели, которые по экономическим соображениям и статистическим характеристикам превосходят (2.10):

(2.11)

(2.12)

Включение в уравнение любой из трех оставшихся переменных ухудшает его свойства. Смотри, например, уравнение (2.9).

Таким образом, мы имеем три “хороших” модели урожайности, из которых нужно выбрать по экономическим и статистическим соображениям одну.

По статистическим критериям наиболее адекватна модель (2.11). Ей соответствуют минимальные значения остаточной дисперсии =2,26 и средней относительной ошибки аппроксимации и наибольшие значения и F набл = 273.

Несколько худшие показатели адекватности имеет модель (2.12), а затем - модель (2.10).

Будем теперь выбирать наилучшую из моделей (2.11) и (2.12). Эти модели отличаются друг от друга переменными x (1) и x (3) . Однако в моделях урожайностей переменная x (1) (число колесных тракторов на 100 га) более предпочтительна, чем переменная x (3) (число орудий поверхностной обработки почвы на 100 га), которая является в некоторой степени вторичной (или производной от x (1)).

В этой связи из экономических соображений предпочтение следует отдать модели (2.12). Таким образом, после реализации алгоритма пошагового регрессионного анализа с включением переменных и учета того, что в уравнение должна войти только одна из трех связанных переменных (x (1) , x (2) или x (3)) выбираем окончательное уравнение регрессии:

Уравнение значимо при a=0,05, т.к. F набл = 266 > F kp = 3,20, найденного по таблице F -распределения при a=Q =0,05; n 1 =3 и n 2 =17. Значимы и все коэффициенты регрессии и в уравнении ½t j ½>t kp (a=2Q =0,05; n=17)=2,11. Коэффициент регрессии q 1 следует признать значимым (q 1 ¹0) из экономических соображений, при этом t 1 =2,09 лишь незначительно меньше t kp = 2,11.

Из уравнения регрессии следует, что увеличение на единицу числа тракторов на 100 га пашни (при фиксированном значении x (4)) приводит к росту урожайности зерновых в среднем на 0,345 ц/га.

Приближенный расчет коэффициентов эластичности э 1 »0,068 и э 2 »0,161 показывает, что при увеличении показателей x (1) и x (4) на 1% урожайность зерновых повышается в среднем соответственно на 0,068% и 0,161%.

Множественный коэффициент детерминации свидетельствует о том, что только 46,9% вариации урожайности объясняется вошедшими в модель показателями (x (1) и x (4)), то есть насыщенностью растениеводства тракторами и удобрениями. Остальная часть вариации обусловлена действием неучтенных факторов (x (2) , x (3) , x (5) , погодные условия и др.). Средняя относительная ошибка аппроксимации характеризует адекватность модели, так же как и величина остаточной дисперсии . При интерпретации уравнения регрессии интерес представляют значения относительных ошибок аппроксимации . Напомним, что - модельное значение результативного показателя, характеризует среднее для совокупности рассматриваемых районов значение урожайности при условии, что значения объясняющих переменных x (1) и x (4) зафиксированы на одном и том же уровне, а именно x (1) = x i (1) и x (4) = x i (4) . Тогда по значениям d i можно сопоставлять районы по урожайности. Районы, которым соответствуют значения d i >0, имеют урожайность выше среднего, а d i <0 - ниже среднего.

В нашем примере, по урожайности наиболее эффективно растениеводство ведется в районе, которому соответствует d 7 =28%, где урожайность на 28% выше средней по региону, и наименее эффективно - в районе с d 20 =-27,3%.


Задачи и упражнения

2.1. Из генеральной совокупности (y , x (1) , ..., x (p)), где y имеет нормальный закон распределения с условным математическим ожиданием и дисперсией s 2 , взята случайная выборка объемом n , и пусть (y i , x i (1) , ..., x i (p)) - результат i -го наблюдения (i =1, 2, ..., n ). Определить: а) математическое ожидание МНК-оценки вектора q ; б) ковариационную матрицу МНК-оценки вектора q ; в) математическое ожидание оценки .

2.2. По условию задачи 2.1 найти математическое ожидание суммы квадратов отклонений, обусловленных регрессией, т.е. EQ R , где

.

2.3. По условию задачи 2.1 определить математическое ожидание суммы квадратов отклонений, обусловленных остаточной вариацией относительно линий регрессии, т.е. EQ ост, где

2.4. Доказать, что при выполнении гипотезы Н 0: q=0 статистика

имеет F-распределение с числами степеней свободы n 1 =p+1 и n 2 =n-p-1.

2.5. Доказать, что при выполнении гипотезы Н 0: q j =0 статистика имеет t-распределение с числом степеней свободы n=n-p-1.

2.6. На основании данных (табл.2.3) о зависимости усушки кормового хлеба (y ) от продолжительности хранения (x ) найти точечную оценку условного математического ожидания в предположении, что генеральное уравнение регрессии - линейное.

Таблица 2.3.

Требуется: а) найти оценки и остаточной дисперсии s 2 в предположении, что генеральное уравнение регрессии имеет вид ; б) проверить при a=0,05 значимость уравнения регрессии, т.е. гипотезу Н 0: q=0; в) с надежностью g=0,9 определить интервальные оценки параметров q 0 , q 1 ; г) с надежностью g=0,95 определить интервальную оценку условного математического ожидания при х 0 =6; д) определить при g=0,95 доверительный интервал предсказания в точке х =12.

2.7. На основании данных о динамике темпов прироста курса акций за 5 месяцев, приведенных в табл. 2.4.

Таблица 2.4.

месяцы (x )
y (%)

и предположения, что генеральное уравнение регрессии имеет вид , требуется: а) определить оценки и параметров уравнения регрессии и остаточной дисперсии s 2 ; б) проверить при a=0,01 значимость коэффициента регрессии, т.е. гипотезы H 0: q 1 =0;

в) с надежностью g=0,95 найти интервальные оценки параметров q 0 и q 1 ; г) с надежностью g=0,9 установить интервальную оценку условного математического ожидания при x 0 =4; д) определить при g=0,9 доверительный интервал предсказания в точке x =5.

2.8. Результаты исследования динамики привеса молодняка приведены в табл.2.5.

Таблица 2.5.

Предполагая, что генеральное уравнение регрессии - линейное, требуется: а) определить оценки и параметров уравнения регрессии и остаточной дисперсии s 2 ; б) проверить при a=0,05 значимость уравнения регрессии, т.е. гипотезы H 0: q=0;

в) с надежностью g=0,8 найти интервальные оценки параметров q 0 и q 1 ; г) с надежностью g=0,98 определить и сравнить интервальные оценки условного математического ожидания при x 0 =3 и x 1 =6;

д) определить при g=0,98 доверительный интервал предсказания в точке x =8.

2.9. Себестоимость (y ) одного экземпляра книги в зависимости от тиража (x ) (тыс.экз.) характеризуется данными, собранными издательством (табл.2.6). Определить МНК-оценки и параметров уравнения регрессии гиперболического вида , с надежностью g=0,9 построить доверительные интервалы для параметров q 0 и q 1 , а также условного математического ожидания при x =10.

Таблица 2.6.

Определить оценки и параметров уравнения регрессии вида , проверить при a=0,05 гипотезу Н 0: q 1 =0 и построить с надежностью g=0,9 доверительные интервалы для параметров q 0 и q 1 и условного математического ожидания при x =20.

2.11. В табл. 2.8 представленные данные о темпах прироста (%) следующих макроэкономических показателей n =10 развитых стран мира за 1992г.: ВНП - x (1) , промышленного производства - x (2) , индекса цен - x (3) .

Таблица 2.8.

Страны x и параметров уравнения регрессии, оценку остаточной дисперсии; б) проверить при a=0,05 значимость коэффициента регрессии, т.е. Н 0: q 1 =0; в) с надежностью g=0,9 найти интервальные оценки q 0 и q 1 ; г) найти при g=0,95 доверительный интервал для в точке х 0 =х i , где i =5; д) сравнить статистические характеристики уравнений регрессий: 1, 2 и 3.

2.12. Задачу 2.11 решить, приняв за объясняемую величину (у ) показатель x (1) , а за объясняющую (х ) переменную x (3) .

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник. М., ЮНИТИ, 1998 (2-е издание 2001);

2. Айвазян С.А., Мхитарян В.С. Прикладная статистика в задачах и упражнениях: Учебник. М. ЮНИТИ – ДАНА, 2001;

3. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. М., Финансы и статистика, 1985, 487с.;

4. Айвазян С.А., Бухштабер В. М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерностей. М., Финансы и статисика, 1989, 607с.;

5. Джонстон Дж. Эконометрические методы, М.: Статистика, 1980, 446с.;

6. Дубров А.В., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. М., Финансы и статистика, 2000;

7. Мхитарян В.С., Трошин Л.И. Исследование зависимостей методами корреляции и регрессии. М., МЭСИ, 1995, 120с.;

8. Мхитарян В.С., Дубров А.М., Трошин Л.И. Многомерные статистические методы в экономике. М., МЭСИ, 1995, 149с.;

9. Дубров А.М., Мхитарян В.С., Трошин Л.И. Математическая статистика для бизнесменов и менеджеров. М., МЭСИ, 2000, 140с.;

10. Лукашин Ю.И. Регрессионные и адаптивные методы прогнозирования: Учебное пособие, М., МЭСИ, 1997.

11. Лукашин Ю.И. Адаптивные методы краткосрочного прогнозирования. ‑ М., Статистика, 1979.


ПРИЛОЖЕНИЯ


Приложение 1 . Варианты заданий для самостоятельных компьютерных исследований.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека