Корреляционный анализ устанавливает. Корреляционный анализ спирмена

Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной . Если изучаются более чем две переменные – множественной .

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

Применение статистических методов при обработке материалов психологических исследований дает большую возможность извлечь из экспериментальных данных полезную информацию. Одним из самых распространенных методов статистики является корреляционный анализ.

Термин «корреляция» впервые применил французский палеонтолог Ж. Кювье, который вывел «закон корреляции частей и органов животных» (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел английский биолог и статистик Ф. Гальтон (не просто «связь» – relation , а «как бы связь» – corelation ).

Корреляционный анализ – это проверка гипотез о связях между переменными с использованием коэффициентов корреляции, двумерной описательной статистики, количественной меры взаимосвязи (совместной изменчивости) двух переменных. Таким образом, это совокупность методов обнаружения корреляционной зависимости между случайными величинами или признаками.

Корреляционный анализ для двух случайных величин заключает в себе:

  • построение корреляционного поля и составление корреляционной таблицы;
  • вычисление выборочных коэффициентов корреляции и корреляционных отношений;
  • проверку статистической гипотезы значимости связи.

Основное назначение корреляционного анализа – выявление связи между двумя или более изучаемыми переменными, которая рассматривается как совместное согласованное изменение двух исследуемых характеристик. Данная изменчивость обладает тремя основными характериcтиками: формой, направлением и силой.

По форме корреляционная связь может быть линейной или нелинейной. Более удобной для выявления и интерпретации корреляционной связи является линейная форма. Для линейной корреляционной связи можно выделить два основных направления: положительное («прямая связь») и отрицательное («обратная связь»).

Сила связи напрямую указывает, насколько ярко проявляется совместная изменчивость изучаемых переменных. В психологии функциональная взаимосвязь явлений эмпирически может быть выявлена только как вероятностная связь соответствующих признаков. Наглядное представление о характере вероятностной связи дает диаграмма рассеивания – график, оси которого соответствуют значениям двух переменных, а каждый испытуемый представляет собой точку.

В качестве числовой характеристики вероятностной связи используют коэффициенты корреляции, значения которых изменяются в диапазоне от –1 до +1. После проведения расчетов исследователь, как правило, отбирает только наиболее сильные корреляции, которые в дальнейшем интерпретируются (табл. 1).

Критерием для отбора «достаточно сильных» корреляций может быть как абсолютное значение самого коэффициента корреляции (от 0,7 до 1), так и относительная величина этого коэффициента, определяемая по уровню статистической значимости (от 0,01 до 0,1), зависящему от размера выборки. В малых выборках для дальнейшей интерпретации корректнее отбирать сильные корреляции на основании уровня статистической значимости. Для исследований, которые проведены на больших выборках, лучше использовать абсолютные значения коэффициентов корреляции.

Таким образом, задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

В настоящее время разработано множество различных коэффициентов корреляции. Наиболее применяемыми являются r -Пирсона, r -Спирмена и τ -Кендалла. Современные компьютерные статистические программы в меню «Корреляции» предлагают именно эти три коэффициента, а для решения других исследовательских задач предлагаются методы сравнения групп.

Выбор метода вычисления коэффициента корреляции зависит от типа шкалы, к которой относятся переменные (табл. 2).

Для переменных с интервальной и с номинальной шкалой используется коэффициент корреляции Пирсона (корреляция моментов произведений). Если, по меньшей мере, одна из двух переменных имеет порядковую шкалу или не является нормально распределенной, используется ранговая корреляция по Спирмену или

t-Кендалла. Если же одна из двух переменных является дихотомической, можно использовать точечную двухрядную корреляцию (в статистической компьютерной программе SPSS эта возможность отсутствует, вместо нее может быть применен расчет ранговой корреляции). В том случае если обе переменные являются дихотомическими, используется четырехполевая корреляция (данный вид корреляции рассчитываются SPSS на основании определения мер расстояния и мер сходства). Расчет коэффициента корреляции между двумя недихотомическими переменными возможен только тогда, кода связь между ними линейна (однонаправлена). Если связь, к примеру, U -образная (неоднозначная), коэффициент корреляции не пригоден для использования в качестве меры силы связи: его значение стремится к нулю.

Таким образом, условия применения коэффициентов корреляции будут следующими:

  • переменные, измеренные в количественной (ранговой, метрической) шкале на одной и той же выборке объектов;
  • связь между переменными является монотонной.

Основная статистическая гипотеза, которая проверяется корреляционным анализом, является ненаправленной и содержит утверждение о равенстве корреляции нулю в генеральной совокупности H 0: r xy = 0. При ее отклонении принимается альтернативная гипотеза H 1: r xy ≠ 0 о наличии положительной или отрицательной корреляции – в зависимости от знака вычисленного коэффициента корреляции.

На основании принятия или отклонения гипотез делаются содержательные выводы. Если по результатам статистической проверки H 0: r xy = 0 не отклоняется на уровне a, то содержательный вывод будет следующим: связь между X и Y не обнаружена. Если же при H 0 r xy = 0 отклоняется на уровне a, значит, обнаружена положительная (отрицательная) связь между X и Y . Однако к интерпретации выявленных корреляционных связей следует подходить осторожно. С научной точки зрения, простое установление связи между двумя переменными не означает существования причинно-следственных отношений. Более того, наличие корреляции не устанавливает отношения последовательности между причиной и следствием. Оно просто указывает, что две переменные взаимосвязаны между собой в большей степени, чем это можно ожидать при случайном совпадении. Тем не менее, при соблюдении осторожности применение корреляционных методов при исследовании причинно-следственных отношений вполне оправдано. Следует избегать категоричных фраз типа «переменная X является причиной увеличения показателя Y ». Подобные утверждения следует формулировать как предположения, которые должны быть строго обоснованы теоретически.

Подробное описание математической процедуры для каждого коэффициента корреляции дано в учебниках по математической статистике ; ; ; и др. Мы же ограничимся описанием возможности применения этих коэффициентов в зависимости от типа шкалы измерения.

Корреляция метрических переменных

Для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке, применяется коэффициент корреляции r -Пирсона . Сам коэффициент характеризует наличие только линейной связи между признаками, обозначаемыми, как правило, символами X и Y . Коэффициент линейной корреляции является параметрическим методом и его корректное применение возможно только в том случае, если результаты измерений представлены в шкале интервалов, а само распределение значений в анализируемых переменных отличается от нормального в незначительной степени. Существует множество ситуаций, в которых его применение целесообразно. Например: установление связи между интеллектом школьника и его успеваемостью; между настроением и успешностью выхода из проблемной ситуации; между уровнем дохода и темпераментом и т. п.

Коэффициент Пирсона находит широкое применение в психологии и педагогике. Например, в работах И. Я. Каплуновича и П. Д. Рабиновича, М. П. Нуждиной для подтверждения выдвинутых гипотез был использован расчет коэффициента линейной корреляции Пирсона.

При обработке данных «вручную» необходимо вычислить коэффициент корреляции, а затем определить p -уровень значимости (в целях упрощения проверки данных пользуются таблицами критических значений r xy , которые составлены с помощью этого критерия). Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем –1. Эти два числа +1 и –1 являются границами для коэффициента корреляции. Когда при расчете получается величина, большая +1 или меньшая –1, это свидетельствует, что произошла ошибка в вычислениях.

При вычислениях на компьютере статистическая программа (SPSS, Statistica) сопровождает вычисленный коэффициент корреляции более точным значением p -уровня.

Для статистического решения о принятии или отклонении H 0 обычно устанавливают α = 0,05, а для большого объема наблюдений (100 и более) α = 0,01. Если p ≤ α, H 0 отклоняется и делается содержательный вывод, что обнаружена статистически достоверная (значимая) связь между изучаемыми переменными (положительная или отрицательная – в зависимости от знака корреляции). Когда p > α, H 0 не отклоняется, содержательный вывод ограничен констатацией, что связь (статистически достоверная) не обнаружена.

Если связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует проверить возможные причины недостоверности связи.

Нелинейность связи – для этого проанализировать график двумерного рассеивания. Если связь нелинейная, но монотонная, перейти к ранговым корреляциям. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, и вычислить корреляции отдельно для каждой части выборки, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака.

Наличие выбросов и выраженная асимметрия распределения одного или обоих признаков. Для этого необходимо посмотреть гистограммы распределения частот обоих признаков. При наличии выбросов или асимметрии исключить выбросы или перейти к ранговым корреляциям.

Неоднородность выборки (проанализировать график двумерного рассеивания). Попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции:

  • связь обусловлена выбросами . При наличии выбросов перейти к ранговым корреляциям или исключить выбросы;
  • связь обусловлена влиянием третьей переменной . Если есть подобное явление, необходимо вычислить корреляцию не только для всей выборки, но и для каждой группы в отдельности. Если «третья» переменная метрическая – вычислить частную корреляцию.

Коэффициент частной корреляции r xy -z вычисляется в том случае, если необходимо проверить предположение, что связь между двумя переменными X и Y не зависит от влияния третьей переменной Z . Очень часто две переменные коррелируют друг с другом только за счет того, что обе они согласованно меняются под влиянием третьей переменной. Иными словами, на самом деле связь между соответствующими свойствами отсутствует, но проявляется в статистической взаимосвязи под влиянием общей причины. Например, общей причиной изменчивости двух переменных может являться возраст при изучении взаимосвязи различных психологических особенностей в разновозрастной группе. При интерпретации частной корреляции с позиции причинности следует быть осторожным, так как если Z коррелирует и с X и с Y , а частная корреляция r xy -z близка к нулю, из этого не обязательно следует, что именно Z является общей причиной для X и Y .

Корреляция ранговых переменных

Если к количественным данным неприемлем коэффициент корреляции r -Пирсона , то для проверки гипотезы о связи двух переменных после предварительного ранжирования могут быть применены корреляции r -Спирмена или τ -Кендалла . Например, в исследовании психофизических особенностей музыкально одаренных подростков И. А. Лавочкина был использован критерий Спирмена.

Для корректного вычисления обоих коэффициентов (Спирмена и Кендалла) результаты измерений должны быть представлены в шкале рангов или интервалов. Принципиальных отличий между этими критериями не существует, но принято считать, что коэффициент Кендалла является более «содержательным», так как он более полно и детально анализирует связи между переменными, перебирая все возможные соответствия между парами значений. Коэффициент Спирмена более точно учитывает именно количественную степень связи между переменными.

Коэффициент ранговой корреляции Спирмена является непараметрическим аналогом классического коэффициента корреляции Пирсона, но при его расчете учитываются не связанные с распределением показатели сравниваемых переменных (среднее арифметическое и дисперсия), а ранги. Например, необходимо определить связь между ранговыми оценками качеств личности, входящими в представление человека о своем «Я реальном» и «Я идеальном».

Коэффициент Спирмена широко используется в психологических исследованиях. Например, в работе Ю. В. Бушова и Н. Н. Несмеловой : для изучения зависимости точности оценки и воспроизведения длительности звуковых сигналов от индивидуальных особенностей человека был использован именно он.

Так как этот коэффициент – аналог r -Пирсона, то и применение его для проверки гипотез аналогично применению коэффициента r -Пирсона. То есть проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода – те же. В компьютерных программах (SPSS, Statistica) уровни значимости для одинаковых коэффициентов r -Пирсона и r -Спирмена всегда совпадают.

Преимущество коэффициента r -Спирмена по сравнению с коэффициентом r -Пирсона – в большей чувствительности к связи. Мы используем его в следующих случаях:

  • наличие существенного отклонения распределения хотя бы одной переменной от нормального вида (асимметрия, выбросы);
  • появление криволинейной (монотонной) связи.

Ограничением для применения коэффициента r -Спирмена являются:

  • по каждой переменной не менее 5 наблюдений;
  • коэффициент при большом количестве одинаковых рангов по одной или обеим переменным дает огрубленное значение.

Коэффициент ранговой корреляции τ -Кендалла является самостоятельным оригинальным методом, опирающимся на вычисление соотношения пар значений двух выборок, имеющих одинаковые или отличающиеся тенденции (возрастание или убывание значений). Этот коэффициент называют еще коэффициентом конкордации . Таким образом, основной идеей данного метода является то, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по X совпадает по направлению с изменением по Y , это свидетельствует о положительной связи, если не совпадает – об отрицательной связи, например, при исследовании личностных качеств, имеющих определяющее значение для семейного благополучия. В этом методе одна переменная представляется в виде монотонной последовательности (например, данные мужа) в порядке возрастания величин; другой переменной (например, данные жены) присваиваются соответствующие ранговые места. Количество инверсий (нарушений монотонности по сравнению с первым рядом) используется в формуле для корреляционных коэффициентов.

При подсчете τ- Кендалла «вручную» данные сначала упорядочиваются по переменной X . Затем для каждого испытуемого подсчитывается, сколько раз его ранг по Y оказывается меньше, чем ранг испытуемых, находящихся ниже. Результат записывается в столбец «Совпадения». Сумма всех значений столбца «Совпадение» и есть P – общее число совпадений, подставляется в формулу для вычисления коэффициента Кендалла, который более прост в вычислительном отношении, но при возрастании выборки, в отличие от r -Спирмена, объем вычислений возрастает не пропорционально, а в геометрической прогрессии. Так, например, при N = 12 необходимо перебрать 66 пар испытуемых, а при N = 489 – уже 1128 пар, т. е. объем вычислений возрастает более чем в 17 раз. При вычислениях на компьютере в статистической программе (SPSS, Statistica) коэффициент Кендалла обсчитывается аналогично коэффициентам r -Спирмена и r -Пирсона. Вычисленный коэффициент корреляции τ -Кендалла характеризуется более точным значением p -уровня.

Применение коэффициента Кендалла является предпочтительным, если в исходных данных имеются выбросы.

Особенностью ранговых коэффициентов корреляции является то, что максимальным по модулю ранговым корреляциям (+1, –1) не обязательно соответствуют строгие прямо или обратно пропорциональные связи между исходными переменными X и Y : достаточна лишь монотонная функциональная связь между ними. Ранговые корреляции достигают своего максимального по модулю значения, если большему значению одной переменной всегда соответствует большее значение другой переменной (+1), или большему значению одной переменной всегда соответствует меньшее значение другой переменной и наоборот (–1).

Проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода те же, что и для случая r -Спирмена или r -Пирсона.

Если статистически достоверная связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует сначала перейти от коэффициента

r -Спирмена к коэффициенту τ -Кендалла (или наоборот), а затем проверить возможные причины недостоверности связи:

  • нелинейность связи : для этого посмотреть график двумерного рассеивания. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака;
  • неоднородность выборки : посмотреть график двумерного рассеивания, попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции (по аналогии с метрическими коэффициентами корреляции).

Корреляция дихотомических переменных

При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент j, который представляет собой коэффициент корреляции для дихотомических данных.

Величина коэффициента φ лежит в интервале между +1 и –1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков. Однако интерпретация φ может выдвигать специфические проблемы. Дихотомические данные, входящие в схему вычисления коэффициента φ, не похожи на двумерную нормальную поверхность, следовательно, неправильно считать, что интерпретируемые значения r xy =0,60 и φ = 0,60 одинаковы. Коэффициент φ можно вычислить методом кодирования, а также используя так называемую четырехпольную таблицу или таблицу сопряженности.

Для применения коэффициента корреляции φ необходимо соблюдать следующие условия:

  • сравниваемые признаки должны быть измерены в дихотомической шкале;
  • X и Y должно быть одинаковым.

Данный вид корреляции рассчитывают в компьютерной программе SPSS на основании определения мер расстояния и мер сходства. Некоторые статистические процедуры, такие как факторный анализ, кластерный анализ, многомерное масштабирование, построены на применении этих мер, а иногда сами представляют добавочные возможности для вычисления мер подобия.

В тех случаях когда одна переменная измеряется в дихотомической шкале (переменная X ), а другая в шкале интервалов или отношений (переменная Y ), используется бисериальный коэффициент корреляции , например, при проверке гипотез о влиянии пола ребенка на показатель роста и веса. Этот коэффициент изменяется в диапазоне от –1 до +1, но его знак для интерпретации результатов не имеет значения. Для его применения необходимо соблюдать следующие условия:

  • сравниваемые признаки должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y – в шкале интервалов или отношений;
  • переменная Y имеет нормальный закон распределения;
  • число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Если же переменная X измерена в дихотомической шкале, а переменная Y в ранговой шкале (переменная Y ), можно использовать рангово-бисериальный коэффициент корреляции , который тесно связан с τ-Кендалла и использует в своем определении понятия совпадения и инверсии. Интерпретация результатов та же.

Проведение корреляционного анализа с помощью компьютерных программ SPSS и Statistica – простая и удобная операция. Для этого после вызова диалогового окна Bivariate Correlations (Analyze>Correlate> Bivariate…) необходимо переместить исследуемые переменные в поле Variables и выбрать метод, с помощью которого будет выявляться корреляционная связь между переменными. В файле вывода результатов для каждого рассчитываемого критерия содержится квадратная таблица (Correlations). В каждой ячейке таблицы приведены: само значение коэффициента корреляции (Correlation Coefficient), статистическая значимость рассчитанного коэффициента Sig, количество испытуемых.

В шапке и боковой графе полученной корреляционной таблицы содержатся названия переменных. Диагональ (левый верхний – правый нижний угол) таблицы состоит из единиц, так как корреляция любой переменной с самой собой является максимальной. Таблица симметрична относительно этой диагонали. Если в программе установлен флажок «Отмечать значимые корреляции», то в итоговой корреляционной таблице будут отмечены статистически значимые коэффициенты: на уровне 0,05 и меньше – одной звездочкой (*), а на уровне 0,01 – двумя звездочками (**).

Итак, подведем итоги: основное назначение корреляционного анализа – это выявление связи между переменными. Мерой связи являются коэффициенты корреляции, выбор которых напрямую зависит от типа шкалы, в которой измерены переменные, числа варьирующих признаков в сравниваемых переменных и распределения переменных. Наличие корреляции двух переменных еще не означает, что между ними существует причинная связь. Хотя корреляция прямо не указывает на причинную связь, она может быть ключом к разгадке причин. На ее основе можно сформировать гипотезы. В некоторых случаях отсутствие корреляции имеет более глубокое воздействие на гипотезу о причинной связи. Нулевая корреляция двух переменных может свидетельствовать, что никакого влияния одной переменной на другую не существует.

Основоположником теории корреляции считаются английские биометрики Ф.Гальтон (1822-1911) и К.Пирсон (1857-1936). Термин «корреляция» означает соотношение, соответствие. Представление о корреляции как о взаимозависимости случайных переменных величин лежит в основе статистической теории корреляции - изучение зависимости вариации признака от окружающих условий. Одни признаки выступают в роли влияющих (факторных), другие - на которые влияют, результативных. Зависимости между признаками могут быть функциональными и корреляционными. Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины. Каждому значению признака-фактора соответствует определенное значение результативного признака. В корреляционных связях между изменением факторного и результативного признака нет полного соответствия. В сложном взаимодействии находится сам результативный признак. Поэтому результаты корреляционного анализа имеют значение в данной связи, а интерпретация этих результатов в общем виде требует построения системы корреляционных связей. Они характеризуются множеством причин и следствий и с их помощью устанавливается тенденция изменения результативного признака при изменении величины факторного признака. Например, на производительность труда влияют факторы степени совершенствования техники и технологии, уровень механизации и автоматизации труда, специализации производства, текучесть кадров и т.д.

В природе и обществе явления и события протекают по характеру корреляционной связи, когда при изменении величины одного признака существует тенденция изменения другого признака. Корреляционная связь - это частный случай статистической связи. Корреляционный анализ используется при установлении тесноты зависимости между явлениями, процессами, объектами.

Целью исследования часто бывает установление взаимосвязи (корреляции) между признаками. Знание зависимости дает возможность решать кардинальную задачу любого исследования - возможность предвидеть, прогнозировать развитие ситуации при изменении влияющего фактора. С помощью корреляции можно дать лишь формальную оценку взаимосвязей. Поэтому прежде чем приступать к вычислению коэффициентов корреляции между любыми признаками, следует теоретически установить, имеется ли между этими признаками взаимосвязь. Ведь формально статистика может доказать несуществующие связи, например, между высотой здания в городе и урожайностью пшеницы в фермерских хозяйствах.

Связь между явлениями (корреляция) определяется путем постановки опытов, статистического анализа. Корреляцию не следует отождествлять с причинностью. Однако необходимо иметь в виду, что доказательство математической связи должно опираться на реальную зависимость между явлениями. Например, минерализация воды понижается с севера на юг Беларуси, в этом же направлении понижается содержание питательных веществ в почве. Между рассматриваемыми показателями может быть получена положительная достоверная зависимость. Однако степень минерализации воды не определяет оптимальное содержание питательных веществ в почве. Иначе в ландшафтах пустынь плодородие было бы максимальным, так как здесь максимальная минерализация воды (почвенно-грунтовые воды солоноватые), а это противоречит истине. Поэтому проведение подобной связи в ландшафтах пустынь бессмысленно. Лучшая посуточная аренда квартир различного уровня комфорта от хозяев без комиссионных вы сможете найти на сайте piter.stay24.ru. Удобный поиск позволит вам легко быстро найти нужную квартиру под ваши требования, потратив при этом минимум времени.

Любой показатель связи служит приближенной оценкой рассматриваемой зависимости и не является гарантией существования жесткой (функциональной) соподчиненности. Отсутствие жесткой зависимости в природе и обществе способствует саморегуляции процессов, явлений, систем

По направлению связь может быть прямой и обратной; по характеру - функциональной или статистической (корреляционной); по величине - слабой, средней или сильной; по форме - линейной и нелинейной; по количеству коррелируемых признаков - парной и множественной.

Функциональная зависимость характерна для геометрических форм, технических систем, когда каждому значению одного признака соответствует точное значение другого. Это пример взаимосвязи площади прямоугольника и длины его одной из сторон. Такая зависимость полная или исчерпывающая.

Выделяют несколько видов парной корреляционной связи:

·параллельно-соотносительную, или ассоциативную, когда оба признака изменяются сопряжено, частично под действием общих причин и следствий (приуроченность растительности и почв к определенным формам рельефа; развития промышленности и рост населения к сырьевым ресурсам);

·субпричинную, когда один фактор выступает как отдельная причина сопряженного изменения признака (связь биомассы с количеством осадков; рост населения и рождаемости);

·взаимоупреждающую, когда причина и следствие, находясь в устойчивой взаимной связи, последовательно влияют друг на друга (влажность воздуха и осадки).

Если на признак влияет несколько факторов, то приходится оценивать множественную корреляцию. Множественная корреляция служит основой выявления связей между признаками, но требует строгой нормальности и прямолинейности распределения, поэтому использование ее может быть затруднено. С ростом числа переменных объем вычислительных работ увеличивается пропорционально квадрату числа переменных. В этом случае труднее оценивать значимость результатов, так как увеличиваются ошибки коэффициентов корреляции. Практически в таких случаях ограничиваются изучением лишь главных факторов. Однако характер влияния главных факторов на признак более детально и точно исследуют путем факторного анализа.

В практической работе по установлению корреляции между признаками и явлениями необходимо придерживаться следующей последовательности:

·на основании проведенных исследований предварительно определяют, существует ли связь между рассматриваемыми признаками;

·если связь между ними существует, устанавливают ее форму, направление и тесноту, используя график.

В начале составляются сопряженные вариационные ряды, в которых следует определить аргумент х и функцию у:

По сопряженным вариантам строится график, который помогает установить вид зависимости между аргументом и функцией. От формы корреляционной связи зависит дальнейшая обработка экспериментальных или статистических данных. Линейная зависимость предполагает вычисление коэффициента корреляции r, а нелинейная - корреляционного отношения η (рис. 5.1). Степень рассеяния частот или вариант относительно линии регрессии на графике указывает ориентировочно на тесноту связи: чем меньше рассеяние, тем сильнее связь (рис. 5.2).

Корреляционный анализ решает следующие задачи:

·установление направления и формы связи,

·оценка тесноты связи,

·оценка репрезентативности статистических оценок взаимосвязи,

· определение величины детерминации (доли взаимовлияния) коррелируемых факторов.

Рис. 5.1. Форма корреляционной связи:

а - прямая линейная; б - обратная линейная; в - парабалическая; г - гиперболическая

Для оценки связи используют следующие численные критерии (коэффициенты) корреляционной связи:

·коэффициент корреляции (r) при линейной зависимости,

·корреляционное отношение (η) при нелинейной зависимости,

·коэффициенты множественной регрессии,

·ранговые коэффициенты линейной корреляции Пирсона или Кендэла.

Понятие взаимосвязи довольно распространено в психологических исследованиях. С ним приходится оперировать психологу тогда, когда появляется необходимость сопоставить измерения двух или нескольких показателей признаков или явлений, чтобы сделать какие-либо выводы.

Характер взаимосвязи между изучаемыми явлениями может быть однозначным, т.е. таким, когда определенному значению одною признака соответствует четкое и определенное значение другого. Так, например, в субтесте на поиск закономерностей тестов психических функций количество набранных «сырых» баллов определяется по формуле:
Xi = Sтз - Sоз / Sтз + Sпз * Sbс,
где Xi - значение варианты, Sтз - количество априорно заданных закономерностей (соответствий) в субтесте, Sоз - количество ошибочно указанных соответствий испытуемым, Sоз - количество не указанных (пропущенных) соответствий испытуемым, Sbс - количество всех просмотренных испытуемыми слов в тесте.

Такая взаимосвязь получила название функциональной: здесь один показатель является функцией другого, который представляет собой аргумент по отношению к первому.

Однако однозначная четкая взаимосвязь встречается не всегда. Чаще приходится сталкиваться с таким положением, при котором одному значению признака могут соответствовать несколько значений другого. Эти значения варьируют в пределах более или менее очерченных границ. Такой вид взаимосвязи получил название корреляционной или соотносительной.

Применяется несколько видов выражения корреляционной взаимосвязи. Так, для выражения взаимосвязи между признаками, имеющими количественный характер варьирования своих значений, используют меры центральной тенденции: табулирование с последующим вычислением коэффициента парной корреляции, коэффициент множественной и частной корреляции, коэффициент множественной детерминации, корреляционное отношение.

Если необходимо изучить взаимосвязь между признаками, варьирование которых носит качественный характер (результаты проективных методов исследования личности, исследования по методу Семантического дифференциала, исследования с использованием Открытых шкал и т.д.), то используют коэффициент качественной альтернативной корреляции (тетрахорический показатель), критерий Пирсона x2, показатели сопряженности (контингенции) Пирсона и Чупрова.

Для определения качественно-количественной корреляции, т.е. такой корреляции, когда один признак имеет качественное варьирование, а другой - количественное.применяются специальные методы.

Коэффициент корреляции (термин впервые введен Ф. Гальто-ном в 1888 г.) - показатель силы связи между двумя сопоставляемыми вариантами выборки (выборок). По какой бы формуле не вычислялся коэффициент корреляции, его величина колеблется в пределах от -1 до +1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной - минус 1. Обычно это прямая линия, проходящая через точки пересечения значений каждой пары данных.

Если значения вариант не выстраиваются на прямой, а образуют «облако», то коэффициент корреляции по абсолютной величине становится меньше единицы и по мере округления «облака» приближается к нулю. Если коэффициент корреляции равен 0, обе варианты полностью независимы друг от друга.

Всякое вычисленное (эмпирическое) значение коэффициента корреляции должно быть проверено на достоверность (статистическую значимость) по соответствующим таблицам критических значений коэффициента корреляции. Если эмпирическое значение меньше или равно табличному для 5-процентного уровня (Р = 0,05), корреляция не является значимой. Если вычисленное значение коэффициента корреляции больше табличного для Р = 0,01, корреляция статистически значима (достоверна).

В случае, когда величина коэффициента заключена между 0,05 > Р > 0.01, на практике говорят о значимости корреляции для Р = 0,05.

Коэффициент корреляции Браве-Пирсона (г) - это предложенный в 1896 г. параметрический показатель, для вычисления которого сравнивают средние арифметические и средние квадратические значения вариант. Для вычисления этого коэффициента применяют следующую формулу (у разных авторов она может выглядеть по-разному):
r= (E Xi Xi1) - NXap X1ap / N-1 Qx Qx1,

где E Xi Xi1 - сумма произведений значений попарно сопоотавимых вариантов, n-колличество сравниваемых пар, NXap, X1ap - средние арифметические вариант Xi, Xi; соответственно, Qx, Qx, -средние квадратические отклонения распределений х и х.

Коэффициент корреляции рангов Спирмена Rs (коэффициент ранговой корреляции, коэффициент Спирмена) является простейшей формой коэффициента корреляции и измеряет связь между рангами (местами) данной варианты по разным признакам, не учитывая ее собственного значения. Здесь исследуется скорее качественная связь, чем количественная.

Обычно этот непараметрический критерий используется в случаях, когда нужно сделать выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения крайне асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент корреляции Браве-Пирсона (в этих случаях бывает необходимо превратить количественные данные в порядковые). Если коэффициент Rs близок к +1, то это означает, что два ряда ранжированной по тем или иным признакам выборки практически совпадают, а если этот коэффициент близок к - 1, можно говорить о полной обратной зависимости.

Как и вычисление коэффициента корреляции Браве-Пирсона, вычисления коэффициента Rs удобнее представлять в табличной форме.

Регрессия обобщает понятие функциональной взаимосвязи на случай стохастического (вероятностного) характера зависимости между значениями вариант. Целью решения категории регрессионных задач является оценка значения непрерывной выходной вариативности по значениям входных вариант.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО»

(ФГБОУ ВПО МГУТУ им К.Г. Разумовского)

Институт текстильной и легкой промышленности

Кафедра технологии кожи, меха и изделий из кожи


КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Методы и средства исследования»


Выполнила студентка

курса Страздина С.Ю.


Москва, 2013 г.

Задание 1.

Корреляционный анализ


Корреляционный анализ - это совокупность методов обнаружения так называемой корреляционной зависимости между случайными величинами.

Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.

Этапы проведения корреляционного анализа

Многофакторный корреляционный анализ позволяет установить наличие, тесноту и форму связи между факторами и изучаемым показателем. Он состоит из нескольких этапов, деление на которые условно, так как отдельные стадии тесно связаны между собой.

На первом этапе определяются цели и задачи исследования и на основе качественного анализа подбираются факторы, которые предположительно влияют на изучаемый показатель.

При их подборе необходимо учитывать:

наличие причинно-следственных связей между показателями;

значимость факторов, то есть степень их влияния на результативный показатель;

возможность количественного измерения фактора.

На втором этапе осуществляется сбор и первичная обработка исходной информации.

Совокупность данных должна быть достаточно большой. Информация должна соответствовать закону нормального распределения, согласно которому основная масса наблюдений по каждому показателю должна быть сгруппирована около его среднего значения.

Исходные данные должны быть качественно и количественно однородны. Качественная однородность предполагает приблизительно одинаковые условия и специфику формирования факторных и результативного признаков. Количественная однородность заключается в отсутствии таких наблюдений, которые значительно (аномально) отличаются от основной массы данных.

Критерием однородности информации служит среднеквадратическое отклонение и коэффициент вариации, которые рассчитываются по каждому факторному и результативному показателю. Среднеквадратическое отклонение показывает абсолютное отклонение индивидуальных значений от среднеарифметической, а коэффициент вариации характеризует относительную меру отклонения отдельных значений от среднеарифметической. Причем, чем больше коэффициент вариации, тем относительно больший разброс данных в совокупности.

Изменчивость вариационного ряда принято считать:

незначительной, если вариация не превышает 10%;

средней, если вариация составляет 10-20%;

значительной, если она больше 20%, но не превышает 33%. Если вариация больше 33 %, то следует исключить из выборки нетипичные наблюдения.

На третьем этапе осуществляется моделирование связей между факторами и результативным признаком, т.е. решается вопрос о выборе формы связи.

На основе экономического и логического анализа природы и сущности изучаемого явления подбирается тип математического уравнения, которое наилучшим образом отражает характер изучаемых зависимостей.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека