Ряды распределения. Атрибутные и вариационные ряды распределения

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существуют три формы вариационного ряда: ранжированный ряд, дискретный ряд, интервальный ряд. Вариационный ряд часто назы-вают рядом распределения. Этот термин используется при изучении вариации как количественных, так и неколичественных признаков. Ряд распределения представляет собой структурную группировку (см. гл. 6).

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.

Примером ранжированного ряда может служить табл. 5.5.

Таблица 5.5

Крупные банки Санкт-Петербурга, ранжированные по размерам собственного капитала на 01.07.96

Если численность единиц совокупности достаточно велика, ранжированный ряд становится громоздким, а его построение, даже с помощью ЭВМ, занимает длительное время. В таких случаях вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Если признак принимает небольшое число значений, строится дискретный вариационный ряд. Примером такого ряда является распределение футбольных матчей по числу забитых мячей (табл. 5.1). Дискретный вариационный ряд - это таблица, состоящая из двух строк или граф: конкретных значений варьирующего признака х i и числа единиц совокупности с данным значением признака f i частот (f - начальная буква англ. слова frequency).

Определение числа групп

Число групп в дискретном вариационном ряду определяется числом реально существующих значений варьирующего признака. Если же признак может принимать хотя и дискретные значения, но их число очень велико (например, поголовье скота на 1 января года в разных сельхозпредприятиях может составлять от нуля до десятков тысяч голов), тогда строится интервальный вариационный ряд. Интервальный вариационный ряд строится и для изучения признаков, которые могут принимать любые, как целые, так и дробные, значения в области своего существования. Таковы, например, рентабельность реализованной продукции, себестоимость единицы продукции, доход на 1 жителя города, доля лиц с высшим образованием среди населения разных территорий и вообще все вторичные признаки, значения которых рассчитываются путем деления величины одного первичного признака на величину другого (см. гл. 3).

Интервальный вариационный ряд представляет собой таблицу, (состоящую из двух граф (или строк) - интервалов признака, вариация которого изучается, и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа от общей численности совокупности (частостей).

При построении интервального вариационного ряда необходимо выбрать оптимальное число групп (интервалов признака) и установить длину интервала. Поскольку при анализе вариационного ряда сравнивают частоты в разных интервалах, необходимо, чтобы величина интервала была постоянной. Оптимальное число групп выбирается так, чтобы в достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределения, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в вариационном ряду устанавливают, придерживаясь формулы, рекомендованной американским статистиком Стерджессом (Sturgess ):

где k - число групп; n - численность совокупности.

Эта формула показывает, что число групп - функция объема данных.

Предположим, необходимо построить вариационный ряд распределения предприятий области по урожайности зерновых культур за какой-то год. Число сельхозпредприятий, имевших посевы зерновых культур, составило 143; наименьшее значение урожайности равно 10,7 ц/га, наибольшее - 53,1 ц/га. Имеем:

Так как число групп целое, следовательно, рекомендуется построить 8 или 9 групп.

Определение величины интервала

Зная число групп, рассчитывают величину интервала:

В нашем примере величина интервала составляет:

а) при 8 группах

б) при 9 группах

Для построения ряда и анализа вариации значительно лучше иметь по возможности округленные значения величины интервала и его границ. Поэтому наилучшим решением будет построение вариационного ряда с 9 группами с интервалом, равным 5 ц/га. Этот вариационный ряд приведен в табл. 5.6, а его графическое изображение дано на рис. 5.1.

Границы интервалов могут указываться разным образом: верхняя граница предыдущего интервала повторяет нижнюю границу следующего, как показано в табл. 5.6, или не повторяет.

В последнем случае второй интервал будет обозначен как 15,1-20, третий как 20,1-25 и т.д., т.е. предполагается, что все значения урожайности обязательно округлены до одной десятой. Кроме того, возникает нежелательное осложнение с серединой интер- вала 15,1-20, которая, строго говоря, уже будет равна не 17,5, а 17,55; соответственно при замене округленного интервала 40-60 на 40,1-6,0 вместо округленного значения его середины 50 получим 50,5, Поэтому предпочтительнее оставить интервалы с повторяющейся округленной границей и договориться, что единицы совокупности, имеющие значение признака, равное границе интервала, включаются в тот интервал, где это точное значение впервые указывается. Так, хозяйство, имеющее урожайность, равную 15 ц/га, включается в первую группу, значение 20 ц/га -во вторую и т. д.

Рис. 5.1. Распределение хозяйств по урожайности

Таблица 5.6

Распределение хозяйств области по урожайности зерновых культур

Группы хозяйств по урожайности,

ц/га х j

Число хозяйств

Середина интервала,

ц/га х j "

Накопленная частота f ’ j

Графическое изображение вариационного ряда

Существенную помощь в анализе вариационного ряда и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные на оси абсцисс, - это интервалы значений варьирующего признака, а высоты столбиков - частоты, -соответствующие масштабу по оси ординат. Графическое изображение распределения хозяйств области по урожайности зерновых культур приведено на рис. 5.1. Диаграмма этого рода часто называется гистограммой (от греческого слова «гистос» - ткань, строение).

Данные табл. 5.5 и рис. 5.1 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже - крайние; малые и большие значения признака. Форма этого распределения близка к рассматриваемому в курсе математической статистики закону нормального распределения. Великий русский математик А. М. Ляпунов (1857 - 1918) доказал, что нормальное распределение образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего влияния. Случайное сочетание множества примерно равных факторов, влияющих на вариацию урожайности зерновых культур, как природных, так и агротехнических, экономических, создает близкое к нормальному закону распределения распределение хозяйств области по урожайности.

Если имеется дискретный вариационный ряд или используются середины интервалов, то графическое изображение такого вариационного ряда называется полигоном (от греч. слова - многоугольник). Каждый из вас легко построит этот график, соединяя прямыми точки с координатами х, и /.

Отношение высоты полигона или диаграммы к их основанию рекомендуется в пропорции примерно 5:8.

Понятие частости

Если в табл. 5.6 число хозяйств с тем или иным уровнем урожайности выразить в процентах к итогу, принимая все число хозяйств (143) за 100%, то средняя урожайность может быть вычислена так:

где w - частость 7-й категории вариационного ряда;

Кумулятивное распределение

Преобразованной формой вариационного ряда является ряд накопленных частот, приведенный в табл. 5.6, графа 5. Это ряд значений числа единиц совокупности с меньшими и равными нижней границе соответствующего интервала значениями признака. Такой ряд называется кумулятивным. Можно построить кумулятивное распределение «не меньше, чем», а можно «больше, чем». В первом случае график кумулятивного распределения называется кумулятой, во втором - огивой (рис. 5.2).

Плотность, распределения

Если приходится иметь дело с вариационным рядом с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала. Полученное отношение называется плотностью распределения:

Плотность распределения используется как для расчета обобщающих показателей, так и для графического изображения вариационных рядов с неравными интервалами.

Рис. 5.2. Огива и кумулята распределения по урожайности

5.7. Структурные характеристики вариационного ряда

Медиана распределения

При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. Такова, например, медиана- величина варьирующего признака, делящая совокупность на две равные части ~ со значениями признака меньше медианы И со значениями признака больше медианы (третьего банка из пяти в табл. 5.5, т.е. 196 млрд руб.).

На примере табл. 5.5 видно принципиальное различие между медианой и средней величиной. Медиана не зависит от значений признака на краях ранжированного ряда. Если бы даже капитал крупнейшего банка Санкт-Петербурга был вдесятеро больше, величина медианы не изменилась бы. Поэтому часто медиану используют как более надежный показатель типичного значения признака, нежели арифметическая средняя, если ряд значений неоднороден, включает резкие отклонения от средней. В данном ряду средняя величина собственного капитала, равная 269 млрд руб., сложилась под большим влиянием наибольшей варианты. 80% банков имеют капитал меньше среднего и лишь 20% - больше. Вряд ли такую среднюю можно считать типичной величиной. При четном числе единиц совокупности за медийну принимают арифметическую среднюю величину из двух центральных вариант, например при десяти значениях признака - среднюю из пятого и шестого значений в ранжированном ряду.

В интервальном вариационном ряду для нахождения медианы применяется формула (5.14).

где Me - медиана;

х 0 - нижняя граница интервала, в котором находится медиана;

f M е-1 - накопленная частота в интервале, предшествующем медианному;

f Me - частота в медианном интервале;

i - величина интервала;

k - число групп.

В табл. 5,6 медианным является среднее из 143 значений, т.е. семьдесят-второе от начала ряда значение урожайности. Как видно из ряда накопленных частот, оно находится в четвертом интервале. Тогда

При нечетном числе единиц совокупности номер медианы, как видим, равен не , как в формуле (5.14), a , но это различие несущественно и обычно игнорируется на практике.

В дискретном вариационном ряду медианой следует считать значение признака в той группе, в которой накопленная частота;

превышает половину численности совокупности. Например, для, данных табл. 5.1 медианой числа забитых за игру мячей будет 2.

Квартили распределения

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные по числу единиц части. Эти величины называются квартилями и обозначаются заглавной латинской" буквой Q с подписным значком номера квартиля. Ясно, что Q 2 совпадает с Me. Для первого и третьего квартилей приводим формулы и расчет по данным табл. 5.6.

Так как Q 2 = Me = 29,5 ц/га, видно, что различие между первым квартилем и медианой меньше, чем между медианой и третьим квартилем. Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 5.1.

Значения признака, делящие ряд на пять равных частей, называют квинтилями, на десять частей - децилями, на сто частей -перцентилями. Поскольку эти характеристики применяются лишь при необходимости подробного изучения структуры вариационного ряда, приводить их формулы и расчет не будем.

Мода распределения

Бесспорно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Например, по данным табл. 5.1 чаще всего за футбольный матч было забито 2 мяча - 71 раз. Модой является число 2. Обычно встречаются ряды с одним модальным значением признака. Если два или несколько равных (и даже несколько различных, но больших, чем соседние) значений признака имеются в вариационном ряду, он считается соответственно бимодальным («верблюдообразным») либо мультимодальным. Это говорит о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.

Так и в толпе туристов, приехавших из разных стран, вместо одной, преобладающей среди местных жителей модной одежды можно встретить смесь разных «мод», принятых у разных народов мира.

В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой.. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, т.е. число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу (5.15):

где x 0 - нижняя граница модального интервала;

f Mo - частота в модальном интервале;

f Mo -1 - частота в предыдущем интервале;

f Mo +1 - частота в следующем интервале за модальным;

i - величина интервала.

По данным табл. 5.6 рассчитаем моду:

Вычисление моды в интервальном ряду весьма условно. Приближенно Мо может быть определена графически (см. рис. 5.1).

К изучению структуры вариационного ряда средняя арифметическая величина тоже имеет отношение, хотя основное значение этого обобщающего показателя другое. В ряду распределения хозяйств по урожайности (табл. 5.6) средняя величина урожайности вычисляется как взвешенная по частоте середина интервалов х (по формуле (5.2)):

Соотношение между средней величиной, медианой и модой

Различие между средней арифметической величиной, медианой и модой в данном распределении невелико. Если распределение по форме близко к нормальному закону, то медиана находится между, модой и средней величиной, причем ближе к средней, чем к моде.

При правосторонней асимметриих ̅ > Me > Mo;

при левосторонней асимметрии х ̅ < Me < Mo.

Для умеренно асимметричных распределений справедливо равенство:

5.8. Показатели размера и интенсивности вариации

Абсолютные средние размеры вариации

Следующим этапом изучения вариации признака в совокупности является измерение характеристик силы, величины вариации. Простейшим из них может служить размах или амплитуда вариации - абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений. Таким образом, размах вариации вычисляется по формуле

Поскольку величина размаха характеризует лишь максимальное различие значений признака, она не может измерять закономерную силу его вариации во всей совокупности. Предназначенный для данной цели показатель должен учитывать и обобщать все различия значений признака в совокупности без исключения. Число таких различий равно числу сочетаний по два из всех единиц совокупности; по данным табл. 5.6 оно составит: С^ = 10 153. Однако нет необходимости рассматривать, вычислять и осреднять все отклонения. Проще использовать среднюю из отклонений отдельных значений признака от среднего арифметического значения признака, а таковых всего 143. Но среднее отклонение значений признака от средней арифметической величины согласно известному свойству последней равно нулю. Поэтому показателем силы вариации выступает не алгебраическая средняя отклонений, а средний модуль отклонений:

По данным табл. 5.6 средний модуль, или среднее линейное отклонение, по абсолютной величине вычисляется как взвешенное по частоте отклонение по модулю середин интервалов от средней арифметической величины, т.е. по формуле

Это означает, что в среднем урожайность в изучаемой совокупности хозяйств отклонялась от средней урожайности по области на 6,85 ц/га. Простота расчета и интерпретации составляют положительные стороны данного показателя, однако математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, параметром которого является не средний модуль отклонений, а среднее квадратическое отклонение (в англоязычных программах для ЭВМ называемое «the standard deviation», сокращенно «s.d.» или просто « s », в русскоязычных - СКО). В статистической литературе среднее квадратическое отклонение от средней величины принято обозначать малой (строчной) греческой буквой сигма (ст) или s (см. гл. 7):

для ранжированного ряда

для интервального ряда

По данным табл. 5.6 среднее квадратическое отклонение урожайности зерновых составило:

Следует указать, что некоторое округление средней величины и середин интервалов, например до целых, мало отражается на величине σ, которая составила бы при этом 8,55 ц/га.

Среднее квадратическое отклонение по величине в реальных совокупностях всегда больше среднего модуля отклонений. Соотношение (у: а зависит от наличия в совокупностях резких, выделяющихся отклонений и может служить индикатором «засоренности» совокупности неоднородными с основной массой элементами: чем это соотношение больше, тем сильнее подобная «засоренность». Для нормального закона распределения σ : а = 1,2.

Понятие дисперсии

Квадрат среднего квадратического отклонения дает величину дисперсии σ 2 . Формула дисперсии:

простая (для несгруппйрованных данных):

взвешенная (для сгруппированных данных):

На дисперсии основаны практически все методы математической статистики. Большое практическое значение имеет правило сложения дисперсий (см. гл. 6).

Другие меры вариации

Еще одним показателем силы вариации, характеризующим ее не по всей совокупности, а лишь в ее центральной части, служит среднее квартцлъное расстояние, т.е. средняя величина разности между квартилями, обозначаемое далее как q:

Для распределения сельхозпредприятий по урожайности в табл. 5.2

q = (36,25 - 25,09): 2 = 5,58 ц/га. Сила вариации в центральной части совокупности, как правило, меньше, чем в целом по всей совокупности. Соотношение между средним модулем отклонений и средним квартальным отклонением также служит для изучения структуры вариации: большое значение такого соотношения говорит о наличии слабоварьирующего «ядра» и сильно рассеянного вокруг этого ядра окружения, или «гало» в изучаемой совокупности. Для данных табл. 5.6 соотношение а: q = 1,23, что говорит о небольшом различии силы вариации в центральной части совокупности и на ее периферии.

Для оценки интенсивности вариации и для сравнения ее в разных совокупностях и тем более для разных признаков необходимы относительные показатели вариации. Они вычисляются как отношения абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака. Получаем следующие показатели:

1) относительный размах вариации р:

2) относительное отклонение по модулю т:

3) коэффициент вариации как относительное квадратическое отклонение v :

4) относительное квартальное расстояние d:

где q - среднее квартильное расстояние.

Для вариации урожайности по данным табл. 5,6 эти показатели составляют:

ρ = 42,4: 30,3 = 1,4, или 140%;

т = 6,85: 30,3 = 0,226, или 22,6%;

v = 8,44: 30,3 = 0,279,или 27,9%;

d = 5,58: 30,3 = 0,184,или 18,4%.

Оценка степени интенсивности вариации возможна только для каждого отдельного признакам совокупности определенного состава. Так, для совокупности сельхозпредприятий вариация урожайности в одном и том же природном регионе может быть оценена как слабая, если v < 10%, умеренная при 10% < v < 25% и сильная при v > 25%.

Напротив, вариация роста в совокупности взрослых мужчин или женщин уже при коэффициенте, равном 7%, должна быть оценена и воспринимается людьми как сильная. Таким образом, оценка интенсивности вариации состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив. Мы привыкли к тому, что урожайность, заработок или доход на душу, число жилых комнат в здании могут различаться в несколько и даже десятки раз, но различие роста людей хотя бы в полтора раза уже воспринимается как очень сильное.

Различная сила, интенсивность вариации обусловлены объективными причинами. Например, цена продажи доллара США в коммерческих банках Санкт-Петербурга на 24 января 1997 г. варьировала от 5675 до 5640 руб. при средней цене 5664 руб. Относительный размах вариации ρ = 35:5664 = 0,6%. Такая малая вариация вызвана тем, что при значительном различии курса доллара немедленно произошел бы отлив покупателей из «дорогого» банка в более «дешевые». Напротив, цена килограмма картофеля или говядины в разных регионах России варьирует очень сильно - на десятки процентов и более. Это объясняется разными затратами на доставку товара из региона-производителя в регион-потребитель, т.е. пословицей «телушка за морем - полушка, да рубль перевоз».

5.9. Моменты распределения и показатели его формы

Центральные моменты распределения

Для дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели получили название центральных моментов распределения порядка, соответствующего степени, в которую возводятся отклонения (табл. 5.7), или просто моментов (нецентральные моменты используются редко и здесь не будут рассматриваться). Величина третьего момента ц-, зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормаль- ном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов.

Показатели асимметрии

На основе момента третьего порядка можно построить показатель, характеризующий степень асимметричности распределения:

As называют коэффициентом асимметрии. Он может быть рассчитан как по сгруппированным, так и по несгруппированным данным. По данным табл. 5.6 показатель асимметрии составил:

т.е. асимметрия незначительна. Английский статистик К. Пирсон на основе разности между средней величиной и модой предложил другой показатель асимметрии

Таблица 5.7

Центральные моменты

По данным табл. 5.6 показатель Пирсона составил:

Показатель Пирсона зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии, основанный на моменте третьего порядка, - от крайних значений признака. Таким образом, в нашем примере в средней части распределения асимметрия более значительна, что видно и по графику (рис. 5.1). Распределения с сильной правосторонней и левосторонней (положительной и отрицательной) асимметрией показаны на рис. 5.3.

Характеристика эксцесса распределения

С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения, чем асимметрия, называемое эксцессом.


Рис. 5.3. Асимметрия, распределения

Показатель эксцесса рассчитывается по формуле

(5.30)

Часто эксцесс интерпретируется как «крутизна» распределения, но это неточно и неполно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе. Не говоря уже о том, что, изменяя масштабы по оси абсцисс и по оси ординат, любое распределение можно искусствен но сделать «крутым» и «пологим». Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной σ) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 5.4.

Рис.5.4. Эксцесс распределений

Для вариационного ряда с нормальным распределением значе- i ний признака показатель эксцесса, рассчитанный по формуле (5.30), j равен трем.

Однако такой показатель не следует называть термином «эксцесс», что в переводе означает «излишество». Термин «эксцесс» следует применять не к самому отношению по формуле (5.30), а к сравнению такого отношения для изучаемого распределения с величиной данного отношения нормального распределения, т.е. с величиной 3. Отсюда окончательные формулы показателя эксцесса, т.е. излишества в сравнении с нормальным распределением при той же силе вариации, имеют вид:

для ранжированного ряда

для интервального и дискретного вариационного ряда

Наличие положительного эксцесса, как и ранее отмеченного значительного различия между малым квартальным расстоянием и большим средним квадратическим отклонением, означает, что в изучаемой массе явлений существует слабо варьирующее по данному признаку «ядро», окруженное рассеянным «гало». При существенном отрицательном эксцессе такого «ядра» нет совсем.

По значениям показателей асимметрии и эксцесса распределения можно судить о близости распределения к нормальному, что бывает существенно важно для оценки результатов корреляционного и регрессионного анализа, возможностей вероятностной оценки прогнозов (см. главы 7,8,9). Распределение можно считать нормальным, а точнее говоря - не отвергать гипотезу о сходстве фактического распределения с нормальным, если показатели асимметрии и эксцесса не превышают своих двукратных средних квадратических отклонений Стц. Эти средние квадратические отклонения вычисляются по формулам:

5.10. Предельно возможные значения показателей вариации и их применение

Применяя любой вид статистических показателей, полезно знать, каковы предельно возможные значения данного показателя для изучаемой системы и каково отношение фактически наблюдаемых значений к предельно возможным. Особенно актуальна эта проблема при изучении вариации объемных показателей, таких, как объем производства определенного вида продукции, наличие определенных ресурсов, распределение капиталовложений, доходов, прибыли. Рассмотрим теоретически и практически данный вопрос на примере распределения производства овощей между сельхозпредприятиями в районе.

Очевидно, что минимально возможное значение показателей вариации достигается при строго равномерном распределении объемного признака между всеми единицами совокупности, т. е. при одинаковом объеме производства в каждом из сельхозпредприятий. В таком предельном (конечно, весьма маловероятном на практике) распределении вариация отсутствует и все показатели, вариации равны нулю.

Максимально возможное значение показателей вариации достигается при таком распределении объемного признака в совокупности, при котором весь его объем сосредоточен в одной единице совокупности; например, весь объем производства овощей - в одном сельхозпредприятий района при отсутствии их производства в остальных хозяйствах. Вероятность такого предельно возможного сосредоточения объема признака в одной единице совокупности не столь уж мала; во всяком случае она гораздо больше вероятности строго равномерного распределения.

Рассмотрим показатели вариации при указанном предельном случае ее максимальности. Обозначим число единиц совокупности п, среднюю величину признака х ̅ , тогда общий объем признака в совокупности выразится как х ̅ п. Весь этот объем сосредоточен у одной единицы совокупности, так что х max = х ̅ п. х min = 0, откуда следует, что максимальное значение амплитуды (размаха вариации) равно:

Для вычисления максимальных значений средних отклонений по модулю и квадратического построим таблицу отклонений (табл. 5.8).

Таблица5.8

Модули и квадраты отклонений от средней при максимально возможной вариации

Номера единиц совокупности

Значения признака

Отклонения от средней

x i - x ̅

Модули отклонений

|x i - x ̅|

Квадраты отклонений

i - х ̅ ) 2

х ̅ п

х ̅ (п - 1)

-x ̅

-x ̅

-x ̅

х ̅ (п - 1)

х ̅

х ̅

х ̅

х ̅ 2 (п - 1) 2

х ̅ 2

х ̅ 2

х ̅ 2

х ̅ п

2х ̅ (п - 1)

х ̅ 2 [(п - 1) 2 +(n-1 )]

Исходя из выражений, стоящих в итоговой строке табл. 5.8, получаем следующие максимально возможные значения показателей вариации.

Средний модуль отклонений, или среднее линейное отклонение:

Среднее квадратическое отклонение:

Относительное модульное (линейное) отклонение:

Коэффициент вариации:

Что касается квартального расстояния, то система с максимально возможной вариацией обладает вырожденной структурой распределения признака, в которой не существуют («не работают») характеристики структуры: медиана, квартили и им подобные.

Исходя из полученных формул максимально возможных значений основных показателей вариации, прежде всего следует вывод о зависимости этих значений от объема совокупности п. Эта зависимость обобщена в табл. 5.9.

Наиболее узкие пределы изменения и слабую зависимость от численности совокупности обнаруживают средний модуль и относительное линейное отклонение. Напротив, среднее квадратическое отклонение и коэффициент вариации сильно зависят от численности единиц совокупности. Эту зависимость следует учитывать при сравнении силы интенсивности вариации в совокупностях разной численности. Если в совокупности шести предприятий коэффициент вариации объема продукции составил 0,58, а в совокупности из 20 предприятий он составил 0,72, то справедливо ли делать вывод о большей неравномерности объема продукции во второй совокупности? Ведь в первой, меньшей, он составил 0,58: 2,24 = 25,9% максимально возможного, т.е. предельного, уровня концентрации производства в одном предприятии из шести, а во второй, большей совокупности, наблюдаемый коэффициент вариации составил только 0,72: 4,36 = 16,5% максимально возможного.

Таблица 5.9

Предельные значения показателей вариации объемного признака при разных численностях совокупности

Численность совокупностей

Максимальные значения показателей

х ̅

х ̅

1,5 х ̅

1,73 х ̅

1,67 х ̅

2,24 х ̅

1,80 х ̅

3 х ̅

1,90 х ̅

4,36 х ̅

1,96 х ̅

7 х ̅

1,98 х ̅

9,95 х ̅

2 х ̅

Имеет практическое значение и такой показатель, как отношение фактического среднего модуляотклонений к предельно возможному. Так, для совокупности шести предприятий это соотношение составило: 0,47: 1,67 = 0,281, или 28,1%. Интерпретация полученного показателя такова: для перехода от наблюдаемого распределения объема продукции между предприятиями, к равномерному распределению потребовалось бы перераспределить

, или 23,4% общего объема продукции в совокупности. Если степень фактической концентрации производства (фактическая величина σ или v ) составляет некоторую долю предельного значения при монополизации производства на одном предприятии, то отношение фактического показателя к предельному может характеризовать степень концентрации (или монополизации) производства.

Отношения фактических значений показателей вариации или изменения структуры к предельно возможным используются также при анализе структурных сдвигов (см. главу 11).

1. Джини К. Средние величины. - М.: Статистика, 1970.

2. Кривенкова Л. Н., Юзбашев М. М. Область существования показателей вариации и ее применение // Вестник статистики. - 1991. - №6. - С. 66-70.

3. Пасхавер И. С. Средние величины в статистике. - М.: Статистика. 1979.

4. Шураков В. В., Дайитбегов Д. М. и др. Автоматизированное рабочее место статистической обработки данных (Глава 4. Предварительная статистическая обработка данных). - М.: Финансы и статистика, 1990.

Ранжирование – процедура упорядочивания любых объектов по возрастанию или убыванию некоторого их свойства при условии, что они этим свойством обладают.

Можно ранжировать:

Государство по уровню жизни, рождаемости, безработице;

Профессии по престижности;

Товары по предпочтению потребителей;

Респондентов по политической активности, материальному положению;

Объектами ранжирования являются те объекты, которые непосредственно упорядочиваются. Основание ранжирование (ранжирующий признак) – то свойство, по которому объекты упорядочиваются. В результате ранжирования получаем ранжированный ряд, в котором каждому объекту приписывается свой индивидуальный ранг – место объекта в ранжированном ряду. Число мест и, соответственно, число рангов в ранжированном ряду равняется числу объектов.

Виды ранжированных рядов:

1) каждый объект имеет значение признака, отличное от значений признака других объектов, тогда каждому объекту ранжированного ряда присваивается свой, отличный от другого объекта, ранг;

2) несколько объектов имеют одинаковое значение признака, тогда этим объектам в ранжированном ряду присваивается одинаковые ранги, рассчитанные по определенной формуле. В этом случае ранжированный ряд называется ранжированным рядом со связанными рангами. При решении задач первый ранг будем присваивать наибольшему значению признака. Связанный ранг рассчитывается как среднее значение мест, занимаемых объектами, имеющими одинаковое значение признака. Установление статистической связи для 2-х и более ранжированных рядов осуществляется с помощью ранговых коэффициентов связи – такие коэффициенты, которые позволяют вычислять степень согласованности в ранжировании одних и тех же объектов по двум различным основаниям (признакам). Наиболее распространенным коэффициентом ранговой связи (ранговой корреляции) является коэффициент ρ-Спирмена.

Допустим, что н объектов упорядочены по признаку х и по признаку у. Пусть

Мера несовпадений рангов i-того объекта: d i = R x i - R y i

Свойства:

Изменяется в интервале от -1 до 1;

Ро = 1, если наблюдается полная согласованность ранжированных рядов; ранги одного и того же объекта по двум признакам совпадают.

Ро = -1, если полная несогласованность ранжированных рядов; такая ситуация возникает, если ранговые ряды имеют обратное направление: R x i – 1 2 3 4 5; R y i – 5 4 3 2 1.

Замечание: может рассчитываться для двух видов равных (если каждый объект свой ранг и если имеются связанные ранги).

Проверка гипотезы о статистической значимости коэффициента ρ-Спирмена.

H 0: ρ гс = 0

H 1: ρ гс ≠ 0

Нулевая гипотеза всегда утверждает, что ρ равен 0. Альтернативная – что значение ρ отлично от 0.

Уровень значимости как в таблицах сопряженности.

Государство А Б В Г Д Е Ж З И
Качество жизни 6,8 7,0 6,5 5,9 4,6 5,7 4,5 5,8 4,0
Безработица 20,3 18,0 19,8 23,4 21,6 20,8
Ранг x
Ранг y
|d i |
d 2 i
Σ d 2 i

τ -Кендалла – разность между вероятностями правильного и неправильного порядка для двух наблюдений, извлечённых из совокупности случайно при условии, что связанные ранги отсутствуют. Свойства:

Изменяется от -1 до 1;

Если признаки х и у статистически независимы, то коэффициент τ обращается в 0; если τ равен 0, еще не значит, что признаки статистически независимы;

Если τ равен 1, это значит, что между признаками имеется полная прямая статистическая связь или ранжированные ряды полностью согласованы; если τ равно -1, это значит, что присутствует полная обратная статистическая связь, или ранжированные ряды являются несогласованными.

S – общее число пар объектов с согласованным правильным порядком по обоим объектам. D – общее число пар объектов с несогласованным неправильным порядком по обоим объектам.

Проверка гипотезы о статистической значимости коэффициента τ:

H 0: τ гс = 0

H 1: τ гс ≠ 0

Коэффициент τ является статистически значимым, если его значения для ГС отлично от 0.

|Z H | > Z кр => H 1

Если ранжированный ряд построим для малого числа объектов, то подтверждение нулевой гипотезы нам говорит о том, что нужно изучить большее количество объектов.

Если изучено достаточное количество объектов, то подтверждение нулевой гипотезы говорит о том, что связь между признаками отсутствует.

Множественный коэффициент ранговой связи

Применяется в тех случаях, когда необходимо измерить связь между более чем 2 ранжированными рядами (например, когда мы хотим оценить согласованность мнений экспертов (более 2) при оценке 1 и тех же объектов).

S – сумма квадратичных отклонений значений рангов по строке от среднего ранга для всей совокупности. k 2 – число переменных (число экспертов). n – число ранжируемых объектов.

Понятие сводки, группировки, классификации

Сводка – систематизация и подведение итогов: метеосводка, сводка с полей. Сводка не позволяет детально проанализировать информацию. Любая сводка должна опираться на группировку данных, т.е. сначала группировка, а потом сводка данных.

Группировка – разделение совокупностей на ряд групп по наиболее существенным признакам.

Различают качественную и количественную группировку. Качественная – атрибутивная, количественная – вариационная. В свою очередь вариационная делится на структурную и аналитическую. Структурная группировка предполагает расчет удельного веса каждой группы. Пример: на предприятии 80% - рабочие, 20% - служащие, из них 5% - руководители, 3% - служащие,12% - специалисты. Цель аналитической группировки – выявить взаимосвязь между признаками: стажем работы и средним заработком, стажем и выработкой и другими.

При проведении группировки необходимо:

Проведение всестороннего анализа природы изучаемого явления;

Выявление группировочного признака (одного или нескольких);

Установить границы групп таким образом, чтобы группы существенно отличались друг от друга, и в каждой группе объединялись однородные элементы.

По степени сложности группировки могут быть простые и комбинационные (по признакам).

По исходной информации различают первичную и вторичную группировки, первичная осуществляется на основе исходных данных наблюдения, вторичная использует данные первичной группировки.

Количество групп определяется по формуле Стерджесса:

где n - количество групп, N – генеральная совокупность.

Если используются равные интервалы, то величина интервала равна .

Интервалы могут быть равные и неравные. Последние, в свою очередь, делятся на изменяющиеся по закону арифметической или геометрической прогрессии. Первый и последний интервалы могут быть открытые или закрытые. Закрытые интервалы включают или не включают границы интервала.

Если интервалы закрытые, и ничего не сказано о включении верхних границ, то считаем, что верхние границы включены.

Если интервалы открытые, то ориентируемся по последнему интервалу.

Признак в этих интервалах может измеряться дискретно и непрерывно (т.е. дробиться). При непрерывном признаке границы смыкаются 1- 10, 10 - 20, 20 – 30; если признак изменяется дискретно, то можно использовать следующую запись: 1 – 10, 11 – 20, 21 – 30.

Если интервалы открытые, то величина последнего интервала приравнивается к предыдущему, а первого - ко второму.

Классификация – группировка по качественному признаку. Она относительно устойчива, стандартизирована и утверждается органами государственной статистики.


3.2. Ряды распределения: виды и основные характеристики

Под рядом распределения понимается ряд данных, характеризующих какое-либо социально-экономическое явление по одному признаку. Это простейший вид группировки по двум признакам.

Ряды распределения делятся на качественные и количественные, на ранжированные и не ранжированные, на сгруппированные и не сгруппированные, с дискретным и непрерывным распределением признака.

Примером не сгруппированного, не ранжированного ряда по заработной плате является ведомость заработной платы. В то же время, список работников может быть ранжированный по алфавиту или по табельным номерам. Примером ранжированного ряда является список команд, рейтинг теннисистов.

Ранжированный ряд распределения - ряд данных, расположенных в порядке убывания или возрастания признака.

Для сгруппированных ранжированных рядов выделяют следующие характеристики: варианту, частоту или частость, кумуляту и плотность распределения.

Варианта () – среднее интервальное значение признака. Т.к. при создании группировки должен выполняться принцип равномерного распределения признака в каждом интервале, то варианту можно рассчитывать как полусумму границ интервалов.

Частота () показывает сколько раз встречается данное значение признака. Относительное выражение частоты представляет собой частость (.) , т.е. долю, удельный вес от суммы частот.

Кумулята () – накопленная частота или частость, расчет нарастающим итогом. Кумулятивно подсчитываются объем, затраты, доходы, т.е. результаты деятельности.

Таблица 1

Группировка действующих кредитных организаций
по величине зарегистрированного уставного капитала

в 2008 году в РФ

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существуют три формы вариационного ряда: ранжированный, дискретный, интервальный. Вариационный ряд часто называют рядом распределения. Этот термин употребляется при изучении вариации как количественных, так и неколичественных признаков. Ряд распределения представляет собой структурную группировку (гл. 6).

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.

Ниже приведены сведения о крупных банках Санкт-Петербурга, ранжированных по размерам собственного капитала на 01.10.1999 г.

Название банка Собственный капитал, млн руб.

Балтонэксим банк 169

Банк «Санкт-Петербург» 237

Петровский 268

Балтийский 290

Промстройбанк 1007

Если численность единиц совокупности достаточно велика, ранжированный ряд становится громоздким, а его построение, даже с помощью компьютера, занимает длительное время. В таких случаях вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Определение числа групп

Число групп в дискретном вариационном ряду определяется числом реально существующих значений варьирующего признака. Если признак принимает дискретные значения, но их число очень велико (например, поголовье скота на 1 января года в разных сельскохозяйственных предприятиях может составить от нуля до десятков тысяч голов), то строится интервальный вариационный ряд. Интервальный вариационный ряд строится и для изучения признаков, которые могут принимать любые, как целые, так и дробные значения в области своего существования. Таковы, например, рентабельность реализованной продукции, себестоимость единицы продукции, доход на одного жителя города, доля лиц с высшим образованием среди населения разных территорий и вообще все вторичные признаки, значения которых рассчитываются путем деления величины одного первичного признака на величину другого (см. гл. 3).

Интервальный вариационный ряд представляет собой таблицу, состоящую из двух граф (или строк) - интервалов признака, вариация которого изучается, и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа от общей численности совокупности (частостей).

Наиболее часто используются два вида интервальных вариационных рядов: равноинтервальный и равночастотный. Равноинтервальный ряд применяется, если вариация признака не очень сильна, т.е. для однородной совокупности, распределение которой по данному признаку близко к нормальному закону. (Такой ряд представлен в табл. 5.6.) Равночастотный ряд применяется, если вариация признака очень сильна, однако распределение не является нормальным, а, например, гиперболическим (табл. 5.5).

При построении равноинтервального ряда число групп выбирается так, чтобы в достаточной мере отразились разнообразие значений признака в совокупности и в то же время закономерность распределения, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.


Границы интервалов могут указываться разным образом: верхняя граница предыдущего интервала повторяет нижнюю границу следующего, как показано в табл. 5.5, или не повторяет.

В последнем случае второй интервал будет обозначен как 15,1-20, третий - как 20,1-25 и т.д., т.е. предполагается, что все значения урожайности обязательно округлены до одной десятой. Кроме того, возникает нежелательное осложнение с серединой интервала 15,1-20, которая, строго говоря, уже будет равна не 17,5, а 17,55; соответственно при замене округленного интервала 40-60 на 40,1-60 вместо округленного значения его середины 50 получим 50,5. Поэтому предпочтительнее оставить интервалы с повторяющейся округленной границей и договориться, что единицы совокупности, имеющие значение признака, равное границе интервала, включаются в тот интервал, где это точное значение впервые указывается. Так, хозяйство, имеющее урожайность, равную 15 ц/га, включается в первую группу, значение 20 ц/га - во вторую и т.д.

Равночастотный вариационный ряд необходим при очень сильной вариации признака потому, что при равноинтерваль-ном распределении большая часть единиц совокупности ока-

Таблица 5.5

Распределение 100 банков России по балансовой оценке активов на 01.01.2000 г.

Границы интервалов при равночастотном распределении - это фактические величины активов первого, десятого, одиннадцатого, двадцатого и так далее банков.

Графическое изображение вариационного ряда

Существенную помощь в анализе вариационного ряда и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные на оси абсцисс, - это интервалы значений варьирующего признака, а высота столбиков - частоты, соответствующие масштабу по оси ординат. Графическое изображение распределения хозяйств области по урожайности зерновых культур приведено на рис. 5.1. Диаграмма этого рода часто называется гистограммой (гр. histos - ткань).

Данные табл. 5.6 и рис. 5.1 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже - крайние, малые и большие значения признака. Форма этого распределения близка к рассматриваемому в курсе математической статистики закону нормального распределения. Великий русский математик А. М. Ляпунов (1857-1918) доказал, что нор-

Таблица 5.6 Распределение хозяйств области по урожайности зерновых культур

мальное распределение образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего влияния. Случайное сочетание множества примерно равных факторов, влияющих на вариации урожайности зерновых культур, как природных, так и агротехнических, экономических, создает близкое к нормальному закону распределения распределение хозяйств области по урожайности.

Рис. 5.2. Кумулята и огива распределения хозяйств по урожайности

Такой ряд называется кумулятивным. Можно построить кумулятивное распределение «не меньше, чем», а можно «больше, чем». В первом случае график кумулятивного распределения называется кумулятой, во втором - огивой (рис. 5.2).

Плотность распределения

Если приходится иметь дело с вариационным рядом с неравными интервалами, то для сопоставимости нужно частоты, или частости, привести к единице интервала. Полученное отношение называется плотностью распределения:

Плотность распределения используется как для расчета обобщающих показателей, так и для графического изображения вариационных рядов с неравными интервалами.

картофель производство ранжированный статистический

На основе показателей таблицы 2 составляем ранжированные ряды по производству картофеля на 100 га пашни; по урожайности картофеля; по себестоимости. Зависимость между этими показателями изображаем графически.

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или убывающим (реже) значениям признака.

Существуют три формы вариационного ряда: ранжированный ряд, дискретный ряд, интервальный ряд. Вариационный ряд часто называют рядом распределения.

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака

Ранжирование - это процедура упорядочения объектов изучения, которая выполняется на основе предпочтения. Вариационный размах показывает, насколько велико различие между единицами совокупности.

Ранг - это порядковый номер значений признака, расположенных в порядке возрастания или убывания их величин. Если значение признака имеют одинаковую количественную оценку, то ранг всех этих значений принимается равным средней арифметической от соответствующих номеров мест, которые определяют. Данные ранги называются связными.

Графики в статистике - это способ наглядного изображения статистических показателей в виде геометрических фигур и знаков, рисунков или схематических карт. Наглядное изображение облегчает восприятие информации, позволяет охватить совокупность показателей во взаимосвязи, выявить тенденцию развития и типичные соотношения показателей.

Для изображения показателей динамики целесообразно использовать линейные графики или столбиковые диаграммы. График должен быть наглядным, понятны, легко читаемым и по возможности художественно оформленным, что привлечет к нему внимание.

При построении точечных диаграмм в качестве графических образцов применяется совокупность точек; при построении линейных - линии. Построение графика всегда творческий процесс. Здесь необходим некоторый поиск. Лишь после составления и сравнения нескольких черновых вариантов можно определить правильную композицию графика, установить масштабы и расположение знаков на поле графика.

Из ранжированного ряда по производству картофеля на 100 га пашни, можно сделать следующий вывод, что самое низкое производство наблюдается в Балаганском районе, а наибольшей производительностью картофеля со 100 га пашни отличается Ангарский район.

Наименьшая урожайность была в Качугском районе-10 ц/га, а наибольшая в Усольском - 195,5 ц/га.

В Чунском районе при высоком производстве картофеля на 100 га пашни, соответствовала наименьшая себестоимость 1 ц. Максимальная себестоимость наблюдается в Нижне-Илимском районе. Размах вариации себестоимости центнера картофеля очень велик и равен 1161,01 р.

Другие публикации

Анализ хозяйственной деятельности предприятия
Переход к рыночной экономике требует от предприятия повышения эффективности производства, конкурентоспособности продукции и услуг на основе внедрения эффективных форм хозяйствования и управления производством, достижений научно-технического прогресса, активизации п...

Анализ финансово-хозяйственной деятельности ОАО ТрансКонтейнер
Финансовый анализ представляет собой процесс, основанный на изучении данных о финансовом состоянии предприятия и результатах его деятельности в прошлом с целью оценки будущих условий и результатов деятельности. Таким образом, главной задачей финансового анализа явл...

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека