Продуктивность основных типов природных биомов. Продуктивность экосистемы

Продуктивность экосистемы - это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов - вторичной продукцией .

Первичная продукция подразделяется на два уровня - валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли - около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня, так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы - продуценты, консументы и редуценты - составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах - в калориях, джоулях и т.п, что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

По величине биологической продуктивности экосистемы подразделяют на 4 класса:

1) экосистемы очень высокой продуктивности - >2 кг/м2 0 в год (тропические леса, коралловые рифы);

2) экосистемы высокой продуктивности – 1-2 кг/м2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);

3) экосистемы умеренной продуктивности - 0,25-1 кг/м2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);

4) экосистемы низкой продуктивности - < 0,25 кг/м2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м2 в год.

  1. Классификация и особенности экосистем (Биомы:степи (чаппарали, гарриги, эспинали), пустыни, тундра, джунгли, хвойные леса, зоны морских (аппвелинга, коралловые рифы, аутвеллинга) и пресноводных (лотические: перекаты, плесы) лентические (озера и их стратификация) экосистем).

При классификации наземных экосистем принято использовать признаки растительных сообществ и климатические признаки, например, лес хвойный, лес тропический, холодная пустыня и т.п.

Гари́га , или гарри́га (фр. garrigue и окс. garriga ) - разрежённые заросли низкорослых вечнозелёных кустарников, главным образом дуба кустарникового (Quercus dumosa ) и пальмы хамеропс (Chamaerops ). Также могут быть тимьян (Thymus ), розмарин (Rosmarinus ), дрок (Genista ) и другие растения. Можно встретить в Средиземноморье, в менее сухом климате, чем фригана, на каменистых склонах, на месте сведённых, перевыпасом и палами, лесов из дуба каменного.

Чапара́ль (чапарраль, чапаррель, чапарель , исп. chaparral , от chaparro - заросли кустарникового дуба) - тип субтропической жестколистной кустарниковой растительности. Распространён в узкой полосе Тихоокеанского побережья Калифорнии и на Севере Мексиканского нагорья, на высоте 600-2400 м.

Подобные биомы находятся и в четырех других регионах Средиземноморского климата во всем мире, в том числе Средиземноморского бассейна (где он известен как маквис, маккия, maquis), центральной части Чили (где он называется Matorral), в Капской области ЮАР (мыс Доброй Надежды) (известен там как финбош) и на юго-востоке и юго-западе Австралии.

Отсутствие деревьев не связано с деятельностью человека, хотя ряд исследователей рассматривает чапараль, подобно маквису, как стадиюдеградации дубовых вечнозелёных лесов. Заросли чапараля достигают в высоту 3-4 м.

Наиболее типичной для чапараля является аденостома (Adenostoma fasciculatus), образующая чистые естественные насаждения. Широко распространены заросли кустарниковых вечнозелёных дубов, толокнянок (18 видов), представителей родов сумах, цеанотус (25 видов) и другие. У верхней границы чапараль увеличивается доля листопадных видов дуба, ирги, церциса.

Пустыня – это территория, где испарение превышает количество осадков, причем их уровень составляет менее 250мм/г. В таких условиях произрастает скудная, разреженная и обычно низкорослая растительность. Преобладание ясной погоды и разряженная растительность способствуют быстрой потере теплоты ночью, накопленной почвой днем. Для пустыней характерно значительное различие между дневной и ночной температурами. Пустынные экосистемы занимают около 16% поверхности суши и расположены практически во всех широтах Земли.

Тропические пустыни. Это такие пустыни, как Южная Сахара, которые составляют около 20% общей площади пустынь. Температура там круглый год высокая, а количество осадков минимальное.

Пустыни умеренных широт. Такие пустыни, как пустыня Мохаве в южной Калифорнии, отличаются высокими дневными температурами летом и низкими - зимой.

Холодные пустыни. Для них характерна очень низкая температура зимой и средняя – летом.

Растения и животные всех пустынь приспособлены улавливать и сохранять дефицитную влагу.

Медленный рост растений и малое видовое разнообразие делают пустыни весьма уязвимыми. Уничтожение растительности в результате выпаса или езды вне дорог ведет к тому, что на восстановление утраченного требуются десятилетия.

Травянистые экосистемы

Тропические травянистые экосистемы или саванны.

Такие экосистемы характерны для районов с высокими средними температурами, двумя продолжительными сухими сезонами и обильными осадками в остальное время года. Они образуют широкие полосы по обе стороны экватора. Некоторые из этих биомов представляют собой открытое пространство, покрытое только травянистой растительностью.

Травянистые экосистемы умеренных широт. Они встречаются во внутренних районах материков, главным образом Северной и Южной Америки, Европы и Азии. Основные типы травянистых сообществ умеренного пояса: высокотравные и низкотравные прерии США и Канады, пампы Южной Америки, вельды Южной Африки и степи от Центральной Европы до Сибири. В этих экосистемах (биомах) почти постоянно дуют ветры, способствуя испарению влаги. Густая сеть корней травянистых растений обеспечивает стабильность почвы до тех пор, пока не начинается ее распашка.

Полярные травянистые экосистемы или арктические тундры.

Они расположены в районах прилегающих к арктическим ледяным пустыням. Большую часть года тундры находятся под воздействием штормовых холодных ветров и покрыты снегом и льдом. Зимы здесь очень холодные и темные. Осадков немного, и выпадают они в основном в виде снега.

Медленное разложение органических веществ, малая мощность почвы, низкие темпы прироста растительности делают арктическую тундру одной из наиболее уязвимых экологических систем земного шара.

Лесные экосистемы.

Влажные тропические леса. Эти леса располагаются в ряде приэкваториальных районов. Они характеризуются умеренно высокими среднегодовыми температурами, которые мало изменяются в течение суток и по сезонам, а также значительной влажностью и почти ежедневно выпадающими осадками. В таких биомах доминируют вечнозеленые деревья, сохраняющие большую часть листьев или хвои круглый год, что обеспечивает непрерывное круглогодичное протекание процессов фотосинтеза.

Так как климатические условия во влажных тропических лесах практически неизменны, влага и теплота не имеют лимитирующего значения, как в других экосистемах. Основным лимитирующим фактором становится содержание биогенов в часто бедных органическим веществом почвах.

Листопадные леса умеренных широт. Они произрастают в районах с невысокими средними температурами, значительно меняющимися по сезонам. Зимы здесь не очень суровы, летний период продолжителен, осадки выпадают равномерно в течение всего года. По сравнению с тропическими леса умеренного пояса быстро восстанавливаются после вырубки и, следовательно, более устойчивы к антропогенным нарушениям.

Северные хвойные леса. Эти леса, называемые также бореальными, или тайгой, распространены в районах субарктического климата. Зимы здесь продолжительны и засушливы, с коротким световым днем и небольшими снегопадами. Температурные условия меняются от прохладных до исключительно холодных. В тайге добывают значительную часть деловой древесины, большое значение имеет промысел пушнины.

Продуктивность экосистемы. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, не диссипирует,- а накапливается в виде органических соединений. Безостановочное производство живой материи (биомассы) - один из фундаментальных процессов биосферы.[ ...]

ПРОДУКТИВНОСТЬ ЛАНДШАФТА - способность ландшафта производить биологическую продукцию. См. Биологическая продуктивность экосистемы.[ ...]

Продуктивность экосистемы - скорость образования биологического вещества (биомассы) в единицу времени.[ ...]

Молодая, продуктивная экосистема очень уязвима из-за монотипного видового состава, так как в результате какой-то экологической катастрофы, например, засухи, ее уже не восстановить из-за разрушения генотипа. Но для жизни человечества они (экосистемы) необходимы, поэтому наша задача сохранить баланс между упрощенными антропогенными и соседствующими с ними более сложными, с богатейшим генофондом, природными экосистемами, от которых они зависят.[ ...]

Первичная продуктивность экосистемы, сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ тканей продуцентов.[ ...]

Состояние экосистемы - численность и соотношение организмов - управляется и определяется потоком энерши, обеспечиваемой первичной ее продуктивностью: чем выше продуктивность, тем весомее биотическая часть экосистемы. Как было показано, продукт тиввооть экосистемы зависит от потока солнечной энергии, получаемого сиотемой. Однако это не единственный фактор, определяющий продуктивность. Ухудшение плодородия почвы веизбежво приводит к онижевию энергетического потенциала экое и о темы и деградации последней (опустынивание территории).[ ...]

17.1

Биологическая продуктивность экосистемы - скорость создания в них биомассы, т.е. массы тела живых организмов. Размерность продуктивности - масса/время площадь (объем).[ ...]

Мощность биоты экосистемы определяется её продукцией, выраженной в энергетических единицах. Скорость, с которой растения в процессе фотосинтеза ассимилируют энергию солнечного света и накапливают органические вещества, составляет биологическую продуктивность экосистемы, разность которой выражается как энергия/площадь, время или масса / площадь, время. Не все органические вещества, синтезированные в процессе фотосинтеза, включаются в растительную биомассу, т.е. не все они идут на увеличение размеров и числа растений. Некоторая часть их должна быть разложена самими растениями в процессе дыхания с тем, чтобы высвободить энергию, необходимую для биосинтеза и поддержания функций жизнедеятельности самих растений. Следовательно, первичная чистая биологическая продукция экосистемы Пч будет равна всей валовой продукции растений экосистемы Пв за вычетом потерь на дыхание самих растений Пд, т.е.[ ...]

Из табл. 1.3 хорошо видно, что максимально продуктивны экосистемы суши. Хотя площадь суши вдвое меньше, чем площадь, занимаемая океанами, ее экосистемы имеют годовую первичную продукцию углерода, более чем вдвое превышающую таковую Мирового Океана (52,8 млрд. тонн и 24,8 млрд. тонн соответственно) при относительной продуктивности наземных экосистем, в 7 раз превышающей продуктивность экосистем океана. Из этого, в частности, следует, что надежды на то, что полное освоение биологических ресурсов океана позволит человечеству решить продовольственную проблему, не очень обоснованны. По-видимому, возможности в этой области невелики - уже сейчас уровень эксплуатации многих популяций рыб, китообразных, ластоногих близок к критическому, для многих промысловых беспозвоночных - моллюсков, ракообразных и других, в связи со значительным падением их численности в природных популяциях стало экономически выгодным разведение их на специализированных морских фермах, развитие марикультуры. Примерно таково же и положение со съедобными водорослями, такими как ламинария (морская капуста) и фукус, а также водорослями, используемыми в промышленности для получения агар-агара и многих других ценнейших веществ.[ ...]

В настоящее время принято считать, что чем большее число видов составляет экосистему, тем выше возможности адаптации сообщества к меняющимся условиям существования (например, кратковременным или длительным изменениям климата, а также других факторов). В ходе эволюционного развития экосистем многократно происходила смена доминирующих видов. Зачастую наиболее часто встречающиеся виды оказывались неспособными выдержать изменения действия того или иного экологического фактора, а редкие виды оказывались более стойкими и получали преимущество (например, вымирание крупных пресмыкающихся и развитие млекопитающих в конце мелового периода). Продуктивность экосистемы, таким образом, сохраняется и даже увеличивается.[ ...]

Болота, обогащенные биогенами, представляют собой самые продуктивные экосистемы, в которых обитают стаи водной дичи и многие другие животные. Общая площадь болот и переувлажненных земель на планете составляет примерно 3 млн км2. Больше всего болот в Южной Америке (почти половина) и Евразии, совсем мало - в Австралии. Болота и заболоченные территории есть во всех географических зонах, но особенно много их в тайге. В нашей стране болота занимают около 9,5% территории, причем особую ценность представляют торфяные болота, аккумулирующие в себе значительные запасы теплоты.[ ...]

Различные экологические системы характеризуются различной продуктивностью, что следует учитывать при освоении тех или иных территорий, например под сельскохозяйственное пользование. Продуктивность экосистемы зависит от ряда факторов, в первую очередь от обусловленной климатическими условиями обеспеченности теплом и влагой (табл. 2.3 и 2.4). Наиболее продуктивными являются экосистемы мелководных лиманов.[ ...]

Объективные преимущества этого метода определяются тем, что функционирование любой экосистемы изначально поддерживается непрерывным потоком энергии через ее компоненты, а интенсивность этого потока определяет динамику и продуктивность экосистемы. Все без исключения материальные потоки производственной и иной деятельности человека всегда связаны с потоками энергии и имеют ту или иную энергоемкость. Естественные и техногенные потоки энергии всегда могут быть оценены количественно. Интенсивность энергетических потоков в силу их связи с физико-географическими факторами и уровнем экономического развития всегда может быть предсказана с высокой достоверностью. Энергетический обмен в экосистемах (наряду с круговоротом вещества) является одним из главных факторов устойчивости экосистем и их самовосстано-вительного потенциала.[ ...]

Насколько регулярно осуществляется круговорот любого элемента, в т. ч. и углерода, зависит продуктивность экосистемы, что важно для сельского хозяйства и выращивания лесов. Вмешательство человека нарушает процессы круговорота. Вырубка леса и сжигание топлива влияют на круговорот углерода.[ ...]

В табл. 9 показано, что лиманы как класс местообитания стоят в одном ряду с такими естественными продуктивными экосистемами, как дождевые тропические леса и коралловые рифы. Для лиманов характерна тенденция быть более продуктивными, чем море, с одной стороны, и пресноводные бассейны - с другой. Теперь мы вновь можем свести воедино причины высокой продуктивности (см. Ю. Одум, 1961; Шельске и Ю. Одум, 1961).[ ...]

ЗАкбн МАКСИМУМА [лат. maximum наибольшее] - количественное изменение экологических условий не может увеличить биологическую продуктивность экосистемы и хозяйственную производительность агросистемы сверх вешественно-энергетических лимитов, определяемых эволюционными свойствами биологических объектов и их сообществ.[ ...]

Фотоавтотрофы (растения) составляют основную массу биоты и полностью отвечают за образование всего нового органического вещества в экосистеме, т.е. являются первичными производителями продукции - продуцентами экосистем. Синтезированная автотрофами новая биомасса органического вещества - это первичная продукция, а скорость ее образования - биологическая продуктивность экосистемы. Автотрофы образуют первый трофический уровень любой полночленной экосистемы.[ ...]

Ключевое слово в приведенных выше определениях - спорость. Всегда необходимо учитывать элемент времени, т. е. речь должна идти о количестве энергии, фиксированной за определенное время. Таким образом, биологическая продуктивность отличается от «выхода» в химии или промышленности. В двух последних случаях процесс заканчивается появлением определенного количества того пли иного продукта, но в биологических сообществах процесс непрерывен во времени, так что обязательно надо относить продукцию к выбранной единице времени (например, говорить о количестве пищи, произведенном за день или за год). В общем продуктивность экосистемы говорит о ее «богатстве». В богатом, или продуктивном, сообществе может быть больше организмов, чем в менее продуктивном, но иногда это бывает и не так, если организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, на богатом пастбище, выедаемом скотом, урожай травы на корню, очевидно, будет гораздо меньше, чем на менее продуктивном пастбище, на которое в период измерений не выгоняли скот. Наличную биомассу или урожай на корню за данное время нельзя путать с продуктивностью. Студенты, изучающие экологию, часто путают эти две величины. Первичную продуктивность системы или продукцию компонента популяции обычно нельзя определить простым подсчетом и взвешиванием (т. е. «переписью») имеющихся организмов, хотя по данным об урожае на корню можно получить верные оценки чистой первичной продуктивности, если размеры организмов велики и живое вещество некоторое время накапливается, не расходуясь (пример - сельскохозяйственные культуры).[ ...]

Различие в воздействии двух основных типов загрязнения на энергетику системы показано на фиг. 216. При повышении поступления до критического уровня часто возникают резкие колебания (например, в цветении водорослей), а дальнейшее увеличение поступления этих загрязнений приводит к стрессу - система в сущности оказывается отравленной «избытком благ». Быстрота, с какой в отсутствие должного контроля может произойти переход от хорошего к плохому, вносит дополнительные трудности в распознавание загрязнения и воздействие на него (это видно по тому, как круто кривая / идет вниз). В каких пределах эта модель применима, мы покажем в гл. 21.[ ...]

Крайне пагубно на природе Западной Сибири сказалась разработка запасов нефти и газа. Там создана своеобразная пустыня: с исчерпанием минеральных ресурсов не остается никаких природных благ, только искореженная земля. Она требует реанимации в продуктивные экосистемы. Т акие пути либо известны, либо должны быть найдены. Вообще конкретные программы восстановления природно-ресурсного потенциала и поиски новых путей использования природы без ее разрушения достаточно перспективны.[ ...]

Таким образом, впервые предложенный критерий воздействия нооценоза на экосистему позволяет выразить это воздействие безразмерным численным показателем и по его величине охарактеризовать степень воздействия хозяйственной деятельности человека на продуктивность экосистемы. Критерий воздействия нооценоза на экосистему позволяет оценить ее продуктивность в зависимости от влияния предприятий, человеческого общества, продуктов его труда и вредных отходов производства как при функционировании нооценозов. так и при планировании их развития, а также при целенапрапенном видоизменении экологических пирамид при планировании и выборе стратегии хозяйственной деятельности.[ ...]

Вход системы - поток солнечной энергии. Большая часть ее рассеивается в виде теплоты. Часть энергии, эффективно поглощенная растениями, преобразуется при фотосинтезе в энергию химических связей углеводов и других органических веществ. Это - валовая первичная продукция экосистемы. Часть энергии теряется в процессе дыхания растений, а часть используется в других биохимических процессах в растении и в конечном счете также рассеивается в виде тепла. Оставшаяся часть новообразованных органических веществ обусловливает прирост биомассы растений - чистую первичную продуктивность экосистемы.[ ...]

Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Следовательно, первичная продуктивность экосистемы определяется как скорость, с которой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени.[ ...]

Важнейшим показателем при определении предельных нагрузок на окружающую среду является понятие качества среды. Качество среды - совокупность параметров, удовлетворяющих условиям существования человека (экологическая ниша) и условиям существования человеческого общества. В качестве критериев качества среды могут быть использованы биологическая продуктивность экосистемы, соотношение видов, состояния трофических систем и т. п. В США качество среды характеризуется системой специальных баллов. Сумма баллов в том или ином регионе определяет качество среды.[ ...]

Экологические сукцессии - это последовательная смена экосистем при постепенном направленном изменении условий среды, например, при нарастании (или убывании) влажности или богатства почвы, при изменении климата и т.д. В этом случае экологическое равновесие как бы «скользит»: параллельно (или с некоторым отставанием) с изменениями условий среды изменяется состав живых организмов и продуктивность экосистемы, постепенно роль одних видов убывает, а других - увеличивается, разные виды выбывают из состава экосистемы или, наоборот, пополняют его. Сукцессии могут вызываться внутренними и внешними (по отношению к экосистеме) факторами, протекать очень быстро или тянуться столетиями. Если изменение среды будет резким (пожар, разлив большого количества нефти, проход колесной техники в тундре), то экологическое равновесие разрушится.[ ...]

Когда из рек отводят воду, болота вдоль их русел, не подпитываясь паводками, пересыхают, и это также ведет к исчезновению многих видов растений и животных. Болота в природе играют большую роль в очищении воды, просачивающейся сквозь их толщу в грунтовые воды. Болота являются регуляторами речного стока, они питают родники и реки. Кроме того, болота, обогащенные биогенами, представляют собой наиболее продуктивные экосистемы, служат местообитаниями многих диких животных.[ ...]

С. С. Шварц пишет: «Климатические катастрофы, не выходящие, однако, за пределы многовековых колебаний, могут снизить численность мелких млекопитающих в десятки и сотни тысяч раз, но через 2-3 сезона размножения зверьки вновь восстанавливают свою. численность до оптимума. Кажущееся же незначительным снижение численности животных, вызванное антропогенными влияниями, нередко приводит к массовому вымиранию вида» . Сохранение или реконструкция достаточно сложной, многовидовой и продуктивной экосистемы в региональном масштабе требуют глубокого и тщательного научного анализа экосистемы региона, что, к сожалению, далеко не всегда возможно при нынешнем уровне развития экологии. Представляется, однако, справедливым следующий тезис: несмотря на сложность, дороговизну и длительность экологических разработок, они должны предшествовать любому хозяйственному мероприятию, которое может вызвать экологические сдвиги регионального масштаба.[ ...]

По мысли А. Н. Тетиора , Б. - ключ к решению проблемы восстановления экологического равновесия на урбанизированных территориях. БИОПОЛЕ, биологическое поле - поле, оказывающее воздействие на живые организмы. Природа такого воздействия не ясна; проявляется в виде электромагнитных и биоэнергетических процессов. БИОПОЛИТИКА - политика, в основе которой признание неравенства рас. Б. часто является оправданием агрессивных политических или даже военных актов. См. Расизм. БИОПРОДУКТИВНОСТЬ ЭКОСИСТЕМЫ - см. Биологическая продуктивность экосистемы. БИОРАЗНООБРАЗИЕ -см. Разнообразие биологическое.[ ...]

Организмами-производителями являются автотрофы - прибрежная растительность, водные многоклеточные и одноклеточные плавучие растения (фитопланктон), живущие до глубин, куда еще проникает свет. За счет энергии, поступающей через ввод, организмы-производители в процессе фотосинтеза синтезируют органическое вещество из воды и углекислого газа. Основным показателем мощности экосистемы является ее продуктивность, под которой понимают массу органического вещества в телах организмов-продуцентов. Продуктивность экосистемы зависит от количества света, воды, богатства почвы или воды органическими и минеральными соединениями.[ ...]

В условиях существенной реконструкции водных систем - полностью зарегулированный сток многих рек, создание сети разнообразных водохранилищ, использование большого числа водоемов в качестве водоемов-охладителей энергетических объектов, интенсивная эвтрофикация многих внутренних водоемов, переброска стока многих рек с севера на юг - необходим совершенно иной подход к решению проблемы повышения воспроизводства рыбных богатств. Для этого, по-видимому, еще не достаточно только детального знания экологии размножения и развития ценных видов рыб, а надо научиться искусственно формировать продуктивные экосистемы, привлекая для этих целей даже далеко не традиционные для нашей страны объекты разведения (рыбоводства). Если мы сумеем выяснить сложные процессы, связанные со степенью устойчивости и изменчивости биологических систем (организм, популяция, экосистемы), на основании детального и одностороннего анализа кинетики протекающих процессов на разном уровне биосистем и перейдем от простой формы эксплуатации рыбных ресурсов в водоемах к управлению продуктивностью водных экосистем, то мы сумеем не только предвидеть и предотвратить нежелательные для нас изменения в фауне рыб, но и повысить их продуктивность.[ ...]

Биологический мониторинг основывается на наблюдениях за параметрами окружающей среды на сети контрольных пунктов и носит локальный характер. Геосистемный мониторинг использует не только данные, полученные биологическим мониторингом, но и систему особых ключевых (тестовых) площадей и имеет региональный характер. Эти ключевые площади принято называть природными (геоэкологическими) тестовыми полигонами, на которых устанавливаются геосистемные тесты: ПДК (предельно допустимые концентрации), ЕССПС (естественная способность природной среды к самоочищению), ЭВБ (энергетически-вещественный баланс), БПЭ (биологическая продуктивность экосистемы) и др. В каждой природной зоне рекомендуют иметь по одному полигону.[ ...]

Особое экологическое значение имеет географическое происхождение степных видов. Представители родов северного происхождения, таких, как 8Ира, А горугоп и Роа, возобновляют рост ранней весной, достигают максимального развития в конце весны или начале лета (когда семена созрели), а в жаркую погоду как бы впадают в «полусон»; осенью их рост возобновляется и они остаются зелеными, несмотря на мороз. Представители родов южного происхождения, таких, как, Апс1-городоп, ВисМое и ВЫе1оиа, возобновляют рост в конце весны, растут непрерывно все лето, достигают максимума биомассы к концу лета или осенью и остальное время не растут. С точки зрения годовой продуктивности экосистемы в целом благоприятна смесь северных и южных злаков, особенно потому, что в одни годы дожди могут быть обильными весной или осенью, а в другие годы - в середине лета. Замена таких адаптированных смесей «монокультурами» приводит к колебаниям продуктивности (еще один простой экологический факт, который не понимают даже агрономы!).[ ...]

Палы играют особенно большую роль в лесных и степных районах умеренных зон и в тропических районах с засушливым сезоном. Во многих районах на западе или юго-востоке США трудно найти более или менее крупный участок, в котором хотя бы за последние 50 лет не было случая пожара. Чаще всего естественной причиной пожара служит удар молнии. Североамериканские индейцы намеренно выжигали леса и прерии. Таким образом, пожар был лимитирующим фактором еще задолго до того, как человек начал решительно изменять окружающую среду. К сожалению, неосторожным поведением современный человек часто так усиливал действие огня, что разрушал или повреждал ту самую продуктивную среду, которую хотел поддержать. Однако абсолютная защита от пожаров не всегда приводит к желанной цели, т. е. к повышению продуктивности экосистемы. Итак, стало ясно, что пожар надо рассматривать как экологический фактор наряду с температурой, атмосферными осадками и почвой и изучать этот фактор без каких бы то ни было предрассудков. Сейчас, как и в прошлом, роль огня как друга или врагг цивилизации целиком зависит от научных знаний и от контроля над ним.[ ...]

Существенно различаются методы исследования биологического и геоэкологического мониторинга. Биологический мониторинг базируется на систематическом слежении (наблюдении и контроле) за некоторыми параметрами (индикаторами) окружающей среды (геофизическими, биохимическими и биологическими), имеющими биоэкологические значения, на сети контрольных пунктов, т. е. имеет в основном локальный характер. Ключевые площади можно называть природными (геоэкологическими) тестовыми полигонами; на них разрабатываются геосистемные тесты (индикаторы) типа ПДК, ЕССПС, ЭВБ, БПЭ для мониторинга окружающей среды в целом.[ ...]

Специальный термин пермеанты был предложен Шелфордом для обозначения высокоподвижных животных, таких, как птицы, млекопитающие и летающие насекомые, которые соответствуют нектону водных экосистем. Они свободно передвигаются между ярусами и подсистемами и между развивающимися и зрелыми стадиями растительности, которые обычно образуют мозаику в большинстве ландшафтов. У многих животных разные стадии жизненного цикла проходят в разных ярусах или сообществах, так что эти животные используют все преимущества каждого из сообществ.[ ...]

Глобальное истощение окружающей среды прогрессирующей рыночной экономикой может сопровождаться поддерживанием стационарного состояния и даже видимого улучшения определенных локальных участков (регионов, стран) на основе разомкнутого круговорота веществ, т.е. непрерывного внесения необходимого количества потребляемых веществ и непрерывного удаления отходов. Однако ра-зомкнутость локального круговорота означает, что существование искусственно поддерживаемого в стационарном состоянии участка сопровождается ухудшением состояния окружающей среды в остальной части биосферы. Цветущий сад, озеро или река, поддерживаемые в стационарном состояние на базе разомкнутого круговорота веществ, гораздо опаснее для биосферы в целом, чем заброшенная, превращенная в пустыню земля. В естественных пустынях продолжает действовать принцип Ле Шателье. Лишь величина компенсации возмущений оказывается ослабленной по сравнению с более продуктивными экосистемами.[ ...]

В любой момент времени большая часть фосфора находится в связанном состоянии - либо в организмах, либо в отложениях (в органическом детрите и неорганических частицах). Не более 10% фосфора присутствует в озерах в растворимой форме. Быстрое движение в обе -стороны (обмен) идет постоянно, но существенный обмен между твердой и растворимой формами часто нерегулярен, идет «рывками», с периодами, когда фосфор только уходит из отложений, и периодами, когда он только усваивается организмами или поступает в отложения, что связано с сезонными изменениями температуры и активности организмов. Как правило, связывание фосфора идет быстрее, чем освобождение. Растения быстро накапливают фосфор в темноте и в других условиях, когда не могут его использовать. За период быстрого роста продуцентов (обычно это бывает весной) весь доступный фосфор может оказаться связанным в продуцентах и консументах. Тогда активность -системы снижается, пока не разложатся трупы, фекалии и не высвободятся биогенные элементы. Однако концентрация фосфора в данный конкретный момент мало может сказать о продуктивности экосистемы. Низкое содержание растворенного фосфата может означать, либо что -система истощена, либо что метаболизм ее весьма интенсивен; только измерив скорость потока вещества, можно понять ситуацию. Помрой (1960) так формулирует это важное положение: «Измерение концентрации растворенного фосфата в природных водоемах не дает представления о доступности фосфора. Большая его часть или даже весь фосфор системы в любой момент может находиться в живых организмах, но при этом он может совершать полный «оборот» за один час, и в результате для организмов, способных поглощать фосфор из очень разбавленных растворов, его запас все время будет достаточным. Такие системы долгое время могут оставаться биологически стабильными при кажущемся отсутствии доступного фосфора. Изложенные здесь данные позволяют предположить, что быстрый поток фосфора типичен для высокопродуктивных систем и что для поддержания высокой продукции ■органики скорость потока важнее, чем концентрация элемента».

Понятие продуктивности экосистем

Экосистема, или экологическая система -- биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.

Пример экосистемы -- пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз.

Понятие экосистемы:

Определения

1. Любое единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создаёт чётко определённую трофическую структуру, видовое разнообразие и круговорот веществ (обмен веществами и энергией между биотической и абиотической частями) внутри системы, представляет собой экологическую систему, или экосистему.

2. Сообщество живых организмов вместе с неживой частью среды, в которой оно находится, и всеми разнообразными взаимодействиями называют экосистемой.

3. Любую совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ, называют экологической системой или экосистемой.

4. Биогеоценоз -- взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергииhttp://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BE%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 - cite_note-biogeobse-5 .

Продуктивность экосистем -- это количество органического вещества (в единицах массы или энергии), производимой с единицы поверхности за единицу времени. Например, производительность тропического леса -- кг/м кв в год и т.д.

Производительность биологическая (экосистем) бывает первичной, вторичной, чистой и валовой.

Первичная продуктивность (или продукция) -- это биомасса или энергия, созданная продуцентами в единицу времени на единицу пространства. Различают валовую первичную продуктивность (ВПП) -- скорость, с которой солнечная энергия превращается продуцентами на органическое соединение во время фотосинтеза (ее выражают в кал/м кв в час), и чистую первичную продуктивность (ЧПП) -- энергию, что идет на прирост или поглощается деструктором:

ВПП = ЧПП + Д,

где ВПП -- валовая первичная продуктивность; ЧПП -- чистая первичная продуктивность; Д -- энергия дыхания.

Вторичная производительность (или вторичная продукция) -- общее количество органического вещества, которая произведена всеми гетеротрофами на единицу площади за единицу времени. Вторичная производительность также делится на валовую и чистую.

Продуктивность основных типов природных биомов

продуктивность природная биом агроэкосистема

Биом - это природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных (живое население), составляющих географическое единство. Для разграничения наземных биомов, кроме физико-географических условий среды, используют сочетания жизненных форм растений, их составляющих. Например, в лесных биомах доминирующая роль принадлежит деревьям, в тундре - многолетним травам, в пустыне - однолетним травам, ксерофитам и суккулентам.

Продвигаясь с севера к экватору, можно выделить девять основных типов сухопутных биомов. Приведем их краткую характеристику.

1. Тундра. Расположена между полярными льдами и таежными лесами к югу. Характерной особенностью этого биома является малое годовое количество осадков - всего 250 мм в год. Основные лимитирующие факторы - низкая температура и короткий сезон вегетации.

2. Тайга (биом бореальных (северных) хвойных лесов). Это один из самых обширных по площади биомов. Здесь растут вечнозеленые хвойные древесные породы: лиственница, ель, пихта, сосна. Из лиственных обычна примесь ольхи, березы, осины. Крупных животных мало, в основном это лоси и олени, но обитает большое количество хищников: куницы, рыси, волки, росомахи, норки, соболи. Многочисленные грызуны.

3. Листопадные леса умеренной зоны. В умеренном поясе, где достаточно влаги (800-1500 мм в год), а жаркое лето сменяется холодной зимой, развились леса определенного типа. К существованию в таких условиях приспособились деревья, сбрасывающие листву в неблагоприятное время года: дуб, бук, клен, граб, орешник. Вперемешку с ними встречаются здесь и сосна, и ель. Среди представителей животного мира можно отметить кабана, волка, оленя, лисицу, медведя, а также дятла, синицу, дрозда, зяблика и др. Современная лесная растительность здесь сформировалась под непосредственным влиянием человека.

4. Степи умеренной зоны. Степи занимают внутренние пространство евразийского, североамериканского континентов, юг Южной Америки и Австралии. Решающий фактор существования степей - климат. Осадков здесь недостаточно для существования деревьев, но и не настолько мало, чтобы образовались пустыни. В год выпадает от 250 до 750 мм осадков. Почвы степей с высокими травами богаты гумусом, поскольку к концу лета травы погибают и быстро разлагаются. В настоящее время здесь можно встретить порой только одомашненных коров, лошадей, овец и коз.

5. Растительность средиземноморского типа. Этот биом носит специфическое название - чапарраль. Его распространение приурочено к областям с мягкими дождливыми зимами и нередко засушливым летом. Преобладает жестколистная растительность с толстыми и глянцевыми листьями. В Австралии такую растительность составляют деревья и кустарники из рода эвкалипт. Из животных встречаются кролики, древесные крысы, бурундуки, некоторые виды оленей. В этом биоме важную роль играют пожары, которые, с одной стороны, благоприятствуют росту трав и кустарников (в почву возвращаются элементы питания), а с другой - создают естественный барьер от вторжения пустынной растительности.

6. Пустыни. Биом пустынь характерен для засушливых и полузасушливых зон Земли, где выпадает менее 250 мм осадков. Пустыни занимают около 1/5 поверхности суши. Среди них выделяют:

¦ пустыни, где годами не выпадает ни одного дождя (центральная Сахара, пустыни Такла-Макан в Центральной Азии, Атакама в Южной Америке, Ла-Жойа в Перу и Асуан в Ливии). В среднем такие пустыни получают около 10 мм осадков в год;

¦ пустыни, где выпадает менее 100 мм осадков в год (растительность здесь сосредоточивается вдоль русел рек, наполняющихся только после дождя);

¦ пустыни, где выпадает от 100 до 200 мм" осадков в год (возделывать культуры здесь невозможно, но многолетняя растительность встречается повсюду).

Пустынные животные выживают, поедая запасающие воду растения. Из крупных животных отметим верблюда, который может долгое время обходиться без воды, при условии периодического ее «запасания». Для мелких животных пустынь главным источником воды в основном является влага, содержащаяся в поедаемых ими кормах. Некоторые из этих животных вообще не умеют пить воду

7. Тропические саванны и лугопастбищные земли. Данный биом распространен на довольно бедных почвах, что послужило причиной относительной его сохранности.

Биом располагается по обеим сторонам от экваториальной зоны между тропиков. Типичный пейзаж саванны - высокая трава с редкостоящими деревьями из родов акация, баобаб, древовидные молочаи. Растения вынуждены здесь приспосабливаться к сухим сезонам и пожарам.

Видовое разнообразие животных в саваннах значительно меньше, чем в тропических лесах, но отдельные виды выделяются высокой плотностью особей, образуя стада, табуны, стаи, прайды. В саваннах Африки пасется такое количество копытных, которое не встречается ни в одном другом биоме. Растениями питаются многие звери и птицы: бородавочники, зебры, жирафы, слоны, цесарки, страусы.

8. Тропическое или колючее редколесье. Это в основном светлые редкослойные лиственные леса и колючие, причудливо изогнутые кустарники. Данный биом характерен для южной, юго-западной Африки и юго-западной Азии. Монотонно-однообразная растительность иногда украшается величественными баобабами. Лимитирующий фактор здесь - неравномерное распределение осадков, хотя в целом их выпадает достаточное количество.

9. Тропические леса. Биом занимает тропические области Земли в бассейнах Амазонки и Ориноко в Южной Америке; бассейны Конго, Нигера и Замбези в Центральной и Западной Африке, Мадагаскар, Индо-Малайскую область и Борнео-Новую Гвинею. Тропики обычно называют джунглями.

В кронах обитает многочисленное и разнообразное население. Среди птиц, обитающих в кронах, немало таких, которые не слишком хорошо летают, в основном они прыгают и лазают (птицы-носороги, райские птицы).

Растительность тропического леса предстает перед путешественником сплошной стеной растений, поднимающихся на высоту до 75 м (рис. 6.12). Главной особенностью тропических лесов является то, что произрастают они на крайне бедных почвах. Верхний слой почвы не превышает 5 см на склонах. Под ним обычно лежит красная латеритная глина, лишенная питательных веществ.

Как вы уже знаете, вещества в экосистеме используются многократно, превращаясь по принципу круговорота. Причем в движении веществ участвуют живые организмы, поэтому круговорот веществ является биогенным. Он начинается с поступления химических элементов из почвы (вода и минеральные соли) и атмосферы (углекислый газ) в живые организмы — продуценты. Продуценты синтезируют органические вещества, часть которых дальше передается по пищевой цепи консументам, а часть остается неиспользованной. Определенное количество органических веществ продуцентов и консументов возвращается в почву с трупным материалом, экскрементами (детрит). В результате деятельности редуцентов они превращаются в минеральные вещества, атомы которых снова вовлекаются продуцентами в круговорот. Но совершенно замкнутым круговорот веществ быть не может. Атомы некоторых химических элементов могут на длительное время выводиться из круговорота, накапливаясь в литосфере в составе известняка (мела), каменного угля, природного газа, нефти, торфа, руд различных металлов.

Превращение энергии в экосистеме идет несколько иначе, чем превращение веществ. Поток солнечной энергии, поступивший в экосистему, как бы разделяется на два русла — пастбищное и детритное . В каждом из них энергия расходуется на поддержание жизнедеятельности организмов. Соотношение количества энергии, проходящей через пастбищные и детритные цепи, в разных типах экосистем разное. Потеря энергии в пищевых цепях может быть восполнена только за счет поступления новых порций солнечной энергии или готового органического вещества (энергия корма). Поэтому в экосистеме не может быть круговорота энергии, аналогичного круговороту веществ. Экосистема функционирует только за счет направленного потока энергии.

Благодаря многократному использованию вещества и постоянному притоку энергии экосистемы способны длительно поддерживать стабильное существование. Населяющие их продуценты, консументы и редуценты при этом обеспечивают возобновление своей биомассы, несмотря на то что запас веществ в биосфере ограничен и не пополняется. Скорость возобновления биомассы организмов экосистемы называется биологической продуктивностью. Она выражается количеством образующейся продукции.

Продукция экосистемы — количество биомассы, образующейся в экосистеме на единице площади или в единице объема биотопа за единицу времени.

Экосистемы сильно различаются по количеству образующейся продукции. Она убывает в следующей последовательности: тропический лес — субтропический лес — лес в зоне умеренного климата — степь — океан — пустыня.

Образующаяся продукция может по-разному расходоваться в разных экосистемах. Если скорость ее потребления отстает от скорости образования, то это ведет к приросту биомассы экосистемы и накоплению избытка детрита. В результате будет наблюдаться образование торфа на болотах, зарастание мелких водоемов, создание запаса подстилки в таежных лесах и т. д. В стабильных экосистемах практически вся образующаяся продукция тратится в сетях питания. В результате биомасса экосистемы остается практически постоянной.

Биомасса экосистемы — общее количество органического вещества всех живых организмов, накопившегося в данной экосистеме за предыдущий период ее существования.

Биомасса экосистемы выражается в единицах сырой массы или массы сухого органического вещества на единицу площади: в г/м 2 , кг/м 2 , кг/га, т/км 2 (наземные экосистемы) или на единицу объема (водные экосистемы).

Биомасса экосистемы и ее биологическая продуктивность могут сильно отличаться. Например, в густом лесу общая биомасса организмов очень велика по сравнению с ее годовым приростом — продукцией. Тогда как в пруду небольшая накопленная биомасса фитопланктона имеет высокую скорость возобновления — образования продукции за счет быстрого размножения.

Первичная и вторичная продукция

В зависимости от того, какие вещества и энергия используются для возобновления биомассы, в экосистеме различают первичную и вторичную продуктивность . Соответственно, образующаяся при этом продукция называется первичной и вторичной.

Первичная продукция — биомасса, созданная автотрофными организмами (продуцентами) из минеральных веществ в процессе фото- или хемосинтеза. Основное количество возникающих таким путем органических веществ создают зеленые растения. Эффективность превращения поглощаемой ими солнечной энергии в энергию химических связей органических веществ составляет в среднем 1 %. Эта закономерность получила название правила 1 % . Первичная продукция является очень важной характеристикой экосистемы. Именно накопленная в ней энергия позволяет существовать всем гетеротрофным организмам (консументам и редуцентам) и создавать свою продукцию.

Вторичная продукция — биомасса, созданная гетеротрофными организмами (консументами и редуцентами) из органического вещества после его частичного расщепления.

Как первичная, так и вторичная продукция на трофических уровнях в пастбищных цепях могут использоваться для разных целей. Вся первичная продукция, созданная продуцентами в результате фотосинтеза, называется валовой первичной продукцией (ВПП). Она является единственным источником энергии для консументов. Та часть продукции предыдущего трофического уровня, которая потребляется организмами последующего трофического уровня, условно называется кормом (К). Часть корма на каждом трофическом уровне затрачивается организмами на поддержание процессов жизнедеятельности — траты на дыхание (ТД). А вторая его часть после частичного расщепления используется на образование биомассы консументов — вторичной продукции (ВтП). Продукция продуцентов, которая может быть съедена консументами I порядка, называется чистой первичной продукцией (ЧПП).

Однако не вся продукция, образовавшаяся на трофическом уровне, переходит на следующий уровень в качестве корма. Часть ее, как правило, остается на трофическом уровне в качестве запаса — неиспользуемая продукция (НП). Совокупность неиспользованной продукции всех трофических уровней экосистемы составляет чистую продукцию сообщества.

Чистая продукция сообщества (ЧПС) — часть продукции экосистемы, которая может быть использована в пределах самой экосистемы для ее развития. Она также может быть изъята человеком без ущерба для экосистемы. В молодых экосистемах, где численность консументов еще невелика, запас чистой продукции сообщества большой. Такие экосистемы можно вовлекать в хозяйственный оборот. По мере усложнения видового состава экосистемы количество чистой продукции сообщества постепенно снижается. На конечной стадии развития экосистемы оно приближается к нулю. Вмешательство в такие равновесные экосистемы чревато нарушением пищевых связей между организмами и может привести к разрушению экосистем.

При распределении первичной и вторичной продукции на трофических уровнях экосистемы соблюдается балансовое равенство . Это значит, что на каждом трофическом уровне сумма всех видов продукции равна количеству продукции, поступившей из предыдущего уровня в качестве корма. При решении задач на балансовое равенство следует учитывать следующие закономерности распределения видов продукции в экосистеме:

  1. валовая первичная продукция (ВПП) = траты на дыхание (ТД I) + чистая первичная продукция (ЧПП);
  2. чистая первичная продукция (ЧПП) = неиспользуемая продукция (НП I) + корм (К II);
  3. корм (К II) = траты на дыхание (ТД II) + вторичная продукция (ВтП II);
  4. вторичная продукция (ВтП II) = неиспользуемая продукция (НП II) + корм (К III) и т.д;
  5. чистая продукция сообщества (ЧПС) = неиспользуемая продукция (НП I) + неиспользуемая продукция (НП II) + … + неиспользуемая продукция (НП n).

Римская цифра в подстрочном индексе обозначает номер трофического уровня в пищевой цепи.

В экосистеме происходит непрерывный круговорот веществ и направленный поток энергии. Благодаря этому идет образование биомассы организмов. Скорость возобновления биомассы называется биологической продуктивностью. Она выражается количеством продукции — биомассой, образующейся на единице площади или в единице объема за единицу времени. Различают первичную и вторичную продукции. Вся неиспользованная продукция называется чистой продукцией сообщества.

В процессе жизнедеятельности биоценоза создается и расходуется органическое вещество, т. е. соответствующая экосистема обладает определенной продуктивностью биомассы. Биомассу измеряют в единицах массы или выражают количеством энергии, заключенной в тканях.

Понятия «продукция» и «продуктивность» в экологии (как и в биологии) имеют различный смысл.

Продуктивность - это скорость производства биомассы в единицу времени, которую нельзя взвесить, а можно только рассчитать в единицах энергии или накопления органических веществ. В качестве синонима термина «продуктивность» Ю. Одум предложил использовать термин «скорость продуцирования».

Продуктивность экосистемы говорит о ее «богатстве». В богатом или продуктивном сообществе больше организмов, чем в менее продуктивном, хотя иногда бывает и наоборот, когда организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, урожай травы на корню богатого пастбища, выедаемого скотом, может быть гораздо меньше, чем на менее продуктивном пастбище, на которое не выгоняли скот.

Различают также продуктивность текущую и общую. Например, в некоторых конкретных условиях 1 га соснового леса способен за период своего существования и роста образовать 200 м 3 древесной массы - это его общая продуктивность. Однако за один год этот лес создает всего лишь около 2 м 3 древесины, что является текущей продуктивностью или годовым приростом.

При поедании одних организмов другими пища (вещество и энергия) переходит с одного трофического уровня на последующий. Непереваренная часть пищи выбрасывается. Животные, обладающие пищеварительным каналом, выделяют фекалии (экскременты) и конечные органические отходы метаболизма (экскреты), например мочевину; и в том, и в другом случае содержится некоторое количество энергии. Как животные, так и растения теряют часть энергии при дыхании.

Энергию, оставшуюся после потерь из-за дыхания, пищеварения, экскреции, организмы используют для роста, размножения и процессов жизнедеятельности (мышечная работа, поддержание температуры теплокровных животных и пр.). Затраты энергии на терморегуляцию зависят от климатических условий и времени года, особенно велики различия между гомойотермными и пойкилотермными животными. Теплокровные, получив преимущество при неблагоприятных и нестабильных условиях среды, потеряли в продуктивности.

Расход потребленной животными энергии определяется уравнением

РОСТ + ДЫХАНИЕ (ЖИЗНЕДЕЯТЕЛЬНОСТЬ) + РАЗМНОЖЕНИЕ +

ФЕКАЛИИ + ЭКСКРЕТЫ = ПОТРЕБЛЕННАЯ ПИЩА.

В целом, травоядные усваивают пищу почти в два раз менее эффективно, чем хищники. Это объясняется тем, что растения содержат большое количество целлюлозы, а порой и древесины (включающей целлюлозу и лигнин), которые плохо перевариваются и не могут служить источником энергии для большинства травоядных. Энергия, заключенная в экскрементах и экскретах, передается детритофагам и редуцентам, поэтому для экосистемы, в целом, она не теряется.

Сельскохозяйственные животные всегда, даже при содержании на пастбище на подножном корму, отличаются более высокой продуктивностью, т. е. способностью более эффективно использовать потребленный корм для создания продукции. Главная причина состоит в том, что эти животные освобождены от значительной части энергетических расходов, связанных с поиском корма, с защитой от врагов, непогоды и т. д.

Первичная продуктивность экосистемы, сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ тканей продуцентов.

Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:

валовая первичная продуктивность - общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20 % производимой химической энергии;

чистая первичная продуктивность - скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней;

чистая продуктивность сообщества - скорость общего накопления органических веществ, оставшихся после потребления гетеротрофами - консументами (чистая первичная продукция минус потребление гетеротрофами). Она обычно измеряется за какой-то период, например вегетационный период роста и развития растений или за год в целом;

вторичная продуктивность - скорость накопления энергии консументами. Ее не делят на «валовую» и «чистую», так как консументы потребляют лишь ранее созданные (готовые) питательные вещества, расходуя их на дыхание и секреторные нужды, а остальное превращая в собственные ткани. Ежегодно на суше растения образуют в пересчете на сухое вещество 1,7 · 10 11 т биомассы, эквивалентной 3,2·10 18 кДж энергии - такова чистая первичная продуктивность. Однако с учетом затраченного на дыхание валовая первичная продуктивность (работоспособность) наземной растительности составляет около 4,2 10 18 кДж.

Показатели первичной и вторичной продуктивности для основных экосистем приведены в табл. 8.1.

Таблица 8.1. Первичная и вторичная продуктивность экосистем Земли (по Н. Ф. Реймерсу)

Экосистемы Площадь, млн км 2 Средняя чистая первичная продуктивность, г/см 2 в год Общая чистая первичная продуктивность, млрд т в год Вторичная продуктив-ность, млн т в год
Континентальные (в целом) в том числе:
влажные тропические леса 37,4
вечнозеленые леса умеренных широт 6,5
листопадные леса умеренных широт 8,4
тайга 9,6
саванна 13,5
тундры 1,1
пустыни и полупустыни 1,6
болота 4,0
озера и водотоки 0,5
земли, возделываемые человеком 9,1
Морские (в целом) в том числе: 55,0
открытый океан 41,5
апвелинги (зоны подъема вод) 0,4 0,2
континентальный шельф 9,6
рифы и заросли водорослей 0,6 1,6
эстуарии 1,4 2,1
биосфера (в целом) 170,0

Первичная продукция, доступная гетеротрофам, а человек относится именно к ним, составляет максимум 4 % от общей энергии Солнца, поступающей к поверхности Земли. Поскольку на каждом трофическом уровне энергия теряется, для всеядных организмов (в том числе и для человека) наиболее эффективный способ извлечения энергии - потребление растительной пищи (вегетарианство). Однако необходимо учитывать также следующее:

Животный белок содержит больше незаменимых аминокислот, и лишь некоторые бобовые (например, соя) приближаются к нему по своей ценности;

Растительный белок переваривается труднее, чем животный, из-за необходимости предварительно разрушить жесткие клеточные стенки;

В ряде экосистем животные добывают пищу на большой территории, где не выгодно выращивать культурные растения (это неплодородные земли, на которых пасутся овцы или северные олени).

Так, у человека около 8 % белков ежедневно выводится из организма (с мочой) и вновь синтезируется. Для полноценного питания необходимо сбалансированное поступление аминокислот, подобных тем, что содержатся в тканях животных.

При отсутствии какой-либо важной для организма человека аминокислоты (например, в злаках) при метаболизме усваивается меньшая доля белков. Сочетание в рационе питания бобовых и зерновых обеспечивает лучшее использование белка, чем при потреблении каждого из этих видов пищи в отдельности.

В более плодородных прибрежных водах продуцирование приурочено к верхнему слою воды толщиной около 30 м, а в более чистых, но бедных водах открытого моря зона первичного продуцирования может простираться вглубь на 100 м и ниже. Поэтому прибрежные воды выглядят темно-зелеными, а океанические - синими. Во всех водах пик фотосинтеза приходится на слой воды, расположенный непосредственно под поверхностным слоем, так как циркулирующий в воде фитопланктон адаптирован к сумеречному освещению и яркий солнечный свет тормозит его жизненные процессы.


Похожая информация.


КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека