Спонтанные мутации примеры. Индуцированные мутации

Мутации могут возникать спонтанно или в результате индуцирования. В селекционных программах могут использоваться оба типа наследственной изменчивости.

Имеющаяся у кукурузы огромная естественная изменчивость возникла вследствие спонтанных мутаций, происходивших в течение бесчисленных поколений в прошлом. Значительная часть селекционной работы по кукурузе основана на использовании спонтанных мутаций, имеющих хозяйственное значение. В их число входят мутации, изменяющие набор аминокислот, например opaque-2, floury-2, и мутации, изменяющие тип крахмала - waxy и sugary 2 и т. д. Хотя у кукурузы накоплено большое число спонтанных мутаций, они обычно появляются недостаточно часто для того, чтобы обеспечить количество и типы изменчивости, необходимые в селекционных программах. Поэтому при попытке получения высокой частоты благоприятных индуцированных мутаций используются различные мутагенные агенты.

Спонтанные и индуцированные хромосомные аберрации в основном одинаковы. Однако для селекционера из всех типов мутаций наибольшую ценность имеют истинные изменения молекулярной структуры или истинно генные мутации. Несмотря на тщательно проведенные эксперименты, абсолютно убедительных доказательств появления индуцированных истинно генных мутаций у кукурузы не обнаружено.

Меллер в Техасе и Стадлер в Миссури, первыми исследуя действие рентгеновского облучения на растениях и животных, установили, что частота мутирования может быть резко увеличена. У растений мутации индуцировались путем обработки пыльцы, молодых зародышей или семян. Обработка включала рентгеновские лучи, ультрафиолетовые лучи, радий, температуру, электричество, иприт, химические вещества, гамма-облучение и старение семян.

Мутабильные системы могут использоваться в качестве инструментов для селекции растений. Мутабильная система содержит подобный гену компонент или контролирующий элемент, который модифицирует и контролирует действие генов. Доллингер разработал метод, который позволяет использовать мутабильную систему для селекции растений. Мутации могут быть доминантными или рецессивными. Он обрисовал метод для отбора устойчивых к стеблевой гнили растений в сбзданных инбредных линиях кукурузы и предположил, что этот же общий метод может быть использован для изменения действия генов в локусах, контролирующих другие признаки.

Рассел и др. получили сравнимые величины скоростей мутирования в длительно инбридируемых линиях, полученных и поддерживаемых при непрерывном самоопылении и отборе. В каждой из шести групп исследований материал состоял из 31 потомства, представляющего пять размножаемых по дихотомической схеме поколений. Оценка скорости мутирования была 2,8 мутаций на 100 исследованных гамет.

Балинт и Сутка сообщили об индуцированных мутантах инбредных линий кукурузы. Об изменениях среди длительно инбридируемых линий кукурузы сообщали Флеминг и др., Флеминг, Эль-Эрьяни и Флеминг, Хиггс и Рассел, Гроген и Франсис. О фенотипической стабильности систематических серий генотипов кукурузы-сообщили Роу и Эндрю. Гибридная выраженность мутаций, влияющих на количественные признаки в инбредных линиях, обсуждалась Бушем и Расселом.

Селекционеры кукурузы исследовали большое количество комбинаций генных мутаций, влияющих на свойства семян. О фенотипах зерен с несколькими генными мутациями и их взаимодействии сообщали Крамер, Пфалер и Вистлер и Крич. Гарвуд и Крич описали фенотипы зерен кукурузы, несущих от одного до четырех мутантных генов.

Смит и фон Борстель сообщали об индуцированных и генетически созданных механизмах получения доминантных летальных мутаций и о путях их использования для уничтожения или регулирования популяций вредителей. В их статье обсуждаются:

1. Индуцированная радиацией доминантная летальность.

2. Создаваемая доминантная летальность.

3. Контроль популяции при помощи индуцированной доминантной летальности.

4. Контроль популяции посредством создаваемой доминантной летальности.

5. Контроль популяции на базе индуцированной наследственной стерильности.

6. Контроль популяции на основе искусственной наследственной частичной стерильности.

7. Рецессивные условно летальные мутации.

8. Доминантные условно летальные мутации.

9. Условно летальные мутации: генетическая «бомба замедленного действия».

10. Кинетика уменьшения популяции при помощи мужской стерильности.

11. Специальные проблемы и условия.

Индуцирование генетических изменений улучшается при совместном использовании двух факторов: чувствительности методов обнаружения и выявления и эффективного применения вызывающих мутации агентов или мутагенов.

Первые эксперименты показали, что частота индуцируемых мутаций сильно зависит от дозы облучения: чем выше доза, тем больше частота мутаций. Эта связь между облучением и мутированием была интерпретирована в том смысле, что ген является «мишенью», а его мутации вызываются отдельными «попаданиями» радиации. Существуют доказательства того, что только одна теория мишеней далее не может удовлетворительно-объяснять эффекты радиации.

Мутагенные агенты и интерпретацию их действия обсуждали Сперроу, Ауэрбах, Хаас, Доудни и Када.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Мутационная изменчивость является результатом мутаций.

Мутация (от лат. “mutazio” - изменение, перемена) –наследственное изменение генотипа (это изменение наследственного материала, приводящее к появлению новых признаков организма, способных передаваться последующему поколению. Термин “мутация” ввел в науку в 1901 г. Голландский генетик Г. де Фриз, описавший самопроизвольные мутации у растений. Мутации - это стойкие изменения затрагивающие как целые хромосомы, их части, отдельные гены. Чаще всего, мутации это мелкие, едва заметные отклонения от нормы.

Дарвин назвал наследственную изменчивость неопределенной (индивидуальной), подчеркивая ее случайный и относительно редкий характер.

Мутации являются источником генетического разнообразия, составляя резерв наследственной изменчивости.

Классификация мутаций

1. По характеру проявления:

проявления бывают доминантными и рецессивными . Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью - летальными.

2. По месту возникновения:

Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

3. По уровню возникновения:

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом. В зависимости от характера изменения числа хромосом различают:

  • Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

В зависимости от характера изменения числа хромосом различают:

Спонтанные мутации - возникают при нормальных условиях жизни, зависят от внешних и внутренних факторов, возникают в соматических и генеративных клетках.

Индуцированные мутации - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. Ученые полагают, что факт наследования мутаций вызывает определенные опасения, поскольку это может увеличить риск развития рака. Азиатов от алкоголизма защищает ген-мутант. Почему процент алкоголиков в азиатских странах значительно ниже, чем в странах, где основную часть населения составляет так называемое белое население.

Факторы среды, вызывающие появление мутаций называютсямутагенами .

Различают:

Физические мутагены

- ионизирующее и ультрафиолетовое излучение;

Чрезмерно высокая или низкая температура;

Химические мутагены

Нитраты, нитриты, пестициды, никотин, метанол, бензпирен.

Некоторые пищевые добавки, например, ароматические углеводороды;

Продукты переработки нефти;

Органические растворители;

Лекарственные препараты, препараты ртути, иммунодепрессанты.

Биологические мутагены

Некоторые вирусы (вирус кори, краснухи, гриппа)

Продукты обмена веществ (продукты окисления липидов);

Свойства мутации:

  • мутации наследственны, т.е. передаются из поколения в поколение.
  • мутации возникают внезапно (спонтанно), ненаправленно.
  • мутации не направлены – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  • одни и те же мутации могут возникать повторно.
  • мутации индивидуальны, т.е. возникают у отдельных особей.
  • мутации могут быть полезными,вредными, нейтральными; доминантными и рецессивными.

Значение мутаций

Служат резервом наследственной изменчивости (сохраняются в популяции в скрытом-рецессивном) виде, являются материалом для эволюции.

Причина многих наследственных заболеваний и уродств.

Индуцированные мутации “поставляют” материал для искусственного отбора и селекции.

МУТАГЕНЕЗ - процессы-реакции в генном аппарате биологического объекта, при которых происходят изменения в строении генов, передающиеся по наследству. Такие изменения могут затрагивать отдельные нуклеотиды или группы их, сопровождаясь в некоторых случаях изменениями в морфологии хромосом. Изменения уже одного нуклеотида, входящего в состав триплета, приводят к образованию иной аминокислоты, входящей в состав белка, и могут привести к изменению соответствующего признака.

Мутагенез можно условно делить на спонтанный , когда мутации возникают в "нормальных" условиях роста, и индуцированный вследствие применения физических или химических мутагенов.

Спонтанный мутагенез зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. При спонтанном мутагенезе могут происходить все типы наследственных перемен, которые наблюдаются при индуцированном мутагенезе: замена пар аденин-тимин или чаще гуанин-цитозин, ошибочное спаривание двух пуринов или двух пиримидинов, делеции, включения и другие изменения. Каждый биологический объект характеризуется определенным фоном спонтанных мутаций, которые с разной частотой затрагивают те или иные генетические признаки.

Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз - удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Мутации, индуцированные радиацией

Именно при исследовании радиационного мутагенеза была впервые показана возможность индуцировать мутации при действии факторов внешней среды.

Основы радиационной генетики были заложены работами Г.А.Надсона и Г.Т.Филиппова в 1925г. в опытах на плесневых и дрожжевых грибах.

Позже, в 1927г. Г.Д.Меллер, используя методы количественного учета мутаций у дрозофилы, обосновал факт мутагенного действия рентгеновских лучей.

В 1928г. Л.Д.Стадлер в опытах на ячмене и кукурузе показал, что ионизирующие излучения разных видов способны вызывать мутации.

В последующие два десятилетия происходило достаточно активное развитие классической радиационной генегики. Основные положения ее изложены в трудах Д.Ли, Д.Кэтчсайда, Н.В.Тимофеева-Ресовского, К.Г.Циммера, А.Хол-ландера, А.С.Серебровского, Н.П.Дубинина, Ядерные взрывы, прогремевшие в Хиросиме и Нагасаки, стимулировали бурное развитие работ по изучению влияния радиации на человека. Усилия ученых многих стран привели к разработке современных представлений о механизмах воздействия ионизирующих излучений. При этом основные закономерности воздействия ионизирующих излучении были вскрыты в исследованиях, проведенных на микроорганизмах, растениях и животных. Используя принципы экстраполяции, результаты, полученные на экспериментальных объектах, широко используют для оценки генетического риска облучения человека. Например, исследования, проведенные на мышах, в ходе которых изучали частоту индуцированных радиацией катаракт и скелетных аномалий, явились основой для расчета ожидаемой частоты индуцированных доминантных мутаций у человека.

Все радиобиологические эффекты, вызываемые ионизирующими излучениями у различных видов живых существ, могут быть подразделены на стохастические и нестохастические.

Стохастические эффекты характеризуются линейной беспороговой зависимостью вероятности их появления от дозы ионизирующего излучения. При этом от величины дозы зависит частота рассматриваемых событий, а не их тяжесть. К таким эффектам относятся генетические последствия облучения и радиационный канцерогенез.

Нестохастические эффекты имеют пороговую (сигмоидную) зависимость от дозы, причем с дозой связана как вероятность эффекта, так и его тяжесть. Примерами нестохастических эффектов являются: лучевая болезнь, сокращение продолжительности жизни, смертность, индуцированные радиацией пороки развития, поражение иммунной системы. Следует заметить, что механизмы возникновения стохастических и нестохастических эффектов совершенно различны, поэтому при оценке рисков появления этих эффектов в результате облучения недопустимо их объединение.

Сходство и различие спонтанных и индуцированных мутаций

В повреждающем действии радиации на генетический аппарат клетки есть несколько основных моментов, которые имеют важное значение для оценки последствий облучения.

Как показали многочисленные исследования, ионизирующие излучения вызывают все типы мутаций, свойственные спонтанному, мутационному процессу - точковые мутации, аберрации хромосом и генные мутации. Однако следует отметить, что не все типы спонтанных мутаций с одинаковой частотой увеличиваются под действием радиации.

Одним из фундаментальных предложений, на которых основаны оценки риска облучения человека, является допущение сходства спонтанных и индуцированных ионизирующими излучениями мутаций. Предполагая такое сходство, можно оценить вред, причиненный воздействием радиации, путем расчета, какую прибавку к спонтанному мутационному процессу дает мутагенез, вызванный облучением. Так производится определение дозы, удваивающей естественный мутационный процесс. Однако экспериментальные данные молекулярной генетики демонстрируют различия между спонтанными и индуцированными мутациями, вызывающими менделевские болезни. Остановимся на этом важном вопросе и рассмотрим различия между этими мутациями:

спонтанные мутации - это чаще всего точковые мутации и небольшие делеции;

индуцированные мутации - делеции, затрагивающие многие гены.

Спонтанные мутации могут вызывать как утрату, так и усиление функции генов, большинство же индуцированных мутаций вызывает потерю функции. Происхождение спонтанных мутаций связано с организацией генов, т.е. они сайт-специфичны.

Ииндуцированные мутации происходят в результате случайного попадания энергии излучения в генетический материал и могут затрагивать несколько генов, имеющих разное значение для выживаемости организма.

Из этих различий между спонтанными и индуцированными мутациями следует важное следствие: вероятность того, что радиация приведет к возникновению мутаций, обладающих такой же специфичностью, какой обладают спонтанные мутации, очень мала. Другими словами, спектры спонтанных и индуцированных радиацией мутаций, как следует из молекулярно-генетических исследований, существенно различаются.

Ионизирующие излучения в основном индуцируют микроделеции, поэтому важно проанализировать, какими проявлениями на уровне фенотипа человека сопровождаются такие микроделеционные изменения. Поскольку данные о микроделеционных синдромах, связанных с воздействием ионизирующих излучений на человека, отсутствуют, рассмотрим, к каким последствиям для здоровья человека приводят спонтанные синдромы, связанные с микроделециями. Таких синдромов в настоящее время известно около 30. Все они связаны с микроделециями в разных хромосомах и обычно сопровождаются потерей функции нескольких генов. Фенотипы носителей таких микроделеции зависят от участков хромосом, затронутых микроделециями (например, хромосомы 19 и 22 изобилуют генами, а хромосомы 4 и 13 генами обеднены), но тем не менее разные делеции имеют ряд общих признаков - они вызывают многочисленные нарушения развития, умственную отсталость, замедленный рост, дисморфные черты лица. Очевидно, такие же изменения в фенотипе человека будут вызывать микроделеции, возникающие в результате радиационного воздействия. Основной особенностью таких микроделеционных фенотипов является несходное с фенотипами большинства спонтанных мутаций, нечеткое, неясное их проявление.

Различия в клинических фенотипах спонтанных и индуцированных ионизирующими излучениями мутаций имеют принципиальное значение для оценки риска облучения человека. Дело в том, что при изучении последствий воздействия ионизирующих излучений на популяции человека обычно проводят анализ социально значимых отклонений от нормы, которое традиционно связывают с отклонениями, подобными фенотипическим проявлениям спонтанных мутаций. Изменения же, связанные с микроделеционными синдромами, практически остаются вне поля зрения исследователей в силу их нечеткого проявления. Таким образом, большая часть фенотипических отклонений, связанных с микроделециями, индуцированными ионизирующими излучениями, практически составляют не учтенный пока компонент генетического риска облучения популяций человека.

Мутации (от латинского mutatio – перемена) – это изменение генов и хромосом, проявляющееся в изменении свойств и признаков организмов. Описал их в 1901 году голландский учёный Де Фриз. Он же заложил основы и теории мутаций. Процесс образования мутаций во времени и пространстве называется мутагенез . Вещества, вызывающие мутации в клетках — мутагены.

В зависимости от происхождения различают спонтанные и индуцированные мутации.

Генеративные и соматические мутации.

Мутации могут возникать на всех стадиях развития организма и поражать гены и хромосомы как в половых клетках, так и в соматических. Поэтому по типу клеток различают генеративные и соматические мутации . Генеративные мутации происходят в половых клетках и в этом случае передаются следующим поколениям. Соматические мутации происходят в любых других соматических клетках организма; они провоцируют рак, нарушают иммунную систему, уменьшают продолжительность жизни. Соматические мутации не передаются по наследству. Большая часть канцерогенных веществ вызывает мутации в соматических клетках.

Спонтанные и индуцированные мутации.

Спонтанные мутации (самопроизвольное изменение в совокупности генов организма данного вида) – те мутации, которые возникают у организмов в нормальных природных условиях без видимых причин; они возникают как ошибки при воспроизведении генетического материала, поскольку редупликация не происходит с абсолютной точностью. Длительное время считалось, что спонтанные мутации являются беспричинными. Сейчас же пришли к выводу, что они являются результатом естественных процессов, протекающих в клетках. Они возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов в клетках организмов. Спонтанная мутация может возникнуть в любой период индивидуального развития и поразить любую хромосому или ген. Частота встречаемости спонтанных мутаций, например, 1:100000.

Индуцированные мутации возникают в результате действия мутагенов, нарушающих процессы, происходящие в клетке.

Если сравнить частоту спонтанных и индуцированных мутаций клеток организмов при обработке мутагеном и без него, то очевидно, что если частота мутаций повышается в 100 раз в результате воздействия мутагена, то одна мутация будет спонтанная, остальные индуцированные.

Факторы мутагенеза.

В зависимости от локализации в клетке различают генные и хромосомные мутации . Генные, или точечные, мутации заключаются в изменении индивидуальных генов (выпадение, вставка или замена одной пары нуклеотидов. Хромосомные мутации бывают нескольких видов и затрагивают:

    изменение структуры хромосом (крупные перестройки в отдельных фрагментах ДНК):

Делеции (выпадение числа нуклеотидов);

Дупликации (повторение фрагментов ДНК, в результате чего происходит её удлинение);

Инверсии (поворот участка хромосом на 180 0);

Транслокации (перенос участка хромосомы в новое положение в той или уже другой хромосоме).

Мутации, поражающие структуру хромосом, называют хромосомными перестройками , или аберрациями.

    изменение количества хромосом:

Полиплоидия (увеличение кратного набора хромосом);

Гаплоидия (уменьшение всего набора хромосом);

Анеуплоидия (нарушение нормального количества хромосом из-за добавления или удаления одной или более хромосом).

Мутации, затрагивающие изменение числа хромосом в клетках организма, называются геномными . Геном – совокупность генов организма данного вида.

Мутационные процессы происходят не только у человека, но и у животных и растений. Поэтому мы рассматриваем общие закономерности. Хромосомные аберрации встречаются у растений, животных и человека. Ведут к нарушению здоровья. Полиплоидия встречается чаще у растений, у животных и человека – редка (число хромосом может увеличиваться в 3, 4, 5 раз). Гаплоидия встречается также в основном у растений (около 800 видов растений имеют гаплоиды), у животных — очень редка, у человека неизвестна. Анеуплоидия часто встречается у растений, у животных и у человека. Делеции – наиболее частые и опасные формы повреждения хромосом для человека. Некоторые дупликации вредны и даже летальны. Повтор сегмента хромосомы может быть малым, касаясь одиночного гена, или большим, затрагивая большое количество генов. Могут быть и безвредные дупликации. Транслокации происходят в результате разрыва хромосом. Могут иметь размеры от небольших до значительных.

Мутации могут оказаться незамеченными, если они затронули второстепенные участки наследственных структур, но могут приводить к серьёзным расстройствам, вплоть до гибели организма.

Возникшие повреждения в ДНК не обязательно реализуются в мутации. Они могут бесследно исчезнуть, благодаря существующей в клетке эффективной системе восстановления генетических повреждений (репарации). Проявление мутантного гена может быть подавлено действием другого гена. В этом случае мутантный ген может передаваться из поколения в поколение и проявиться только в случае, когда в зародышевой клетке встретятся два идентичных мутантных гена. Некоторые мутации проявляются только в определённых условиях существования. Например, при определённой температуре культивирования мутантных микроорганизмов.


Индуцированный мутагенез – это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов.

Одним из примеров воздействия мутагенов на человека может служить эндомитоз –удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Роль генотипа и внешней среды в проявлении признаков.

Первоначально развитие генетики сопровождалось представлением о фатальности влияния наследственности на структуру, функцию и психологические признаки человека.

Однако уже с конца XIX века многие исследователи отмечали, что свойства любого организма могут меняться под воздействием условий внешней среды. Еще в 1934 г. профессор С.Н. Давиденков опубликовал работу "Проблемы полиморфизма наследственных болезней нервной системы", в которой он подчеркивал, что вариабельность течения этих заболеваний может быть вызвана влиянием как других генов, так и внешней среды. Даже синтез одного белка является сложным и многоэтапным процессом, который регулируется на всех стадиях (транскрипции, процессинга, транспорта РНК из ядра, трансляции, формирования вторичной, третичной и четвертичной структур). Кроме того, время, количество, скорость и место его образования определяются множеством различных генетических и средовых факторов. Целостный организм, включающий большое количество разнообразных белков, функционирует как единая система, в которой развитие одних структур зависит от функции других и необходимости приспособления к меняющимся условиям внешней среды.

Так, например, патологические изменения гена контролирующего фермент фенилаланингидроксилазу, приводят к нарушению обмена аминокислоты фейилаланина. В результате поступающий с белком пищевых продуктов фенилаланин накапливается в организме человека, являющегося гомозиготой по аномальному гену, что вызывает поражение нервной системы. Но специальная диета, ограничивающая поступление с пищей этой аминокислоты, обеспечивает ребенку нормальное развитие. Таким образом, фактор внешней среды (в данном случае диета) меняет фенотипическое действие гена, в которых существует организм человека, могут модифицировать детерминированные признаки. Например, рост ребенка контролируется целым рядом пар нормальных генов, регулирующих обмен гормонов, минералов, пищеварение и т.д. Но даже если изначально генетически определен высокий рост, а человек живет в плохих условиях (недостаток солнца, воздуха, неполноценное питание), то это приводит к низкорослости. Уровень интеллекта будет выше у человека, получившего хорошее образование, нежели у ребенка, который воспитывался в плохих социальных условиях и не мог учиться.

Таким образом, развитие любого организма зависит и от генотипа, и от факторов внешней среды. Это означает, что аналогичный у двух особей генотип не обеспечивает однозначно одинаковый фенотип, если эти индивиды развиваются в разных условиях.

Только генотип или только факторы внешней среды не могут определить формирование фенотипическнх характеристик какого-либо признака. Так, например, нельзя определить уровень интеллекта человека, не контактировавшего с факторами внешней среды - таких людей нет.

Важной задачей генетики является уточнение роли наследственных и внешнесредовых факторов в формировании того или иного признака. Фактически необходимо оценить степень обусловленности количественных характеристик организма генетической изменчивостью (т.е. генетическими различиями между особями) или средовой изменчивостью (т.е. различиями внешних факторов). Для количественной оценки этих воздействий американский генетик Дж. Лаш ввел термин "наследуемость".

Наследуемость отражает вклад генетических факторов в фенотипическое проявление конкретного признака. Этот показатель может иметь значение в интервале от 0 до 1 (0-100%). Чем ниже уровень наследуемости, тем меньше роль генотипа в изменчивости данного признака. Если наследуемость приближается к 100%, то фенотипическая изменчивость признака почти полностью определяется наследственными факторами.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека