Клетки способные к фагоцитозу. Фагоцитоз: кто кого? В-лимфоциты образуют розетки с

Фагоцитоз – поглощение чужеродных частиц или клеток и их дальнейшее уничтожение.

Фагоцитоз присущ нейтрофилам, эозинофилам, моноцитам и макрофагам, которые обладают чрезвычайно широким набором функций, направленных против инфицирования организма, для поддержания высокого уровня иммунитета и удаления денатурированных белков, остатков погибших клеток, тканей и различных продуктов из очагов воспаления или инфицирования. Кроме того, все фагоциты в процессе активации продуцируют значительный набор биологически активных соединений, играющих важную роль в регуляции физиологических функций организма как в условиях нормы, так и патологии.

Стадии фагоцитоза:

1) приближение фагоцита к фагоцитируемому объекту или лиганду;

2) контакт лиганда с мембраной фагоцита;

3) поглощение лиганда;

4) переваривание или уничтожение фагоцитируемого объекта.

Движение фагоцита к лиганду

Всем фагоцитам присуща амебовидная подвижность. Сцепление с субстратом, по которому движется лейкоцит, носит название адгезии . Только фиксированные или адгезированные лейкоциты способны к фагоцитозу.

Фагоцит может улавливать отдаленные сигналы (хемотаксис ) и мигрировать в их направлении (хемокинез ). Хотя сотни продуктов оказывают влияние на подвижность лейкоцитов, их действие проявляется лишь в присутствии особых соединений – хемоаттрактантов , или хемокинов , которых в сумме немногим больше шестидесяти. Наиболее активными стимуляторами фагоцитов являются опсонизированные микроорганизмы, отдельные компоненты комплемента, иммунные комплексы, N-формилметионильные пептиды, выделяемые некоторыми бактериями, биоактивные продукты липидного метаболизма, PAF, лейкотриены (LТB 4), липополисахариды, бактериальные эндотоксины, фибрин, фактор Хагемана, плазмин, Ifg, IL-8, IL-16, TNFa, GM-CSF, белки острой фазы и др.

Следует остановиться на еще одном механизме, способствующем привлечению фагоцитов в очаг повреждения. Известно, что в физиологических условиях во всех клетках и мембранных структурах протекают свободно-радикальные реакции перекисного окисления липидов (ПОЛ), сдерживаемые жирорастворимыми антиоксидантами. Важная роль в ингибировании ПОЛ принадлежит структурной организации мембраны. В то же время любое повреждение структуры клетки приводит к усилению ПОЛ. Следовательно, активация ПОЛ является универсальной реакцией клеток и тканей на любое повреждение, что и служит пусковым механизмом фагоцитоза.

Первичными продуктами ПОЛ в мембранах являются гидроперекиси. Однако в дальнейшем в результате углубления процессов ПОЛ образуются биологически активные альдегиды – 2-алкеналь и 4-гидроксиалкеналь. Так, при окислении арахидоновой и линолевой кислот, которые входят в состав мембран всех без исключения клеток, образуется альдегид 4-гидроксиноненаль , который обладает чрезвычайно высокой хемотаксической активностью в отношении гранулоцитов. В то же время при очень большой концентрации данного альдегида практически полностью блокируется передвижение нейтрофилов в сторону очага повреждения, что крайне неблагоприятно для развития защитных фагоцитарных реакций.

Благодаря хемотаксису, фагоцит целенаправленно движется в сторону повреждающего агента. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения, и тем с большей скоростью они движутся. К хемоаттрактантам имеются специфические гликопротеиновые образования – рецепторы; число их на одном нейтрофиле колеблется от 2´103 до 2´105. Движение осуществляется при взаимодействии актина и миозина. При этом выдвигается псевдоподия, которая служит точкой опоры при передвижении фагоцита. Сцепляясь с субстратом, псевдоподия перетягивает фагоцит на новое место. Важную роль в движении фагоцита играют микротрубочки. Они не только обеспечивают жесткость структуры, но и позволяют фагоциту ориентироваться в направлении движения. Функционировать трубочки начинают лишь после того, как получают информацию через специфические клеточные медиаторы, к которым относятся циклические нуклеотиды – аденозинмонофосфат (цАМФ) и гуанозинмонофосфат (цГМФ). Увеличение концентрации цАМФ приводит к уменьшению функциональной активности фагоцита, увеличение уровня цГМФ – к ее усилению. По всей видимости, в состав рецепторов фагоцита входят аденилатциклаза и гуанилатциклаза – ферменты, ответственные за синтез циклических нуклеотидов.

Лейкоцит, двигаясь, способен преодолевать преграды и, в частности, проходить через эндотелий капилляра. Прилипая к сосудистой стенке с помощью адгезивных молекул, он выпускает псевдоподию, которая пронизывает стенку сосуда. В этот выступ постепенно переливается тело лейкоцита. Далее лейкоцит отделяется от стенки сосуда и может передвигаться в тканях.

Размещение нейтрофилов в инфицированных тканях – это сложный многоэтапный процесс. Прежде всего, должна наступить реакция между нейтрофилом и клетками эндотелия, что осуществляется посредством адгезивных молекул. Нейтрофилы, двигающиеся с током крови, должны остановиться, пройти между эндотелиальными клетками сосудов, после чего они способны перемещаться в участок повреждения (воспаления). Процесс перемещения лимфоцитов мало отличается от передвижения нейтрофилов, но он всегда специфичен и направлен на целевые органы.

Контакт фагоцита и лиганда

Для связывания микробов на мембране фагоцитов имеются специальные рецепторы к Fc-фрагменту иммуноглобулинов и фрагментам С3-компонента комплемента. При внедрении микробов в организм человека образуются антитела (Ат) – иммуноглобулины классов М и G (IgM, IgG), которые сорбируются на поверхности микроба. В случае сорбции IgM, к ним дополнительно присоединяется С3b-фрагмент комплемента. Следовательно, фагоцит связывает не микроб, а комплекс «микроб+IgG-антитело» или «микроб+IgM-антитело+С3» через перечисленные рецепторы. Таким образом, Ат выступают здесь в роли опсонинов – факторов, облегчающих фагоцитоз.

Аналогичный механизм работает при фагоцитозе не только микроорганизмов, но и других объектов – старых и раковых клеток и других частиц.

Свойствами опсонинов обладает продукты расщепления IgG протеазами. Так, от IgG может отщепляться тетрапептид (само название говорит о том, что он состоит из 4 аминокислот), получивший наименование тафтсин . Это соединение в чрезвычайно малых дозах резко усиливает фагоцитарную активность лейкоцитов.

Очень часто в качестве опсонина выступает гликопротеин фибронектин (молекулярная масса 440000 Да), обладающий значительной клейкостью, что облегчает взаимодействие между фагоцитом и лигандом. Фибронектин находится в нерастворимой форме в соединительной ткани и в виде растворимой – в a2-глобулиновой фракции плазмы. Кроме того, во взаимодействии фагоцита и фагоцитируемого объекта принимает участие близкий по строению к фибронектину белок ламинин , а также ионы Ca++ и Mg++.

Поглощение лиганда

Как только лиганд по описанному механизму связывается с рецептором, наступает изменение конформации последнего и сигнал передается на фермент, объединённый с рецептором в единый комплекс, благодаря чему осуществляется поглощение фагоцитируемого объекта.

Существует 5 основных механизмов поглощения, или 5 основных типов фагоцитоза: 1. втягивание или внесение; 2. обтекание; 3. окружение; 4. инвагинация и 5. заворот. Все механизмы фагоцитоза сводятся к тому, что лиганд оказывается заключенным в мембрану фагоцита и при этом формируется фагосома. В её образовании важная роль отводится сократительным белкам фагоцита. Как уже отмечалось, по свойствам они напоминают актин и миозин мышц. Однако в отличие от мышц в фагоците актин не активирует АТФ-азу, связанную с миозином, а может это делать лишь в присутствии особого белка – кофактора. Кроме того, в цитоплазме фагоцита имеется особый белок, связывающий нити актина в пучки и получивший название актинсвязывающий белок. Актин в цитоплазме фагоцита превращается в гель, после чего в реакцию вступают миозин и кофактор, которые в присутствии ионов Mg 2+ и АТФ сокращают гель актина, превращая его в компактные агрегаты.

Образовавшийся гель актина прикрепляется к плазматической мембране изнутри и при его сокращении против объекта фагоцитоза образуется углубление. При этом сам объект оказывается окруженным выступами цитоплазмы, которая захватывает его как клешнями. Так появляется фагосома , которая отрывается от мембраны и передвигается к центру клетки, где сливается с лизосомами, в результате чего появляется фаголизосома . В последней фагоцитируемый объект погибает. Это так называемый завершенный фагоцитоз . Но нередко встречается незавершенный фагоцитоз , тогда фагоцитированный объект может жить и развиваться в фагоците. Подобное явление наблюдается при некоторых инфекционных заболеваниях – туберкулезе, гонорее, менингококковой и вирусной инфекциях.

Уничтожение лиганда

Последняя стадия фагоцитоза – уничтожение лиганда. Основным оружием фагоцитов являются продукты частичного восстановления кислорода – перекись водорода и так называемые свободные радикалы. Они вызывают перекисное окисление липидов, белков и нуклеиновых кислот, благодаря чему повреждается мембрана клетки.

Активация фагоцитов связана со значительными перестройками функции клетки. Она наступает уже при контакте фагоцита и фагоцитируемого комплекса. При этом происходит целый ряд морфологических и биохимических процессов, наиболее яркими из них являются усиление метаболизма, миграция, адгезия и дегрануляция.

В результате взаимодействия фагоцита и стимулятора резко увеличивается потребление клетками глюкозы, активация отдельных ферментов, образование активных форм кислорода и других прооксидантов, появление продуктов активации цикло- и липооксигеназ. Реакции эти развиваются внезапно и с чрезвычайной быстротой, что послужило поводом назвать это явление «кислородным» или «респираторным взрывом». Установлено, что после стимуляции полиморфноядерных лейкоцитов (ПЯЛ) потребление кислорода возрастает в 50-100 раз.

Общим признаком активации фагоцитов является увеличение в цитозоле содержания Са 2+ . Эта реакция является самым быстрым ответом на стимуляцию и осуществляется с помощью цепи довольно сложных биохимических превращений, сопровождающихся изменением фосфолипидного состава мембраны, появлением простагландинов и лейкотриенов и др. Ионы Са 2+ поступают в цитозоль из окружающей среды и из так называемых внутриклеточных депо.

Увеличение содержания Са 2+ в цитозоле лейкоцитов запускает кальций-зависимые процессы, приводящие к праймингу клетки, что выражается в увеличении её функциональной активности, усилении синтеза биологически активных соединений, таких как NO, супероксид-анион-радикал, гипохлорид-анион, Н 2 О 2 и др. Продукты метаболизма кислорода обладают бактерицидным эффектом, тогда как оксид азота оказывает влияние на микроциркуляцию крови, ибо он расслабляет сосуды. Последний приводит к вазодилятации и улучшению микроциркуляции. В лейкоцитах за синтез NO отвечает индуцируемая NO-синтаза, появление которой происходит под влиянием ряда стимулов, в том числе липополисахаридов (ЛПС), цитокинов, фрагментов системы комплемента и др. In vivo индуцируемая NO-синтаза образуется в фагоцитах, находящихся в патологически измененных тканях, в частности, в очаге воспаления.

Наиболее ярким проявлением стимуляции фагоцитов является «кислородный взрыв» , обусловленный активацией НАДФ. Н 2 -зависимой оксидазы.

Человека осуществляет важный процесс, который получил название фагоцитоз. Фагоцитоз - это процесс поглощения клетками чужеродных частиц. Ученые полагают, что фагоцитоз является наиболее древней формой защиты макроорганизма, поскольку фагоциты - это клетки, осуществляющие фагоцитоз, обнаруживаются и у позвоночных животных, и у беспозвоночных. Что же такое фагоцитоз и какова его функция в работе иммунной системы человека? Явление фагоцитоза открыл в 1883 г. И.И.Мечников. Он же доказал и роль фагоцитов, как защитных клеток иммунной системы. За это открытие И.И. Мечников был удостоен в 1908 году Нобелевской премии по физиологии. Фагоцитоз - это активный захват и поглощение живых клеток и неживых частиц одноклеточными организмами или особыми клетками многоклеточных организмов - фагоцитами, который состоит из последовательных молекулярных процессов и длится нескольких часов. Фагоцитоз является первой реакцией иммунной системы организма на внедрение чужеродных антигенов, которые могут проникнуть в организм в составе бактериальных клеток, вирусных частиц или в виде высокомолекулярного белка или полисахарида. Механизм фагоцитоза однотипен и включает восемь последовательных фаз:
1) хемотаксис (направленное движение фагоцита к объекту);
2) адгезия (прикрепление к объекту);
3) активация мембраны (актин—миозиновой системы фагоцита);
4) начало собственно фагоцитоза, связанное с образованием вокруг поглощаемой частицы псевдоподий;
5) образование фагосомы (поглощаемая частица оказывается заключенной в вакуоль благодаря надвиганию на нее плазматической мембраны фагоцита подобно застежке—молнии;
6) слияние фагосомы с лизосомами;
7) уничтожение и переваривание;
8) выброс продуктов деградации из клетки.

Клетки фагоциты

Фагоцитоз осуществляют клетки фагоциты - это важные клетки иммунной системы. Фагоциты циркулируют по организму, выискивая «чужих». Когда агрессор найден, происходит его связывание при помощи рецепторов. После фагоцит поглощает агрессора. Подобный процесс длится около 9 минут. Внутри фагоцита бактерия попадает в состав фагосомы, которая в течение минуты сливается с гранулой или лизосомой, содержащими ферменты. Микроорганизм погибает под воздействием агрессивных пищеварительных ферментов либо в результате дыхательного взрыва, при котором высвобождаются свободные радикалы. Все клетки фагоциты находятся в состоянии готовности и могут быть призваны в определённое место, где необходима их помощь, при помощи цитокинов. Цитокины - это сигнальные молекулы, играющие важную роль на всех этапах иммунного ответа. Молекулы трансфер факторы - это одни из наиболее важных цитокинов иммунной системы. С помощью цитокинов, фагоциты также обмениваются информацией, вызывают другие фагоцитарные клетки к источнику инфекции, активируют «спящие» лимфоциты.
Фагоциты человека и других позвоночных делят на «профессиональные» и «непрофессиональные» группы. Этот раздел основывается на эффективности, с которой клетки участвуют фагоцитозе. Профессиональные фагоциты - это моноциты, макрофаги, нейтрофилы, тканевые дендритические клетки и тучные клетки.

Моноциты - "дворники" организма

Моноциты - это клетки крови, которые относятся к группе лейкоцитов. Моноциты называют «дворниками организма» из-за их удивительных возможностей. Моноциты поглощают клетки болезнетворных агентов и их фрагменты. При этом количество и размер поглощаемых объектов могут быть в 3 - 5 раз больше, чем те, которые способны поглощать нейтрофилы. Моноциты могут поглощать и микроорганизмы, находясь в среде с повышенной кислотностью. Другие лейкоциты на такое не способны. Моноциты также поглощают все остатки «борьбы» с патогенными микробами и тем самым создают благоприятные условия для восстановления тканей в местах воспаления. Собственно за эти способности моноциты и получили название «дворники организма».

Макрофаги - "большие пожиратели"

Макрофаги , дословно «большие пожиратели» - это большие иммунные клетки, которые захватывают и затем по частям уничтожают чужеродные, мертвые или поврежденные клетки. В том случае, если «поглощенная» клетка является инфицированной или злокачественной, макрофаги оставляют нетронутыми ряд ее чужеродных компонентов, которые затем используются в качестве антигенов для стимуляции образования специфичных антител. Макрофаги путешествуют по организму в поисках проникших сквозь первичные барьеры чужеродных микроорганизмов. Макрофаги находятся по всему телу почти во всех тканях и органах. Расположение макрофага можно определить по его размеру и внешнему виду. Продолжительность жизни тканевых макрофагов от 4 до 5 дней. Макрофаги могут быть активированы для выполнения таких функций, которые моноцит выполнить не может. Активированные макрофаги играют важную роль в разрушении опухолей путём образования фактора некроза опухоли альфа, гамма-интерферона, оксида азота, реактивных форм кислорода, катионных белков и гидролитических ферментов. Макрофаги выполняют роль уборщиков, избавляя организм от изношенных клеток и другого мусора, а также роль антиген-презентующих клеток, активирующих звенья приобретённого иммунитета человека .

Нейтрофилы - "пионеры" иммунной системы

Нейтрофилы обитают в крови и представляют собой наиболее многочисленную группу фагоцитов, обычно представляющую около 50% -60% общего количества циркулирующих лейкоцитов. Диаметр этих клеток около 10 микрометров и живут только в течение 5 дней. Во время острой фазы воспаления нейтрофилы мигрируют к очагу воспаления. Нейтрофилы - это первые клетки, реагирующие на очаг инфекции. Как только поступает соответствующий сигнал, они, примерно, в течение 30 минут выходят из крови и достигают места инфекции. Нейтрофилы быстро поглощают чужеродный материал, но после этого не возвращаются в кровь. Гной, который образуется в очаге инфекции - это мертвые нейтрофилы.

Дендритные клетки

Дендритные клетки - это особые антиген-презентующие клетки, которые имеют длинные отростки (дендриты). С помощью дендритов осуществляется поглощение патогенов. Дендритные клетки располагаются в тканях, которые контактируют с окружающей средой. Это, в первую очередь, кожа , внутренняя оболочка носа, лёгких, желудка и кишечника. После активации, дендритные клетки созревают и мигрируют в лимфатические ткани и там взаимодействуют с Т- и B-лимфоцитами. В результате этого возникает и организовывается приобретённый иммунный ответ. Зрелые дендритные клетки активируют Т-хелперы и Т-киллеры. Активированные Т-хелперы взаимодействуют с макрофагами и B-лимфоцитами чтобы и их, в свою очередь, активировать. Дендритные клетки, помимо всего этого, могут воздействовать на возникновение того или иного типа иммунного ответа.

Тучные клетки

Тучные клетки поглощают, убивают грамотрицательные бактерии и обрабатывают их антигены. Они специализируются на обработке фимбриальных белков на поверхности бактерий, которые участвуют в прикреплении к тканям. Также тучные клетки образовывают цитокины, которые запускают реакцию воспаления. Это важная функция в деле уничтожения микробов, потому что цитокины привлекают больше фагоцитов к месту инфекции.

"Непрофессиональные" фагоциты

К «непрофессиональным» фагоцитам относятся фибропласты, паренхиматозные, эндотелиальные и эпителиальные клетки. Для таких клеток фагоцитоз является не главной функцией. Каждые из них выполняют какие-либо другие функции. Это связано с тем, что «непрофессиональные» фагоциты не имеют специальных рецепторов, таким образом, они являются более ограниченными, чем «профессиональные».

Коварные обманщики

Патоген приводит к развитию инфекции только случае, если ему удалось справиться с защитой макроорганизма. Поэтому многие бактерии формируют процессы, цель которых - создание устойчивости к воздействию фагоцитов. И действительно множество патогенов получило возможность размножаться и выживать внутри фагоцитов. Существует несколько способов, с помощью которых бактерии избегают контакта с клетками иммунной системы . Первый - это размножение и рост в тех зонах, куда фагоциты не способны проникнуть, например, в поврежденный покров. Второй способ - это способность некоторых бактерий подавлять воспалительные реакции, без которых клетки фагоциты не способны правильно реагировать. Также некоторые патогены могут «обманывать» иммунную систему, заставляя ее принимать бактерию за часть самого организма.

Трансфер Факторы - память иммунной системы

Помимо выработки специальных клеток в иммунной системе синтезируется целый ряд сигнальных молекул, которые называются цитокины. К числу наиболее важных цитокинов относятся трансфер факторы. Ученые обнаружили, что трансфер факторы обладают уникальной эффективностью независимо от биологического вида донора и риципиента. Это свойство трансфер факторов объясняется одним из ключевых научных принципов,- чем более важным для жизнеобеспечения является тот или иной материал или структура, тем более универсальны они для всех живых систем. Трансфер Факторы действительно являются важнейшими иммуноактивными соединениями и обнаруживаются даже в самых примитивных иммунных системах. Трансфер факторы являются уникальным средством передачи иммунной информации от клетки к клетке внутри организма человека, а также от одного человека к другому. Можно сказать, что трансфер факторы являются «языком общения» иммунных клеток, памятью иммунной системы. Уникальным действием трансфер факторов является ускорение ответа иммунной системы на угрозу. Они увеличивают иммунную память, сокращают время борьбы с инфекцией, повышают активность действия натуральных киллеров. Первоначально считалось, что трансфер факторы могут быть активными только при инъекционном введении. Сегодня считают, что коровье молозиво является самым лучшим источником трансфер факторов. Следовательно, собирая излишки молозива и выделяя из него трансфер факторы, можно обеспечить население дополнительной иммунной защитой. Американская компания 4 life стала первой компанией в мире, которая начала выделять трансфер факторы из коровьего молозива особым методом мембранной фильтрации, на который получила соответствующий патент. Сегодня компания поставляет на рынок линейку препаратов Трансфер Фактор, аналогов которым не существует. Эффективность препаратов Трансфер Фактор подтверждена клинически. На сегодняшний день написано более 3000 научных работ о применении трансфер факторов при самых различных заболеваниях. И

Проводил свои исследования в Италии, на берегу Мессинского пролива. Ученого интересовало, сохранилась ли у отдельных многоклеточных организмов способность захватывать и переваривать пищу, как это делают одноклеточные, например амебы. Ведь, как правило, у многоклеточных пища переваривается в пищеварительном канале и всасывают уже готовые питательные растворы. наблюдал личинок морских звезд. Они прозрачны, и их содержимое хорошо видно. У этих личинок нет циркулирующей , но есть блуждающие по всей личинке . Они захватывали частички введенной в личинку красной краски кармина. Но если эти поглощают краску, то, может быть, они захватывают любые посторонние частички? Действительно, вставленные в личинку шипы розы оказались окруженными , окрашенными кармином.

Были способны захватывать и переваривать любые чужеродные частички, в том числе и болезнетворных микробов. назвал блуждающие фагоцитами (от греческих слов phages — пожиратель и kytos — вместилище, здесь — ). А сам процесс захвата и переваривания ими разных частиц — фагоцитозом. Позже наблюдал фагоцитоз у рачков, лягушек, черепах, ящериц, а также у млекопитающих — морских свинок, кроликов, крыс и у человека.

Фагоциты особые . Переваривание захваченных частиц нужно им не для питания, как амебам и другим одноклеточным, а для защиты организма. У личинок морских звезд фагоциты блуждают по всему телу, а у высших животных и у человека они циркулируют в сосудах. Это — один из видов белых кровяных телец, или лейкоцитов, — нейтрофилы. Именно они, привлекаемые ядовитыми веществами микробов, движутся к месту заражения (см. ). Вышедшие из сосудов, такие лейкоциты имеют выросты — ложноножки, или псевдоподии, с помощью которых они передвигаются так же, как амеба и блуждающие личинок морских звезд. Такие способные к фагоцитозу лейкоциты назвал микрофагами.

Однако не только постоянно двигающиеся лейкоциты, но и некоторые оседлые могут становится фагоцитами (сейчас все они объединены в единую систему фагоцитирующих мононуклеаров). Одни из них спешат к опасным участкам, например к месту воспаления, другие — остаются на своих обычных местах. И тех и других объединяет способность к фагоцитозу. Эти тканевые (гистоциты, моноциты, ретикулярные и эндотелиальные ) почти вдвое крупнее микрофагов — их диаметр 12-20 мкм. Поэтому назвал их макрофагами. Особенно много их в селезенке, печени, лимфатических узлах, костном мозге и в стенках сосудов.

Микрофаги и блуждающие макрофаги сами активно нападают на «врагов», а неподвижные макрофаги ждут, пока «враг» проплывет мимо них в токе или лимфы. Фагоциты «охотятся» в организме за микробами. Бывает, что в неравной борьбе с ними они оказываются побежденными. Гной — это и есть скопление погибших фагоцитов. К нему подойдут другие фагоциты и начнут заниматься его ликвидацией, как они это делают со всякими посторонними частицами.

Фагоциты очищают от постоянно отмирающих и участвуют в различных перестройках организма. Например, при превращении головастика в лягушку, когда наряду с другими изменениями постепенно исчезает хвост, целые полчища фагоцитов уничтожают хвоста головастика.

Как же попадают внутрь фагоцита частицы? Оказывается, с помощью псевдоподий, которые захватывают их, подобно ковшу экскаватора. Постепенно псевдоподии удлиняются и затем смыкаются над инородным телом. Иногда оно как бы вдавливается в фагоцит.

Предполагал, что в фагоцитах должны содержаться специальные вещества, которые и переваривают захваченных ими микробов и другие частицы. И действительно, такие частицы — были обнаружены спустя 70 лет после открытия фагоцитоза. В них содержатся , способные расщеплять большие органические молекулы.

Теперь выяснено, что кроме фагоцитоза в обезвреживании чужеродных веществ участвуют преимущественно (см. ). Но чтобы начался процесс их выработки, необходимо участие макрофагов. Они захватывают инородные

Чаще всего от взрослых, воспитанных разномастными телешоу, мы узнаем, что иммунитет живет в кишечнике. Важно все мыть, кипятить, правильно питаться, насыщать организм полезными бактериями и все в таком духе.

Но для иммунитета имеет значение не только это. В 1908 году российский ученый И.И. Мечников получил Нобелевскую премию в области физиологии, рассказав (и доказав) всему миру о наличии вообще и важности в частности фагоцитоза в работе

Фагоцитоз

Защита нашего организма от вредоносных вирусов и бактерий происходит в крови. Общий принцип работы такой: есть клетки-маркеры, они видят врага и помечают его, а клетки-спасатели по меткам находят чужака и уничтожают.

Фагоцитоз - это процесс уничтожения, то есть поглощения вредоносных живых клеток и неживых частиц другими организмами или специальными клетками - фагоцитами. Насчитывается их 5 видов. А сам процесс протекает в течение примерно 3-х часов и включает 8 этапов.

Этапы фагоцитоза

Давайте рассмотрим подробнее, что представляет собой фагоцитоз. Это процесс очень упорядоченный и системный:

Сначала фагоцит замечает объект воздействия и движется к нему - этот этап называют хемотаксисом;

Догнав объект, клетка прочно приклеивается, прикрепляется к нему, т. е. адгезируется;

Потом начинает активировать свою оболочку - внешнюю мембрану;

Вот теперь начинается собственно сам явление ознаменуется образованием псевдоподий вокруг объекта;

Постепенно фагоцит заключает вредоносную клетку внутрь себя, под свою мембрану, так образуется фагосома;

На данном этапе происходит слияние фагосом и лизосом;

Теперь можно все переварить - уничтожить;

На заключительном этапе остается только выбросить продукты переваривания.

Все! Процесс уничтожения вредоносного организма завершен, он погиб под действием сильных пищеварительных ферментов фагоцита или в результате дыхательного взрыва. Наши победили!

Шутки шутками, но фагоцитоз - это очень важный механизм работы защитной системы организма, который присущ людям и животным, более того - позвоночным и беспозвоночным организмам.

Действующие лица

В фагоцитозе участвуют не только сами фагоциты. Невзирая на то что упомянутые активные клетки всегда готовы к бою, они были бы абсолютно бесполезны без цитокинов. Ведь фагоцит, если так можно выразиться, слеп. Сам он не различает своих и чужих, точнее, просто не видит ничего.

Цитокины - это сигнализация, своего рода поводырь для фагоцитов. У них-то как раз отличное "зрение", они прекрасно разбираются, кто есть кто. Заприметив вирус или бактерию, они клеят на него маркер, по которому, как по запаху, фагоцит его найдет.

Самые главные цитокины - это так называемые молекулы трансфер-факторы. С их помощью фагоциты не только узнают, где враг, но и общаются между собой, зовут на помощь, будят лейкоцитов.

Получая прививку, мы тренируем именно цитокинов, учим их распознавать нового врага.

Виды фагоцитов

Клетки, способные к фагоцитозу, делят на профессиональных и непрофессиональных фагоцитов. Профессионалы это:

моноциты - относятся к лейкоцитам, имеют прозвище "дворники", которое получили за уникальную способность к поглощению (если можно так выразиться, у них очень хороший аппетит);

Макрофаги - большие пожиратели, которые употребляют мертвые и поврежденные клетки и способствуют образованию антител;

Нейтрофилы - всегда первыми прибывают к очагу инфекции. Они наиболее многочисленны, хорошо нейтрализуют врагов, но и сами тоже погибают при этом (своего рода камикадзе). Кстати, гной - это мертвые нейтрофилы;

Дендриты - специализируются на патогенах и работают в контакте с окружающей средой,

Тучные клетки - прародители цитокинов, а еще поглотители грамотрицательных бактерий.

ФАГОЦИТОЗ (phagocytosis , греческий phagos пожирающий + kytos вместилище, здесь - клетка + -osis) - процесс узнавания, активного захвата и поглощения микроорганизмов, разрушенных клеток и инородных частиц специализированными клетками иммунной системы.

Объектом фагоцитоза являются микробы, чужеродные и измененные собственные клетки или их фрагменты, комплексы антиген - антитело и др. Неотъемлемую часть фагоцитоза составляет направленное движение - хемотаксис (см. Таксисы) - фагоцитов к месту локализации чужеродной частицы.

Определение эффективности фагоцитоза проводится для оценки состояния иммунобиологической реактивности организма, а также при различных медико-биологических исследованиях.

Явление фагоцитоза как биологической универсальной реакции одноклеточных, многоклеточных и высших организмов было открыто И. И. Мечниковым, который в 1883 году сформулировал теорию фагоцитоза. И. И. Мечников рассматривал фагоцитоз как одну из форм питания клеток (начиная с простейших). У высокоорганизованных организмов эта форма питания свойственна особым мезенхимальным клеткам-фагоцитам поглощающим и убивающим патогенные микробы и таким образом выполняющим защитную функцию. Именно с функцией этих клеток И. И. Мечников связывал иммунитет к возбудителям инфекционных болезней. Им были описаны фазы фагоцитарного процесса и состояние активации фагоцитов, характеризующееся их новыми свойствами и усиленной способностью поглощать и уничтожать бактерии. Ключевая роль фагоцитов была доказана им в иммунитете, при воспалении, удалении поврежденных клеток, регенерации, атрофии, старении.

К фагоцитам относятся гранулоциты, в основном нейтрофильные лейкоциты (см.), и мононуклеарные фагоцитирующие клетки (см. Система мононуклеарных фагоцитов), например, моноциты, макрофаги и др. В процессе узнавания фагоцитами микробов, веществ и частиц большую роль играют особые компоненты сыворотки крови, которые являются молекулярными посредниками при взаимодействии микробов с фагоцитами и обусловливают усиление фагоцитоза. Эти компоненты называются опсонинами (см.), к ним относятся антитела IgG1, IgG3, IgM, агрегированные IgAl и IgA2 (см. Иммуноглобулины), и термолабильные субкомпоненты комплемента, в основном C3b (см. Комплемент), а также альфа-1 и бета-глобулины, сывороточный альфа-2- HS-гликопротеид. Указывают на опсонизирующие свойства С-реактивного белка (см.) и др. Антитела IgG и IgM специфически связываются с антигенами соответствующих бактерий и через Fc-рецепторы фиксируют их к рецепторам фагоцитов. Фагоциты могут соединяться с объектом фагоцитоза и неспецифически - через гидрофобные связи Ван-дер-Ваальса. Субкомпоненты комплемента, возникающие при классическом или альтернативном пути его активации, сорбируются на объектах фагоцитоза, прикрепление которых к поверхности фагоцита осуществляется через C3b- и C4b-рецепторы.

Опсонизированные и неопсонизированные частицы прикрепляются к фагоцитам также с помощью специфических Fc-рецепторов для IgE, гликопротеидов и полисахаридов и неспецифических рецепторов для чужеродных веществ. Большинство нейтрофилов человека содержат Fc-рецепторы для агрегированного IgGl и IgG3, а возможно и для агрегированного I g А; моноциты - рецепторы для IgGl и IgG3. Рецепторы для комплемента высокоаффинны (обладают высокой прочностью соединения), они обеспечивают прилипание опсонизированных частиц к неактивированным макрофагам, поглощают же такие частицы только активированные клетки. На нейтрофилах найдены рецепторы для C3b-, C4b- и C5a-субкомпонентов комплемента, на макрофагах - один рецептор для C3b- и C4b-, другой - для C3b- и C3c1-субкомпонентов комплемента. Если частица опсонизирована иммуноглобулином и комплементом, связывание с фагоцитом осуществляется кооперативно через специфические к ним рецепторы, что значительно активирует ее поглощение. Имеются различия между классами рецепторов и опосредуемыми ими реакциями фагоцитоза. Посредством неспецифических и специфических для гликопротеидов и полисахаридов рецепторов осуществляется фагоцитоз бактерий без опсонинов. Известен фагоцитоз инертных частиц - кремнезема, угля и др.

Опсонины не только прикрепляют объект фагоцитоза к поверхности фагоцитов, но и активируют их, индуцируя сигналы, идущие от плазматической мембраны, опосредованно вызывают активацию разных гуморальных систем организма, усиливая фагоцитоз.

Процесс поглощения опсонизированной частицы начинается с взаимодействия рецепторов фагоцита с опсонинами, локализованными на поверхности частицы. В дальнейшем происходит взаимодействие соседних свободных рецепторов фагоцита с близлежащими свободными опсонинами частицы до тех пор, пока не будут связаны все опсонины, покрывающие частицу на периферии, и она полностью не погрузится в цитоплазму фагоцита вместе с окружающим участком плазматической мембраны, образуя фагосому. Взаимодействие частицы с плазматической мембраной фагоцита посредством образующихся комплексов опсонин-рецептор запускает сложный механизм фагоцитоза, основная роль в котором принадлежит работе сократительных белков. Процесс поглощения начинается с образования псевдоподии - вытягивания участка цитоплазмы фагоцита в направлении частицы. При формировании псевдоподии находящиеся в ней неориентированные актиновые нити (филаменты) становятся параллельными, что сопровождается преходящим изменением вязкости цитоплазмы. Сформулирована гипотеза жесткости (желатинизации) - сокращения цитоплазмы, изменяющего ее состояние и генерирующего механическую силу движения фагоцита, регулируемого ионами кальция. При желатинизации актиновые нити перекрестно связываются актинсвязывающим белком, превращающим цитоплазму в гель вследствие образования актиновой решетки. Этот процесс подавляется особЫхМ кальцийзависимым актин-регуляторным белком - гельсолином, являющимся физиол. регулятором желатинизации актина. Далее миозин образует перекрестные мостики с актином и гель начинает сокращаться, особенно в присутствии ионов магния, АТФ и кофактора, являющегося киназой, фосфорилирующей тяжелую цепь миозина. В месте контакта плазматической мембраны и частицы возрастает жесткость цитоплазматических структур (желатинизация участка цитоплазмы). Процесс идет непрерывно; постоянно из плазматической мембраны выделяется растворимый актинсвязывающий белок и мембрана движется по направлению к частице. В области прилипания частицы к плазматической мембране возрастает концентрация ионов кальция, которые «растворяют» актиновую решетку, снижают в этом участке жесткость цитоплазмы, и она движется в сторону повышенной жесткости на конце псевдоподии, т. к. нити миозина натягивают актиновые нити в направлении области наибольшей жесткости решетки.

В процессе фагоцитоза у нейтрофилов потребляется энергия, запасенная в виде АТФ, образованной в результате реакции гликолиза (см.). У альвеолярных макрофагов энергия для фагоцитоза в большей степени (возможно, в основном) извлекается из АТФ, образованной в процессе окислительного фосфорилирования (см. Окисление биологическое). Установлено, что метаболическим показателем в макрофагах является не абсолютное содержание АТФ, а скорость обновления. Количество АТФ в фагоцитирующих макрофагах частично поддерживается путем фосфорилирования АДФ за счет креатинфосфата (см. Креатин), которого в макрофагах в 3-5 раз больше, чем АТФ, и потребление существенно возрастает при фагоцитозе. Креатинфосфат в макрофагах служит, таким образом, важнейшим резервом и поставщиком химической энергии для фагоцитоза.

Фагоцитоз сопровождается метаболическим, или дыхательным, взрывом, проявляющимся повышением потребления кислорода и окисления глюкозы через гексозомонофосфатный шунт (см. Углеводный обмен). При этом образуются основные продукты восстановления кислорода - супероксидный анион и перекись водорода за счет окисления никотин-амидаденин-динуклеотидов и никотинамидаденин-динуклеотидфосфатов с помощью соответствующих НАДН- и НАДФН-оксидаз; накапливающиеся окисленные коферменты вызывают усиление гексозомонофосфатного шунта за счет их восстановления с помощью глюкозо-6-фосфат-II 6-фосфоглюконат-дегидрогеназ. Фагоциты имеют сложную систему для разрушения перекиси водорода. Эта система защищает компоненты клетки от разрушения и представлена каталазой, миелопероксидазой, глутатион-пероксидазой, восстановленным глутатионом. Дыхательный взрыв сопровождается усилением метаболизма углеводов, липидов, синтеза РНК, повышением уровня циклического гуанозинмонофосфата, снижением синтеза белка и транспорта аминокислот.

После завершения поглощения частицы возникшая фагосома и первичные лизосомы (см.), первичные азурофильные и вторичные специфические гранулы фагоцитов взаимно сближаются и сливаются, образуя фаголизосому. Этот процесс сопровождается исчезновением в фагоцитах изолированных гранул. Из лизосом в фагосому попадает большое количество гидролитических ферментов. Фагоцитоз также связан с секрецией из фагоцитов ряда ферментов - (З-глюкуронидазы, N-ацетил-бета-глюкозаминидазы, кислой и щелочной фосфатазы, катепсина, миелопероксидазы, лактоферрина, плазминогенного активатора. Подобная секреция сопряжена с активацией гексозомонофосфатного шунта и длится значительно дольше, чем непосредственно процесс фагоцитоза.

После проникновения бактерий внутрь фагоцитов начинает функционировать сложный микробоцидный механизм, представленный антимикробными системами, как требующими кислорода, так и не зависящими от него. Антимикробная система, требующая кислорода, функционирует в двух вариантах - с участием и без участия миелопероксидазы. Вариант с участием миелопероксидазы высокоактивен в отношении бактерий, грибков, микоплазм и вирусов. Взаимодействие миелопероксидазы и перекиси водорода сопровождается образованием окислителей, окислением галоидов и галогенизацией, заключающейся в иодировании, хлорировании, бронировании различных бактериальных компонентов, что приводит к гибели бактерий. При описанных реакциях образуются бактерицидные ионы хлора, йода, хлорамины, нитриты, бактерицидные альдегиды, синглетный кислород, которые блокируют многие ферментные системы бактерий. Не зависящий от миелопероксидазы вариант аштшикробной системы фагоцитов вызывает образование токсичных для микробов промежуточных форм восстановленного кислорода - супероксидного аниона, перекиси водорода, гидроксильного радикала и синглетного кислорода. Наиболее активна из них перекись водорода.

К антимикробной системе фагоцитоза, не зависящей от кислорода, относят: лизоцим (см.), расщепляющий пептидогликаны клеточных стенок некоторых грамположительных бактерий до дисахаридов, состоящих из мураминовой кислоты и глюкозамина; лактоферрин, который в ненасыщенной железом форме оказывает микробостатическое действие в фагосомах за счет связывания железа, являющегося ростовым фактором для ряда из них; различные катионные белки. Определенное бактерицидное действие оказывает также формирующееся в фаголизосомах глубокое закисление до pH 6,5-3,75.

Закисление, кроме того, активирует лизосомальные гидролазы первичных лизосом, неактивные при слабощелочном pH.

Микробоцидные системы фагоцитов функционируют в кооперации. Они обладают различной потенцией, но все вместе оказывают взаимоперекрывающее действие, поэтому обладают высокой надежностью и эффективностью даже при дефектах фагоцитоза.

При нарушении хемотаксиса фагоцитоз бактерий подавлен, что способствует развитию и злокачественному течению ряда инфекционных болезней. Вещества, индуцирующие хемотаксис, называются хемоаттрактантами и подразделяются на несколько групп: 1) продукты специфических, в основном иммунологических реакций,- СЗа-, С5а-субкомпоненты комплемента, активированный комплекс G567, СЗ-конвертаза альтернативного пути активации комплемента, лимфокины (см. Медиаторы клеточного иммунитета), трансферфактор лимфоцитов, цитофильные антитела; 2) неспецифические эндогенные хемо-аттрактанты - продукты поврежденных клеток, калликреин (см. Кинины), плазминогенный активатор, фибринопептид В, гидролизованные или агрегированные IgG, коллаген, а- и Р-казеин молока, циклический аденозинмонофосфат и др.; 3) экзогенные хемоаттрактанты - фрагменты белка бактерий, содержащие N-формилметионин, пептиды, липиды или липопротеиды, выделяющиеся в процессе жизнедеятельности бактерий в организме.

На поверхности фагоцитов обнаружены специфические рецепторы для хемоаттрактантов - эйкозатетраеновой кислоты, синтетических формил-метионил-пептидов, С5а-субком-понента кохмплемента. По-видимому, число этих рецепторов неодинаково у разных типов фагоцитов, напр, циркулирующие нейтрофилы кролика в 8 раз слабее связывали хемотаксические пептиды, чем перитонеальные нейтрофилы. Доказана реакция сократительной системы клетки на действие хемоаттрактантов. Ее ориентация на градиент хемоаттрактантов обусловлена работой микротрубочек, выполняющих роль цитоскелета клетки,- они поддерживают поляризованную вытянутую на градиент хемоаттрактантов форму клетки. Однако непосредственно движение фагоцита осуществляет система микрофиламентов. Предполагают, что белки крови - альбумин и IgG являются регуляторами локомоторной функции фагоцитов. Активация фагоцитов хемоаттрактантами во многом сопровождается теми же изменениями, которые происходят при фагоцитозе - метаболическим взрывом, секрецией из клеток ферментов и др. Определенная регулирующая роль принадлежит циклическим нуклеотидам: циклический аденозинмонофосфат подавляет, а циклический гуанозинмоно-фосфат стимулирует хемотаксис.

Способы и методические подходы к оценке фагоцитоза разнообразны и зависят от конкретных задач исследования. Они позволяют определить эффективность процессов поглощения частиц, гибели и переваривания живых микроорганизмов и метаболические изменения фагоцитов. Важные данные о фагоцитозе могут быть также получены при исследовании хемотаксиса и опсонизации.

Для оценки фагоцитоза используют различные микроорганизмы - стафилококки (см.), эшерихии (см.), сальмонеллы (см. Сальмонелла) и др. Используют как живые, так и убитые микробы, но поскольку живые бактерии нередко выделяют токсические продукты, подавляющие фагоцитоз, лучше использовать убитые.

Фагоцитоз усиливается в присутствии сыворотки, опсонизирующей бактерии. Для усиления и стандартизации фагоцитоза используют предопсонизацию, то есть предварительную (до фагоцитоза) обработку микроба опсонинами - специфическими антителами - либо свежей сывороткой, в которой микробы активируют систему комплемента и адсорбируют появляющиеся субкомпоненты комплемента, облегчающие фагоцитоз. Однако в экспериментах с живыми микробами применяют лишь те, которые не убиваются опсонизирующей сывороткой. Скорость фагоцитоза анализируют при совместном инкубировании фагоцитов и живых бактерий. Через разные промежутки времени забирают пробы, с помощью дифференциального центрифугирования освобождаются от фагоцитов и надосадочную жидкость сеют на чашки с агаром, что позволяет определить уменьшение числа живых бактерий в процессе фагоцитоза. При работе с грибками рода Candida препарат просчитывают в камере Горяева, определяя при этом число внеклеточно расположенных грибков.

Для анализа фагоцитоза путем определения процента фагоцитов, поглотивших бактерии (фагоцитарный индекс Гамбургера), или среднего числа бактерий, поглощенных одним фагоцитом (фагоцитарное число Райга), скорости фагоцитоза используют частицы латекса, крахмала, зимозана, кармина, угля и др. Предложен метод исследования фагоцитоза, при котором используют капельки парафинового масла, содержащего специальный краситель и стабилизированного белком. Поглощенный материал определяют спектрофотометрически (см. Спектрофотометрия). Также используют частицы или микробы, меченные радиоактивными изотопами (см. Меченые соединения). Метод характеризуется быстротой выполнения, однако не позволяет полностью избавиться от прилипших бактерий, что завышает показатели фагоцитоза. Другой вариант состоит в добавлении к среде с фагоцитами и частицами меченых сывороточных белков, которые при фагоцитозе попадают в фагосому, что позволяет оценить количественно интенсивность фагоцитоза. Применяют также ксеногенные интактные или сингенные поврежденные или опсонизированные эритроциты, анализируя их поглощение визуально или по выходу гемоглобина.

При исследовании поглощения живых бактерий, особенно с последующим учетом количества убитых бактерий необходимо удалить с поверхности фагоцитов прилипшие микробы. Для этого применяют различные антибиотики, убивающие внеклеточные бактерии, но не проникающие в фагоциты, специальные препараты (фенилбутазан), прерывающие в определенные моменты фагоцитоза и внутриклеточную инактивацию микробов. Разработан метод, позволяющий различать прилипшие и поглощенные убитые грибки рода Candida по окраске препарата трипановым синим.

Гибель и переваривание поглощенных микробов выявляют путем инкубирования суспензии фагоцитов с микробами, последующего отмывания фагоцитов of прилипших микробных клеток, подсчета живых микробов, оставшихся в пробах фагоцитов, забираемых в различные сроки инкубации. Число живых бактерий определяют серийными посевами из проб фагоцитов на чашки Петри с агаром. Число живых грибков подсчитывают в лизате фагоцитов после инкубации с помощью окрашивания метиленовым синим. Внутриклеточное переваривание бактерий изучают также с помощью включения в них 3Н-уридина. Для этого культуру фагоцитов, поглотивших бактерии, обрабатывают актиномицином D, добавляя в среду 3Н-уридин. Метка, включаясь в живые внутриклеточные бактерии, не попадает в убитые и фагоциты.

Анализ повреждающего действия фагоцитов на микробы можно проводить по степени окрашивания поглощенных микробов красителями или по окраске метиленовым синим фаголизосом фагоцитов. Завершенность фагоцитоза оценивают по отношению среднего числа убитых микробов к живым или числа фагоцитов с переваренными микробами к общему числу фагоцитирующих фагоцитов, а также по проценту разрушенных микробов от числа фагоцитированных или по среднему числу убитых микробов на один фагоцит. Выраженность метаболических изменений при фагоцитозе анализируют по потреблению кислорода, хемилюминесценции, окислению глюкозы, иодированию и др.

Фагоциты играют ключевую роль в формировании противомикробного иммунитета (см. Иммунитет), обусловленного как специфическими, так и неспецифическими факторами защиты. Несмотря на то, что специфический иммунитет опосредуется специфическими Т-клетками, а также специфическими антителами, опсонизирующими бактерии и усиливающими фагоцитоз, элиминация патогенных бактерий осуществляется неспецифически - фагоцитами, активированными лимфокинами специфических Т-лимфоцитов. Активированные фагоциты значительно эффективнее убивают бактерии, что показал еще И. И. Мечников. Естественная невосприимчивость к возбудителям инфекционных болезней также обусловлена в основном фагоцитарными клетками. Ключевая роль принадлежит им и в детоксикации бактериальных токсинов, нейтрализованных антителами.

Макрофаги, перерабатывая антиген и представляя его лимфоцитам, участвуя в межклеточной кооперации, активации и супрессии пролиферации лимфоцитов, являются необходимым звеном в формировании иммунологической толерантности (см. Толерантность иммунологическая) и трансплантационного иммунитета (см. Иммунитет трансплантационный). Макрофаги участвуют в противоопухолевом иммунитете (см. Иммунитет противоопухолевый), оказывая цитостатическое и цитотоксическое действие на опухолевые клетки.

Повреждения фагоцитов различными иммуносупрессорами, блокаторами (см. Иммунитет , Иммунодепрессивные вещества), ионизирующим излучением (см.) вызывают резкое подавление противомикробной устойчивости организма. При воздействии на животных большими дозами ионизирующего излучения фагоцитарная активность может практически исчезнуть. Нормализуется фагоцитарная активность у животных, как правило, после 20-го дня. У кроликов, облученных в дозе 600 рад (6 Гр), она восстанавливается только через 40 дней. Между дозой ионизирующего излучения и степенью подавления фагоцитоза существует корреляция. Дозы 10-75 рад (0,1 - 0,75 Гр) усиливают фагоцитоз гранулоцитов, а 350-600 рад (3,5-6 Гр)-резко его угнетают, причем снижается завершенность фагоцитоз, в 3-4 раза подавляется подвижность фагоцитов, а также уменьшается абсолютное их число. Эти же закономерности характерны для макрофагов, число и переваривающая способность которых при облучении также резко снижаются.

Выявлены болезни, сопровождающиеся первичными (врожденными) или вторичными (приобретенными) дефектами фагоцитоза. К ним относится так называемая хроническая гранулематозная болезнь, возникающая у детей, в фагоцитах которых из-за дефекта оксидаз нарушено образование перекисей и надперекпсей и, следовательно, процесс инактивации микробов. Сниженная способность к уничтожению бактерий выявлена у людей, нейтрофилы которых синтезируют недостаточное количество миелопероксидазы, глюкозо-б-фосфат-дегидрогеназы, пируваткиназы. Замедленная гибель микробов обнаружена у больных с синдромом Чедиака - Хигаси (см. Тромбоцитопатии), в нейтрофилах которых нарушено выделение в фагосому лизосомальных ферментов из-за дефекта системы микротрубочек. Описано нарушение процесса полимеризации актина, ведущее к замедлению поглощения частиц нейтрофилами и их подвижности. Больные с указанными дефектами фагоцитов часто страдают тяжелыми бактериальными и грибковыми инфекциями.

Первичные нарушения фагоцитоза наблюдаются и на уровне опсонинов, например, при врожденном дефиците СЗ- и С5-компонентов комплемента, который может привести к развитию рецидивирующих инфекций с поражением легких, костей, кожи.

Вторичные дефекты фагоцитоза описаны при заболеваниях соединительной ткани, почек, нарушении питания, вирусных и рецидивирующих бактериальных инфекциях.

Библиогр.: Берман В. М. и Славская E. М, Завершенный фагоцитоз, Журн. микр., эпид. и иммун., № 3, с. 8, 1958; Подопригора Г. И. и Андреев В. Н. Современные методы изучения фагоцитарной активности лейкоцитов in vitro, там же, № 1, е. 19, 1976; Xрамцов А. В. и Земсков В. М. Роль плазматической мембраны в активации лизосомальных ферментов, Докл. АН СССР, т. 271, № 1, с. 241, 1983; Handbook of experimental immunology, ed. by D. M. Weir, v. 2-3, Oxford a. o., 1979; Handbook of experimental pharmacology, ed. by J. R. Vane a. S. H. Ferreira, v. 50, pt 1, В. a. o., 1978; KlebanoffS. J. a. Clark R. A. The neutrophil, function and clinical disorders, Amsterdam a. o., 1978; Mononuclear phagocytes, Functional aspects, ed. by R. van Furth, pt 1 - 2, Hague a. o., 1980; The reticuloendothelial system, a comprehensive treatise, v. 1 - Morphology, ed. by H. Friedman a. o., N. Y.- L., 1980.

В. М. Земсков.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека