Свободные нуклеотиды: цамф и цгмф, атф, адф, фад, над. Строение, функции

Фермент Белковая часть (апофермент) Небелковая часть (кофактор) неорганический ион коферменты простетические группы апофермент + кофактор = голофермент

Роль кофакторов могут играть различные вещества - от простых неорганических ионов до сложных органических молекул; в одних случаях они остаются неизменными в конце реакции, в других - регенерируют в результате того или иного последующего процесса.

Если кофактор представлен в виде органической молекулы (некоторые из таких молекул близки к витаминам), то последняя может быть прочно связана с ферментом (в этом случае ее называют простетической группой) или слабо с ним связана (и тогда ее называют коферментом).

Неорганические ионы (активаторы ферментов)

Ионы заставляют молекулы фермента или субстрата принять форму, способствующую образованию E-S-комплекса. Тем самым увеличиваются шансы на то, что фермент и субстрат действительно прореагируют друг с другом, а следовательно, возрастает и скорость реакции, катализируемой данным ферментом.

Пример. Активность амилазы слюны повышается в присутствии хлорид-ионов.

Простетические группы (фад, фмн, биотин, гем)

Данная органическая молекула занимает такое положение, в котором она может эффективно содействовать каталитической функции своего фермента.

Пример 1. Флавинадениндинуклеотид (ФАД) содержит рибофлавин (витамин B 2), который является водород акцепторной частью его молекулы. Функция ФАД связана с окислительными путями клетки, в частности с процессом дыхания, в котором ФАД играет роль одного из переносчиков в дыхательной цепи:

Конечный результат: 2H переносятся к A и B. В качестве связующего звена между A и B действует голофермент.

Рис. 8 Витамин как компонент простетической группы (представлена структура ФАД - флавинаденин динуклеотид).

Пример 2. Гем - это железосодержащая простетическая группа. Его молекула имеет форму плоского кольца, в в центре которого находится атом железа (порфириновое кольцо, такое же, как у хлорофилла). Гем выполняет в организме ряд биологически важных функций. Перенос электронов. В качестве простетической группы цитохромов гем выступает как переносчик электронов. Присоединяя электроны, железо восстанавливается до Fe(II), а отдавая их, окисляется до Fe(III). Гем, следовательно, принимает участие в окислительно-восстановительных реакциях за счет обратимых изменений валентности железа. Перенос кислорода. Гемоглобин и миоглобин - два гемсодержащих белка, осуществляющих перенос кислорода. Железо находится в них в восстановленной форме. Каталитическая функция. Гем входит в состав каталаз и пероксидаз, катализирующих расщепление перекиси водорода и воды.

Коферменты (над, надф, кофермент а, атф)

Пример. Никотинамидадениндинуклеотид (НАД), производная никотиновой кислоты, может существовать как в окислительной, так и в восстановительной форме. В окислительной форме НАД при катализе играет роль акцептора водорода:

Здесь E 1 и E 2 - две различные дегидрогеназы. Конечный результат: 2H переносятся от A к B. Здесь в качестве связующего звена между двумя различными ферментными системами E 1 и E 2 действует кофермент.

Рис. 9 Витамин как компонент кофермента (представлены структуры НАД, НАДФ и АТФ).

НАДН – основа энергии и жизни


В обычном смысле биологическую жизнь можно определить как способность генерировать энергию внутри клетки. Эта энергия – макроэргические фосфатные связи химических веществ, синтезируемые в организме. Наиболее важными макроэргическими соединениями являются аденозинтрифосфат (АТФ), гуанозинтрифосфат (ГТФ), креатинфосфорная кислота, никотинамиддинуклеотид фосфат (НАД(Н) и НАДФ(Н)), фосфорилированные углеводы.



Никотинамид-аденин-динуклеотид (НАДН, NADН) – кофермент, присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Восстановленная форма (NADH) способна переносить их на другие вещества.




Как повысить работоспособность


Что такое NADH? Многие её называют “аббревиатурой жизни”. И это действительно так. NADH (коэнзим никотинамидадениндинуклеотид) содержится во всех живых клетках и является жизненно необходимым элементом, при помощи которого внутри клеток вырабатывается энергия. NADH участвует в выработке АТФ (АТР). НАД(Н), как универсальная молекула энергии, в отличие от АТФ, постоянно может разгружать митохондрии от избыточного накопления лактата в сторону образования из него пирувата, за счёт стимуляции пируватдегидрогеназного комплекса, который чувствительный именно к отношению НАД(Н)/НАД.



Синдром хронической усталости: фокус на митохондрии


Ряд клинических исследований показал эффективность препаратов НАДН при СХУ. Суточная доза составляла обычно 50 мг. Наиболее сильный эффект наступал после 2-4 недель лечения. Утомляемость снижалась на 37-52 %. Кроме того, улучшался такой объективный когнитивный параметр, как концентрация внимания.



НАДН в лечении синдрома хронической усталости


НАДН (кофермент витамина В3), присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Является резервным источником энергии в клетках. Он принимает участие практически во всех реакциях образования энергии, обеспечивая дыхание клеток. Воздействуя на соответствующие процессы в мозгу ко-фермент витамина В3, может предупреждать гибель нервных клеток при гипоксии или возрастных изменениях. Принимает участие в процессах детоксикации в печени. В последнее время установлено его свойство блокировать лактатдегидрогеназу и, тем самым, ограничивать ишемическое и/или гипоксическое повреждение миокарада. Исследования эффективности орального применения при лечении синдрома хронической усталости подтвердили его активизирующее влияние на состояние людей.



НАДН в спорте и медицине: обзор иностранной литературы


О НАДН (никотинамидадениндинуклеотидфосфате) мы писали в предыдущих статьях. Сейчас мы хотим предоставить информацию с англоязычных источников, о роли и значении этого вещества в обмене энергии в организме, его влиянии на нервную систему, и роли в развитии ряда патологических ситуаций и перспективах применения в медицине и спорте. (Скачать монографию о НАДН).



Herbalife Quickspark CoEnzyme 1 (NADH) ATP Energy

Natural Energy at a Cellular Level




Quickspark is a product of the company Herbalife. It is a stable form of Vitamin B3 CoEnzyme1. CoEnzyme1 was found in 1906 in Austria by a scientist called Professor George Birkmayer. CoEnzyme1 was developed for medical purposes and used in the second world war.



NADH (Enada)


Nicotinamide adenine dinucleotide (NADH) is a substance that helps the functionality of enzymes in the body. NADH plays a role in the production of energy and helps produce L-dopa, which the body turns into the neurotransmitter dopamine. NADH is being evaluated for many conditions and may be helpful for enhancing mental functionality and memory.

Циклический аденозинмонофосфат (цамф) - производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. Превращает ряд инертных белков в ферменты (цамф-зависимые протеинкиназы), под действием которых происходит ряд биохим. реакций (проведение нервного импульса).

Образование цАМФ стимулируется адреналином.

Циклический гуанозинмонофосфат (цГМФ ) - это циклическая форма нуклеотида, образующаяся из гуанозинтрифосфата (GTP) ферментом гуанилатциклазой. Образование стимулируется ацетилхолином.

· цГМФ вовлечен в регуляцию биохимических процессов в живых клетках в качестве вторичного посредника (вторичного мессенджера). Характерно, что многие эффекты цГМФ прямо противоположны цАМФ.

· цГМФ активирует G-киназу и фосфодиэстеразу, гидролизующую цАМФ.

· цГМФ принимает участизе в регуляции клеточного цикла. От соотношения цАМФ/цГМФ зависит выбор клетки: прекратить деление (остановиться в G0 фазе) или продолжить, перейдя в фазу G1.

· цГМФ стимулирует пролиферацию клеток (деление), а цАМФ подавляет

Аденозинтрифосфат (АТФ) - нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями. Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) и высвобождается порция энергии.

· Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

· АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

· АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата - вторичного посредника передачи в клетку гормонального сигнала.

· Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях

Аденозиндифосфат (АДФ) - нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ участвует в энергетическом обмене во всех живых организмах, из него образуется АТФ путём фосфорилирования:

АДФ + H3PO4 + энергия → АТФ + H2O.

Циклическое фосфорилирование АДФ и последующее использование АТФ в качестве источника энергии образуют процесс, составляющий суть энергетического обмена (катаболизма).

ФАД - флавинадениндинуклеотид - кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах - окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Никотинамидадениндинуклеотид (НАД) - динуклеотид, состоит из двух нуклеотидов, соединённых своими фосфатными группами. Один из нуклеотидов в качестве азотистого основания содержит аденин, другой - никотинамид. Никотинамидадениндинуклеотид существует в двух формах: окисленной (NAD) и восстановленной (NADH).

· В метаболизме NAD задействован в окислительно-восстановительных реакциях, перенося электроны из одной реакции в другую. Таким образом, в клетках NAD находится в двух функциональных состояниях: его окисленная форма, NAD+, является окислителем и забирает электроны от другой молекулы, восстанавливаясь в NADH, который далее служит восстановителем и отдаёт электроны.

· 1. Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

· при синтезе и окислении жирных кислот,

· при синтезе холестерола,

· обмена глутаминовой кислоты и других аминокислот,

· обмена углеводов: пентозофосфатный путь, гликолиз,

· окислительного декарбоксилирования пировиноградной кислоты,

· цикла трикарбоновых кислот.

· 2. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

· 3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

· 4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

НАД, NAD -- кофермент, присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Восстановленная форма (NADH) способна переносить их на другие вещества.

Представляет собой динуклеотид, молекула которого построена из амида никотиновой кислоты и аденина, соединённых между собой цепочкой, состоящей из двух остатков D-рибозы и двух остатков фосфорной кислоты; применяется в клинической биохимии при определении активности ферментов крови.

Рис. 12.

НАДФ, NADP -- широко распространённый в природе кофермент некоторых дегидрогеназ -- ферментов, катализирующих окислительно-восстановительные реакции в живых клетках. NADP принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества. В хлоропластах растительных клеток NADP восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях. NADP, -- кофермент, отличающийся от NAD содержанием ещё одного остатка фосфорной кислоты, присоединённого к гидроксилу одного из остатков D-рибозы, обнаружен во всех типах клеток.

Рис. 13.

ФАД, FAD -- кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. FAD существует в двух формах -- окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Рис. 14.

Кофермент А (коэнзим А, КоА, СоА, HSKoA) -- кофермент ацетилирования; один из важнейших коферментов, принимающий участие в реакциях переноса ацильных групп при синтезе и окислении жирных кислот и окислении пирувата в цикле лимонной кислоты.

Молекула КоА состоит из остатка адениловой кислоты (1), связанной пирофосфатной группой (2) с остатком пантотеновой кислоты (3), которая в свою очередь связанна пептидной связью с аминокислотой в-аланином (4) (эти две группы представляют собой остаток пантотеновой кислоты), соединённой пептидной связью с остатком в-меркаптоэтаноламина (5).


Недостаточное содержание в пище никотиновой кислоты (рис. 10-6) вызывает у людей заболевание, которое называется пеллагрой (от итальянского слова, означающего «шершавая кожа»). Пеллагра распространена во многих районах мира, где люди питаются в основном кукурузой и едят мало мяса, молока и яиц. В целях профилактики и лечения пеллагры можно использовать как никотиновую кислоту, так и ее амидникотинамид. Чтобы кому-нибудь не пришла в голову мысль о возможности употребления в пищу табака как источника этого витамина, никотиновой кислоте было дано другое (условное) название - ниацин.

Никотинамид-компонент двух близких по структуре коферментов-никотинамидадениндинуклеотида (NAD) и никотинамидадениндинуклеотид фосфата (NADP). Строение этих коферментов показано на рис. 10-6. NADP отличается от NAD наличием в молекуле фосфатной группы. Эти коферменты могут находиться как в окисленной так и в восстановленной (NADH и NADPH) формах. Никотинамидный компонент этих коферментов играет роль промежуточного переносчика гидрид-иона, который ферментативно отщепляется от молекулы субстрата под действием специфических дегидрогеназ (рис. 10-7). В качестве примера можно привести реакцию, катализируемую малатдегидрогеназой, которая дегидрирует малат, превращая его в оксалоацетат; эта реакция представляет собой один из этапов окисления углеводов и жирных кислот. Малатдегидрогеназа катализирует также обратимый перенос гидрид-иона от малата к в результате чего образуется NADH; второй атом водорода отщепляется от гидроксильной группы молекулы малата в виде свободного иона

Известно большое число дегидрогеназ такого типа, из которых каждая обладает специфичностью по отношению к какому-нибудь определенному субстрату. Одни из этих ферментов используют в качестве кофермента другие - а третьи могут функционировать с любым из этих двух коферментов.

Рис. 10-7. Общее уравнение, показывающее, как действует в качестве кофермента в реакциях ферментативного дегидрирования. Молекула субстрата и продукты реакции выделены красным цветом. Изображена только иикотинамидная часть молекулы остальная же ее часть обозначена буквой R.

У большинства дегидрогеназ NAD (или NADP) связывается с белковой частью фермента только во время каталитического цикла, однако известны и такие ферменты, с которыми эти коферменты связаны очень прочно и постоянно присутствуют в активном центре.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека