Где применяют серу.

Можно выделить следующие генетические типы: 1) магматические, 2) карбонатитовые, 3) скарновые, 4) гидротермальные и пневматолитовые, 5) вулканогенно-осадочные, 6) подземноводные и газонефтяные, 7) осадочные.

К магматическим месторождениям серы следует относить ликвационные медно-никелевые месторождения, сера в которых формирует сульфиды , , , и других металлов и извлекается попутно при переработке руд цветных металлов. Примеры - Талнахское и другие месторождение в России, Сёдбери в Канаде.

К карбонатитовым месторождениям серы относятся редко встречаемые гипс-барит-флюоритовые, связанные с апикальными частями карбонатитовых комплексов. Сера извлекается из . Пример - месторождение Амба-Донгар в Индии.

К скарновым месторождениям серы относятся медные и полиметаллические месторождения, сера которых также представлена сульфидами различных металлов: железа, меди, , и др. Извлекаются они попутно с получением металлов. Примеры - Турьинские медные рудники Урала, полиметаллические месторождения Кара- Мазара в Средней Азии.

Среди гидротермальных месторождений серы следует выделять плутоногенные и вулканогенные. К плутоногенным относятся медные н полиметаллические месторождения, сера которых формирует сульфиды железа и цветных металлов; извлекается она попутно. Примеры - полиметаллические месторождения Забайкалья. Среди гидротермальных вулканогенных месторождений выделяется ряд формаций. К этому типу следует относить формации самородной серы в вулканических образованиях. Это и метасоматические залежи (точнее, импрегнационно-метасоматические, так как часть серы формируется не путем замещения, а путем выполнения пустот) серы в приповерхностных зонах вулканических построек, преимущественно среди опалитов, и месторождения серных потоков и кратерных расплавов, а также месторождения, формирующиеся из серосодержащих газов и горячих вод непосредственно в поверхностных условиях.

Для импрегнационно-метасоматических месторождений, играющих ведущую роль в вулканогенной группе, характерна определенная метасоматическая зональность, при этом среди характерных пород здесь наблюдаются и сами серные руды - сероносные опалиты, и алунитовые породы, пропилиты и монтмориллонитизированные вулканиты. Примеры - Новое на Курильских островах, Мелитойваямское на Камчатке, ряд месторождений Японии. Этот тип месторождений возникает при воздействии сероносных газов и растворов на вулканические постройки, при этом интенсивно выщелачивается ряд металлов, в том числе железо и , а кремнезем остается и формирует существенно опаловые породы - опалиты.

Нередко наряду с самородной серой и серосодержащим минералом алунитом отмечается и сульфид серы - мельниковит. Месторождения серных потоков возникают при расплавлении ранее возникших серных залежей при активизации вулканов. Например, серный поток, вынесший 200 тыс. т серы, наблюдался в Японии на вулкане Сиеретоко-Иоцан. В некоторых вулканах в кратерах имеются серные расплавы (например, на островах Галапагос). Поверхностные небольшие месторождения серы, в том числе сульфуриты, формируются из серосодержащих вод и газов. Они известны на вулкане Менделеева и ряде вулканов Японии.

К вулканогенно-осадочным месторождениям серы относятся кратерно-озерные месторождения самородной серы, а также месторождения колчеданных руд, формирующиеся при поступлении сероносных вулканогенных гидротерм в морские бассейны. Примером кратерно-озерных месторождений служит одно из крупных месторождений Индонезии Телага Бодае. К колчеданным вулканогенно-осадочным месторождениям принадлежит ряд месторождений Испании и Португалии, играющих заметную роль в получении сульфидной серы. К этому типу можно отнести и некоторые месторождения цветных металлов, из руд которых сера извлекается как попутный компонент.

Существенное значение в добыче серы имеют подземноводные и газонефтяные месторождения серы . Подземно-водные месторождения возникают при метасоматическом замещении гипсов и ангидритов серокальцитовыми рудами. Процесс этот осуществляется на определенном расстоянии от поверхности земли, т. е. может начаться только после определенного уровня денудации, вызывающего приближение продуктивных горизонтов гипсов и ангидритов к поверхности. При этом существенную роль играют процессы эрозии, в частности деятельность древних долин, приближающих сульфатоносные слои к поверхности, а также наличие разрывных нарушений, облегчающих миграцию вод, в том числе подъем глубинных вод. К этому типу месторождений относятся наиболее крупные месторождения серы России, стран Ближнего Востока и др.

Разновидностью месторождений данного типа являются месторождения серы в кепроках соляных куполов. Кепроки, или остаточные шляпы, возникают при растворении верхних частей растущих: соляных куполов. Строение их зональное: непосредственно выше солей, в области фронта их растворения, представленного «соляным зеркалом», располагаются гипсы и ангидриты, выше - зона карбонатных пород, а над ней нередко отмечаются скопления глин, как наиболее труднорастворимого остатка соляной толщи. Осернению подвергаются породы зоны сульфатов кальция (см. рис. 30). Пример этого подтипа месторождений - месторождения серы Мексиканского залива.

В газовых месторождениях сера входит в состав сероводорода, который попутно извлекается при добыче природных горючих газов. Такие месторождения известны в Канаде, Франции, России (Оренбургские месторождения газа). Месторождения сернистых нефтей известны в ряде стран. Сера извлекается попутно при переработке .

К осадочным месторождениям серы относятся гипсоангидритовые месторождения, из которых получают серу в ряде стран, а также колчедансодержащие каменные и бурые и скопления пирита и марказита в песчаниках и глинистых породах, в том числе в глинистых . Из угля соединения серы извлекают как в процессе обогащения углей, так и при получении кокса. Пример - Подмосковный буроугольный бассейн. Скопления, в том числе желваки железного колчедана, известны в песчано-глинистых отложениях ряда стран, в том числе , Россия и др. Иногда отмечаются сплошные залежи колчеданов (не желваки или караваи), правда в таком случае не исключается эффузивно-осадочный генезис этих пластов и линз сплошных колчеданных руд.

В некоторых случаях отмечается формирование осадочных скоплений самородной серы, однако промышленные скопления этого типа пока не установлены.

Сера (Sulfur) является элементом периодической системы химических элементов и относится к группе халькогенов. Данный элемент является активным участником образования многих кислот и солей. Водородные и кислотные соединения содержат серу, как правило, в составе различных ионов. Большое количество солей, в состав которых входит сера, практически не растворяются в воде.

Сера в природе является достаточно распространенным элементом. По своему химическому содержанию в земной коре ей присвоен шестнадцатый номер, по нахождению в водоемах - шестой. Она может встречаться как в свободном, так и в связанном состоянии.

К наиболее важным природным минералам элемента относятся: железный колчедан (пирит) - FeS 2 , цинковая обманка (сфалерит) - ZnS, галенит - PbS, киноварь - HgS, антимонит - Sb 2 S 3 . Также шестнадцатый элемент периодической системы встречается в составе нефти, природного угля, природных газов, а также сланцев. Нахождение серы в водной среде представляется сульфат-ионами. Именно ее наличие в пресной воде является причиной постоянной жесткости. Также она является одним из важнейших элементов жизнедеятельности высших организмов, является частью структуры многих белков, а также концентрируется в волосах.

Таблица 1. Свойства серы
Характеристика Значение
Свойства атома
Название, символ, номер Сера / Sulfur (S), 16
Атомная масса (молярная масса) [комм. 1] а. е. м. (г/моль)
Электронная конфигурация 3s2 3p4
Радиус атома 127 пм
Химические свойства
Валентный радиус 102 пм
Радиус иона 30 (+6e) 184 (-2e) пм
Электроотрицательность 2,58 (шкала Полинга)
Электродный потенциал 0
Степень окисления +6, +4, +2, +1, 0, -1, −2
Энергия ионизации (первый электрон) 999,0 (10,35) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 2,070 г/см³
Температура плавления 386 К (112,85 °С)
Температура кипения 717,824 К (444,67 °С)
Уд. теплота плавления 1,23 кДж/моль
Уд. теплота испарения 10,5 кДж/моль
Молярная теплоёмкость 22,61 Дж/(K·моль)
Молярный объём 15,5 см³/моль

Кристаллическая решётка простого вещества

Структура решётки орторомбическая
Параметры решётки a=10,437 b=12,845 c=24,369 Å
Прочие характеристики
Теплопроводность (300 K) 0,27 Вт/(м·К)
Номер CAS 7704-34-9

Серная руда

Нельзя сказать о том, что свободное состояние серы в природе является частым явлением. Самородная сера встречается довольно редко. Зачастую она является одной из составляющих некоторых руд. Серной рудой называется порода, в состав которой входит самородная сера. Серные вкрапления в породах могут образовываться вместе с сопутствующими породами или позже них. Время их образования влияет на направление поисковых и разведочных работ. Специалисты выделяют несколько теорий образования серы в рудах.

  1. Теория сингенеза. Согласно данной теории сера и вмещающие породы были образованы одновременно. Местом их формирования были мелководные бассейны. Сульфаты, содержащиеся в воде, с помощью особых бактерий были восстановлены до сероводорода. Далее происходило его поднятие вверх до окислительной зоны, в которой сероводород окислялся до элементарной серы. Она опускалась на дно, оседая в иле, который через время превращался в руду.
  2. Теория эпигенеза, которая утверждает, что образование вкраплений серы происходило позже основных пород. В соответствии с данной теорией считается, что происходило проникновение подземных вод в толщи пород, в результате чего воды обогащалась сульфатами. Далее данные воды соприкасались с месторождениями нефти или газа, что приводило к восстановлению ионов сульфатов с помощью углеводородов до сероводорода, который, поднимаясь к поверхности и окисляясь, выделял самородную серу в пустотах и трещинах пород.
  3. Теория метасоматоза. Данная теория является одной из подвидов теории эпигенеза. В настоящее время она все чаще находит подтверждения. Ее суть заключается в превращении гипса (CaSO 4 -H 2 O) и ангидрита (CaSO 4) в серу и кальцит (СаСО 3-). Теорию предложили два ученых Миропольский и Кротов еще в первой половине двадцатого века. Спустя несколько лет было найдено месторождение Мишрак, которое подтверждало образование серы именно таким путем. Однако, до настоящего времени остается неясным сам процесс превращения гипса в серу и кальцит. В связи с этим, теория метасоматоза не является единственно правильной. Кроме этого, сегодня на планете есть озера, имеющие сингенетические отложения серы, однако, в иле не обнаружены гипс или ангидрит. К таким озерам относится Серное озеро, расположенное вблизи Серноводска.

Таким образом, однозначной теории происхождения серных вкраплений в рудах не существует. Образование вещества во многом зависит от условий и явлений, протекающих в земных недрах.

Месторождения серы

Сера добывается в местах локализации серной руды - месторождениях. По некоторым данным, мировые запасы серы составляют порядка 1,4 миллиардов тонн. На сегодняшний день месторождения серы найдены во многих уголках Земли - в Туркмении, в США, Поволжье, вблизи левых берегов Волги, которые пролегают от Самары и т.д. Иногда полоса породы может распространяться на несколько километров.

Большими серными запасами славятся Техас и Луизиана. Отличающиеся своей красотой серные кристаллы также располагаются в Романье и Сицилии (Италия). Родиной моноклинной серы считается остров Вулькано. Также залежами шестнадцатого элемента периодической системы Менделеева славится Россия, в частности Урал.

Серные руды классифицируются в соответствии с количеством содержащейся в них серы. Так, среди них различают богатые руды (от 25% серы) и бедные (около 12% вещества). Серные месторождения, в свою очередь, распределяются по следующим типам:

  1. Стратиформные месторождения (60%). Данный тип месторождений связан с сульфатно-карбонатными толщами. Рудные тела располагаются непосредственно в сульфатных породах. Они могут достигать в размере сотен метров и иметь мощность в несколько десятков метров;
  2. Солянокупольные месторождения (35%). Для данного типа характерны серные залежи серого цвета;
  3. Вулканогенные (5%). К этому типу относятся месторождения, образованные вулканами молодой и современной структуры. Форма рудного элемента, залегающего в них, пластообразная или линзовидная. Такие месторождения могут содержать порядка 40% серы. Они характерны для Тихоокеанского вулканического пояса.

Добыча серы

Сера добывается одним из нескольких возможных способов, выбор которого зависит от условий залегания вещества. Основными являются всего два - открытый и подземный.

Открытый способ добычи серы является наиболее популярным. Весь процессы добычи вещества данным способом начинается со снятия значительного количества породы экскаваторами, после чего происходит дробление самой руды. Полученные рудные глыбы транспортируются на фабрику для дальнейшего обогащения, после чего отравляются на предприятие, где происходит плавка серы и получения вещества из концентратов.

Кроме этого, также иногда применяется метод Фраша, который заключается в выплавке серы еще под землей. Данный способ целесообразно использоваться в местах глубокого залегания вещества. После расплавки под землей, происходит выкачивание вещества наружу. Для этого формируются скважины, являющиеся основным инструментом для выкачки расплавленного вещества. Метод основан на легкости плавления элемента и небольшой его плотности.

Существует также метод разделения на центрифугах. Однако, он отличается своим одним большим недостатком, основанным на том, что сера, полученная с помощью такого метода, имеет много примесей и требует дополнительной очистки. В результате, метод считается достаточно затратным.

Кроме указанных методов добыча серы в отдельных случаях может также производиться:

  • скважинным методом;
  • пароводяным методом;
  • фильтрационным методом;
  • термическим методом;
  • экстракционным методом.

Стоит отметить, что вне зависимости от метода, используемого во время извлечения вещества из земных недр, необходимо особое внимание уделять технике безопасности. Это связано с присутствием вместе с залежами серы сероводорода, который является ядовитым для человека и способен воспламеняться.

Сера – одно из немногих веществ, которыми уже несколько тысяч лет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под №16.

Об одном из самых древних (хотя и гипотетических!) применений серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных оснований для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Одна из причин этой известности – распространенность самородной серы в странах древнейших цивилизаций. Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент №16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретен черный порох. Ведь сера (вместе с углем и селитрой) – непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера – один из важнейших видов сырья для многих химических производств. И в этом причина непрерывного роста мирового производства серы.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы – это порода с вкраплениями серы.

Когда образовались эти вкрапления – одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т.е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ид образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза – теория метасоматоза (в переводе с греческого «метасоматоз» означает «замещение». Согласно ей в недрах постоянно происходит превращение гипса CaSO 4 · 2H 2 O и ангидрита CaSO 4 в серу и кальцит СаCO 3 . Эта теория создана в 1935 г. советскими учеными Л.М. Миропольским и Б.П. Кротовым. В ее пользу говорит, в частности, такой факт.

В 1961 г. в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов – среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На Земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.

Все это означает, что разнообразие теорий и гипотез о происхождении самородной серы – результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Добыча серы

Серные руды добывают разными способами – в зависимости от условий залегания. Но в любом случае приходится уделять много внимания технике безопасности. Залежам серы почти всегда сопутствуют скопления ядовитых газов – соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на обогатительную фабрику, а оттуда – на сероплавильный завод, где из концентрата извлекают серу. Методы извлечения различны. О некоторых из них будет рассказано ниже. А здесь уместно кратко описать скважинный метод добычи серы из-под земли, позволивший Соединенным Штатам Америки и Мексике стать крупнейшими поставщиками серы.

В конце прошлого века на юге Соединенных Штатов были открыты богатейшие месторождения серной руды. Но подступиться к пластам было непросто: в шахты (а именно шахтным способом предполагалось разрабатывать месторождение) просачивался сероводород и преграждал доступ к сере. Кроме того, пробиться к сероносным пластам мешали песчаные плавуны. Выход нашел химик Герман Фраш, предложивший плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (меньше 120°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

В принципе установка Фраша очень несложна: труба в трубе. В пространство между трубами подается перегретая вода и по нему идет в пласт. А по внутренней, обогреваемой со всех сторон, трубе поднимается расплавленная сера. Современный вариант установки Фраша дополнен третьей – самой узкой трубой. Через нее в скважину подается сжатый воздух, который помогает поднять расплавленную Серу на поверхность. Одно из основных достоинств метода Фраша – в том, что он позволяет уже на первой стадии добычи получить сравнительно чистую серу. При разработке богатых руд этот метод весьма эффективен.

Раньше считалось, что метод подземной выплавки серы применим только в специфических условиях «соляных куполов» тихоокеанского побережья США и Мексики. Однако опыты, проведенные в Польше и СССР, опровергли это мнение. В Польше этим методом уже добывают большое количество серы: в 1968 г. пущены первые серные скважины и в СССР.

А руду, полученную в карьерах и шахтах, приходится перерабатывать (часто с предварительным обогащением), используя для этого различные технологические приемы.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Термические методы извлечения серы – самые старые. Еще в XVIII в. в Неаполитанском королевстве выплавляли серу в кучах – «сольфатарах». До сих пор в Италии выплавляют серу в примитивных печах – «калькаронах». Тепло, необходимое для выплавления серы из руды, получают, сжигая часть добытой серы. Процесс этот малоэффективен, потери достигают 45%.

Италия стала родиной и пароводяных методов извлечения серы из руд. В 1859 г. Джузеппе Джилль получил патент на свой аппарат – предшественник нынешних автоклавов. Автоклавный метод (значительно усовершенствованный, конечно) используется и сейчас во многих странах.

В автоклавном процессе обогащенный концентрат серной руды, содержащий до 80% серы, в виде жидкой пульпы с реагентами подается насосами в автоклав. Туда же под давлением подается водяной пар. Пульпа нагревается до 130°C. Сера, содержащаяся в концентрате, плавится и отделяется от породы. После недолгого отстоя выплавленная сера сливается. Затем из автоклава выпускаются «хвосты» – взвесь пустой породы в воде. Хвосты содержат довольно много серы и вновь поступают на обогатительную фабрику.

В России автоклавный способ был впервые применен инженером К.Г. Паткановым в 1896 г.

Современные автоклавы – это огромные аппараты высотой с четырехэтажный дом. Такие автоклавы установлены, в частности, на сероплавильном заводе Роздольского горно-химического комбината в Прикарпатье.

На некоторых производствах, например на крупном серном комбинате в Тарнобжеге (Польша), пустую породу отделяют от расплавленной серы на специальных фильтрах. Метод разделения серы и пустой породы на центрифугах разработан в нашей стране. Словом, «руду золотую (точнее – золотистую) отделять от породы пустой» можно по-разному.

В последнее время все большее внимание уделяется скважинным геотехнологическим способам добычи серы. На Язовском месторождении в Прикарпатье серу – классический диэлектрик плавят под землей токами высокой частоты и выкачивают на поверхность через скважины, как в методе Фраша. Ученые Института горно-химического сырья предложили способ подземной газификации серы. По этому способу серу поджигают в пласте, а на поверхность выкачивают сернистый газ, который идет на производство серной кислоты и других полезных продуктов.

По-разному и удовлетворяют свои потребности в сере разные страны. Мексика и США используют в основном метод Фраша. Италия, занимающая по добыче серы третье место среди капиталистических государств, продолжает добывать и перерабатывать (разными методами) серные руды сицилийских месторождений и провинции Марке. У Японии есть значительные запасы серы вулканического происхождения. Франция и Канада, не имеющие самородной серы, развили крупное производство ее из газов. Нет собственных серных месторождений и в Англии и ФРГ. Свои потребности в серной кислоте они покрывают за счет переработки серусодержащего сырья (преимущественно пирита), а элементарную серу импортируют из других стран.

Советский Союз и социалистические страны полностью удовлетворяют свои потребности благодаря собственным источникам сырья. После открытия и освоения богатых Прикарпатских месторождений СССР и Польша значительно увеличили производство серы. Эта отрасль промышленности продолжает развиваться. В последние годы построены новые крупные предприятия на Украине, реконструированы старые комбинаты на Волге и в Туркмении, расширено производство серы из природного газа и отходящих газов.

Кристаллы и макромолекулы

В том, что сера – самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье в XVIII в.

С тех пор представления о сере как элементе изменились не очень сильно, но значительно углубились и дополнились.

Сейчас известно, что элемент №16 состоит из смеси четырех устойчивых изотопов с массовыми числами 32, 33, 34 и 36. Это типичный неметалл.

Лимонно-желтые кристаллы чистой серы полупрозрачны. Форма кристаллов не всегда одинакова. Чаще всего встречается ромбическая сера (наиболее устойчивая модификация) – кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной (или близкой к комнатной) температуре превращаются все прочие модификации. Известно, например, что при кристаллизации из расплава (температура плавления серы 119,5°C) сначала получаются игольчатые кристаллы (моноклинная форма). Но эта модификация неустойчива, и при температуре 95,6°C она переходит в ромбическую. Подобный процесс происходит и с другими модификациями серы.

Напомним известный опыт – получение пластической серы.

Если расплавленную серу вылить в холодную воду, образуется эластичная, во многом похожая на резину масса. Ее можно получить и в виде нитей. Но проходит несколько дней, и масса перекристаллизуется, становится жесткой и ломкой.

Молекулы кристаллов серы всегда состоят из восьми атомов (S 8), а различие в свойствах модификаций серы объясняется полиморфизмом – неодинаковым строением кристаллов. Атомы в молекуле серы построены в замкнутый цикл, образующий своеобразный венец. При плавлении связи в цикле рвутся, и циклические молекулы превращаются в линейные.

Необычному поведению серы при плавлении даются различные толкования. Одно из них – такое. При температуре от 155 до 187°, по-видимому, происходит значительный рост молекулярного веса, это подтверждается многократным увеличением вязкости. При 187°C вязкость расплава достигает чуть ли не тысячи пуаз, получается почти твердое вещество. Дальнейший рост температуры приводит к уменьшению вязкости (молекулярный вес падает).

При 300°C сера вновь переходит в текучее состояние, а при 444,6°C закипает.

У паров серы с повышением температуры число атомов в молекуле постепенно уменьшается: S8 → S6 → S4 → (800°C) S 2 . При 1700°C пары серы одноатомны.

Коротко о соединениях серы

По распространенности элемент №16 занимает 15-е место. Содержание серы в земной коре составляет 0,05% по весу. Это немало.

К тому же сера химически активна и вступает в реакции с большинством элементов. Поэтому в природе сера встречается не только в свободном состоянии, но и в виде разнообразных неорганических соединений. Особенно распространены сульфаты (главным образом щелочных и щелочноземельных металлов) и сульфиды (железа, меди, цинка, свинца). Сера есть и в углях, сланцах, нефти, природных газах, в организмах животных и растений.

При взаимодействии серы с металлами, как правило, выделяется довольно много тепла. В реакциях с кислородом сера дает несколько окислов, из них самые важные SO 2 и SO 3 – ангидриды сернистой H 2 SO 3 и серной Н 2 SO 4 кислот. Соединение серы с водородом – сероводород H 2 S – очень ядовитый зловонный газ, всегда присутствующий в местах гниения органических остатков. Земная кора в местах, расположенных близ месторождений серы, часто содержит довольно значительные количества сероводорода. В водном растворе этот газ обладает кислотными свойствами. Хранить его растворы на воздухе нельзя, он окисляется с выделением серы:

2H 2 S + О 2 → 2Н 2 О + 2S.

Сероводород – сильный восстановитель. Этим его свойством пользуются во многих химических производствах.

Для чего нужна сера

Среди вещей, окружающих нас, мало таких, для изготовления которых не нужны были бы сера и ее соединения. Бумага и резина, эбонит и спички, ткани и лекарства, косметика и пластмассы, взрывчатка и краска, удобрения и ядохимикаты – вот далеко не полный перечень вещей и веществ, для производства которых нужен элемент №16. Для того чтобы изготовить, например, автомобиль, нужно израсходовать около 14 кг серы. Можно без преувеличения сказать, что промышленный потенциал страны довольно точно определяется потреблением серы.

Значительную часть мировой добычи серы поглощает бумажная промышленность (соединения серы помогают выделить целлюлозу). Для того чтобы произвести 1 т целлюлозы, нужно затратить более 100 кг серы. Много элементарной серы потребляет и резиновая промышленность – для вулканизации каучуков.

В сельском хозяйстве сера применяется как в элементарном виде, так и в различных соединениях. Она входит в состав минеральных удобрений и препаратов для борьбы с вредителями. Наряду с фосфором, калием и другими элементами сера необходима растениям. Впрочем, большая часть вносимой в почву серы не усваивается ими, но помогает усваивать фосфор. Серу вводят в почву вместе с фосфоритной мукой. Имеющиеся в почве бактерии окисляют ее, образующиеся серная и сернистая кислоты реагируют с фосфоритами, и в результате получаются фосфорные соединения, хорошо усваиваемые растениями.

Однако основной потребитель серы – химическая промышленность. Примерно половина добываемой в мире серы идет на производство серной кислоты. Чтобы получить 1 т H 2 SО 4 , нужно сжечь около 300 кг серы. А роль серной кислоты в химической промышленности сравнима с ролью хлеба в нашем питании.

Значительное количество серы (и серной кислоты) расходуется при производстве взрывчатых веществ и спичек. Чистая, освобожденная от примесей сера нужна для производства красителей и светящихся составов.

Соединения серы находят применение в нефтехимической промышленности. В частности, они необходимы при производстве антидетонаторов, смазочных веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах, ускоряющих обработку металла, содержится иногда до 18% серы.

Перечисление примеров, подтверждающих первостепенную важность элемента №16, можно было бы продолжить, но «нельзя объять необъятное». Поэтому вскользь упомянем, что сера необходима и таким отраслям промышленности, как горнодобывающая, пищевая, текстильная, и – поставим точку.

Наш век считается веком «экзотических» материалов – трансурановых элементов, титана, полупроводников и так далее. Но внешне непритязательный, давно известный элемент №16 продолжает оставаться абсолютно необходимым. Подсчитано, что в производстве 88 из 150 важнейших химических продуктов используют либо саму серу, либо ее соединения.

Из древних и средневековых книг

«Сера применяется для очищения жилищ, так как многие держатся мнения, что запах и горение серы могут предохранить от всяких чародейств и прогнать всякую нечистую силу».

Плиний Старший, «Естественная история» I в. н.э.

«Если травы чахлы, бедны соками, а ветви и листва деревьев имеют окраску тусклую, грязную, темноватую вместо блестящего зеленого цвета, это признак, что подпочва изобилует минералами, в которых господствует сера».

«Если руда очень богата серой, ее зажигают на широком железном листе с множеством отверстий, через которые сера вытекает в горшки, наполненные доверху водой».

«Сера входит также в состав ужасного изобретения – порошка, который может метать далеко вперед куски железа, бронзы или камня – орудие войны нового тина».

Агрикола, «О царстве минералов», XVI в.

Как испытывали серу в XIV веке

«Если ты хочешь испытать серу, хороша она или нет, то возьми кусок серы в руку и поднеси к уху. Если сера трещит так, что ты слышишь ее треск, значит она хороша; если же сера молчит и не трещит, то она нехороша...»

Этот своеобразный метод определения качества материала на слух (применительно к сере) может быть использован и сейчас. Экспериментально подтвердилось, что «трещит» только сера, содержащая не больше одного процента примесей. Иногда дело не ограничивается только треском – кусок серы раскалывается на части.

Удушающий серный газ

Как известно, выдающийся естествоиспытатель древности Плиний Старший погиб в 79 г. н.э. при извержении вулкана. Его племянник в письме историку Тациту писал: «...Вдруг раздались раскаты грома, и от горного пламени покатились вниз черные серные пары. Все разбежались. Плиний поднялся и, опираясь на двух рабов, думал тоже уйти; но смертоносный пар окружил его со всех сторон, его колени подогнулись, он снова упал и задохся».

«Черные серные пары», погубившие Плиния, состояли, конечно, не только из парообразной серы. В состав вулканических газов входят и сероводород, и двуокись серы. Эти газы обладают не только резким запахом, но и большой токсичностью. Особенно опасен сероводород. В чистом виде он убивает человека почти мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород тем более опасен, что он может накапливаться в организме. Он соединяется с железом, входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти. Сернистый газ (двуокись серы) менее токсичен, однако выпуск его в атмосферу приводил к тому, что вокруг металлургических заводов гибла вся растительность. Поэтому на всех предприятиях, производящих или использующих эти газы; вопросам техники безопасности уделяется особое внимание.

Сернистый газ и соломенная шляпка

Соединяясь с водой, сернистый газ образует слабую сернистую кислоту Н 2 SO 3 , существующую только в растворах. В присутствии влаги сернистый газ обесцвечивает многие красители. Это свойство используется для отбелки шерсти, шелка, соломы. Но такие соединения, как правило, не обладают большой стойкостью, и белые соломенные шляпки со временем приобретают первоначальную грязно-желтую окраску.

Сернистый ангидрид SO 3 в обычных условиях представляет собой бесцветную очень летучую жидкость, кипящую при 44,8°C. Твердеет он при –16,8°C и становится очень похожим на обыкновенный лед. Но есть и другая – полимерная модификация твердого серного ангидрида (формулу его в этом случае следовало бы писать (SO 3) n ). Внешне она очень похожа на асбест, ее волокнистую структуру подтверждают рентгенограммы. Строго определенной точки плавления эта модификация не имеет, что свидетельствует о ее неоднородности.

Гипс и алебастр

Гипс CaSO 4 · 2Н 2 O – один из самых распространенных минералов. Но распространенные в медицинской практике «гипсовые шины» делаются не из природного гипса, а из алебастра. Алебастр отличается от гипса только количеством кристаллизационной воды в молекуле, его формула 2CaSO 4 · Н 2 O. При «варке» алебастра (процесс идет при 160...170°C в течение 1,5...2 часов) гипс теряет три четверти кристаллизационной воды, и материал приобретает вяжущие свойства. Алебастр жадно захватывает воду, при этом происходит быстрая беспорядочная кристаллизация. Разрастись кристаллики не успевают, но сплетаются друг с другом; масса, образованная ими, в мельчайших подробностях воспроизводит форму, в которой происходит твердение. Химизм происходящего в это время процесса обратен происходящему при варке: алебастр превращается в гипс. Поэтому отливка – гипсовая, маска – гипсовая, повязка – тоже гипсовая, а делаются они из алебастра.

Глауберова соль

Соль Na 2 SO 4 · 10H 2 O, открытая крупнейшим немецким химиком XVII в. Иоганном Рудольфом Глаубером и названная в его честь, до сих пор широко применяется в медицине, стеклоделии, кристаллографических исследованиях. Глаубер так описывал ее: «Эта соль, если она хорошо приготовлена, имеет вид льда; она образует длинные, совершенно прозрачные кристаллы, которые растапливаются на языке, как лед. У нее вкус обыкновенной соли, без всякой едкости. Брошенная на пылающие угли, она не растрескивается с шумом, как обыкновенная кухонная соль, и не воспламеняется со взрывом, как селитра. Она без запаха и выносит любую степень жара. Ее можно применять с выгодой в медицине как снаружи, так и внутрь. Она заживляет свежие раны, не раздражая их. Это превосходное внутреннее лекарство: будучи растворена в воде и дана больному, она очищает кишки».

Минерал глауберовой соли называется мирабилитом (от латинского «mirabilis» – удивительный). Название происходит от имени, которое дал Глаубер открытой им соли; он назвал ее чудесной. Крупнейшие в мире разработки этого вещества находятся в нашей стране, чрезвычайно богата глауберовой солью вода знаменитого залива Кара-Богаз-Гол. Дно залива буквально устлано ею.

Сульфиты, сульфаты, тиосульфаты...

Если вы фотолюбитель, вам необходим фиксаж, т.е. натриевая соль серноватистой (тиосерной) кислоты Н 2 S 2 O 3 . Тиосульфат натрия Na 2 S 2 O 3 (он же гипосульфит) служил поглотителем хлора в первых противогазах.

Если вы порезались во время бритья, кровь можно остановить кристаллом алюмокалиевых квасцов KAl(SO 4) 2 · 12H 2 O.

Если вы хотите побелить потолки, покрыть медью какой-либо предмет или уничтожить вредителей в саду – вам не обойтись без темно-синих кристаллов медного купороса CuSO 4 · 5Н 2 О.

Бумага, на которой напечатана эта книга, сделана с помощью гидросульфита кальция Са(НSO 3) 2 .

Широко используются также железный купорос FeSO 4 · 7H 2 O, хромовые квасцы K 2 SO 4 · Cr 2 (SO 4) 3 · 2Н 2 O и многие другие соли серной, сернистой и тиосерной кислот.

Киноварь

Если в лаборатории разлили ртуть (возникла опасность отравления ртутными парами!), ее первым делом собирают, а те места, из которых серебристые капли не извлекаются, засыпают порошкообразной серой. Ртуть и сера вступают в реакцию даже в твердом состоянии – при простом соприкосновении. Образуется кирпично-красная киноварь – сульфид ртути – химически крайне инертное и безвредное вещество.

Выделить ртуть из киновари несложно. Многие другие металлы, в частности железо, вытесняют ртуть из киновари.

Серобактерии

В природе постепенно происходит круговорот серы, подобный круговороту азота или углерода. Растения потребляют серу – ведь ее атомы входят в состав белка. Растения берут серу из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород (отсюда – отвратительный запах гниения).

Но есть так называемые серобактерии, которым вообще не нужна органическая пища. Они питаются сероводородом, и в их организмах в результате реакции между H 2 S, CO 2 и О 2 образуются углеводы и элементарная сера. Серобактерии нередко оказываются переполнены крупинками серы – почти всю их массу составляет сера с очень небольшой «добавкой» органических веществ.

Сера – фармацевтам

Все сульфамидные препараты – сульфидин, сульфазол, норсульфазол, сульгин, сульфодимезин, стрептоцид и другие подавляют активность многочисленных микробов. И все эти лекарства – органические соединения серы. Вот структурные формулы некоторых из них:

После появления антибиотиков роль сульфамидных препаратов несколько уменьшилась. Впрочем, и многие антибиотики можно рассматривать как органические производные серы. В частности, она обязательно входит в состав пенициллина.

Мелкодисперсная элементарная сера – основа мазей, применяемых при лечении грибковых заболеваний кожи.

Нитрид серы проводит ток

В 1975 г. журнал «Кэмикл энд инжениринг ньюс» сообщил о получении нового неорганического полимера, у которого многие свойства – как у металла. Полимерный нитрид серы – политиазил (SN) n легко прессуется и куется, его электропроводность близка к электропроводности ртути. При этом пленки из политиазила не одинаково проводят ток в продольном и поперечном направлении. Это объясняется тем, что пленка построена из упорядоченных, расположенных параллельно друг другу полимерных волокон.

Что можно построить из серы

В 70-х годах в некоторых странах мира производство серы превысило потребности в ней. Поэтому сере стали искать новые применения, прежде всего в таких материалоемких областях, как строительство. В результате этих поисков появились серный пенопласт – как теплоизоляционный материал, бетонные смеси, в которых серой частично или полностью заменен портландцемент, покрытия для автострад, содержащие элементарную серу.

Сера в природе известна в нескольких полиморфных кристаллических модификациях, в коллоидных выделениях, в жидком и газообразном состояниях. В природных условиях устойчивой модификацией является ромбическая сера (α-сера). При атмосферном давлении при температуре выше 95,6° α-сера переходит в моноклинную β-серу, при охлаждении снова становится ромбической. γ-сера также кристаллизующаяся в моноклинной сингонии, при атмосферном давлении неустойчива и переходит в α-серу. Структура γ-серы не изучена; в данную структурную группу она отнесена условно.

В статье рассмотренно несколько полиморфных модификаций серы: α-сера, β-сера, γ-сера

α-модификация

Английское название минерала α-сера - α-Sulрhur

Происхождение названия

Название α-сера введено Дана (1892).

Синонимы:
Ромбическая сера. Обычно просто называется серой. Дэйтон-сера (Сузуки, 1915) - псевдоморфоза α-серы по β-сере.

Формула

Химический состав

Нередко самородная сера является практически чистой. Сера вулканического происхождения часто содержит небольшие количества As, Se, Те и следы Тi. Сера многих месторождений загрязнена битумами, глиной, разными сульфатами и карбонатами. В ней наблюдаются включения газов и жидкости, содержащей маточный раствор с NaCl, СаСЬ, Na2SO4 и др. Содержит иногда до 5,18% Se (селенистая сера)

Разновидности
1. Волканит - (селенистая сера) оранжево-красного, красно-бурого цвета.

Кристаллографическая характеристика

Сингония. Ромбическая.

Класс. Дипирамидальный. Некоторые авторы считали, что сера кристаллизуется в ромбо-тетраэдрический класс так как иногда она имеет вид сфеноидов, но эта форма, по Руайе, объясняется влиянием асимметрической среды (активных углеводородов) на рост кристаллов.

Кристаллическая структура серы

Структура серы молекулярная: 8 атомов в решетке входят в одну молекулу. Молекула серы образует восьмерные кольца, в которых атомы чередуются на двух уровнях (вдоль оси кольца). 4 атома S одного уровня образуют квадрат, повернутый относительно другого квадрата на 45°. Плоскости квадратов параллельны оси с. Центры колец располагаются в ромбической ячейке по «алмазному» закону: в вершинах и центрах граней гранецентрированной ячейки и в центрах четырех октантов из восьми, на которые делится элементарная ячейка. В структуре серы выдержан принцип Юма-Розери, требующий для элементов менделеевской группы V1б координации 2 (= 8 - 6). В структуре теллура - селена, а также в моноклинной сере это достигается спиральным расположением атомов, в структуре ромбической серы (а также синтетических β-селене и β -теллуре) - их кольцевым расположением. Расстояние S - S в кольце равно 2,10 А, что в точности совпадает с расстоянием S - S в радикале S 2 пирита (и ковеллина) и немного больше расстояния S-S между атомами S из разных колец (3,3 А).

Форма нахождения в природе

Облик кристаллов

Облик кристаллов различный - дипирамидальный, реже толстотаблитчатый по с (001), дисфеноидальный и др. На гранях (111) наблюдаются фигуры естественного травления, отсутствующие на гранях (113).

Двойники

Редки двойники по (101), (011), (110) или (111), отмечаются также двойники по (211).

Агрегаты. Сплошные массы, шаровые п почковидные выделения, сталактиты и сталагмиты, порошковатые налеты и кристаллы.

Физические свойства

Оптические

  • Цвет серно-желтый, соломенно- и медово-желтый, желто-бурый, от примесей красноватый, зеленоватый, серый; иногда от примесей битумов цвет коричневый или почти черный.
  • Черта бесцветная.
  • Блеск алмазный
  • Отлив смолистый до жирного.
  • Прозрачность. Прозрачна до просвечивающей.

Механические

  • Твердость 1-2. Хрупка.
  • Плотность 2,05-2,08.
  • Спайность по (001), (110), (111) несовершенная. Отдельность по (111).
  • Излом раковистый до неровного.

Химические свойства

Растворяется в сероуглероде, скипидаре, керосине.

Прочие свойства

Электропроводность при обычной температуре почти равна нулю. При трении сера электризуется отрицательно. В ультрафиолетовых лучах пластинка толщиной 2 мм непрозрачна. При атмосферном давлении температура плавл. 112,8°; температура кипения + 444,5°. Теплота плавления при 115° 300 кал/г-атом. Теплота испарения при 316° 11600 кал/г-атом. При атмосферном давлении при 95,6° α-сера переходит в β-серу с увеличением объема.


Искусственное получение

Получается путем возгона или кристаллизацией из раствора.

Диагностические признаки

Легко узнается по желтому цвету, хрупкости, блеску и легкости воспламенения.

Сопутствующие минералы. Гипс , ангидрит , опал , ярозит , асфальт, нефть, озокерит, газообразный углеводород, сероводород, целестин , галит , кальцит , арагонит , барит , пирит.

Происхождение и нахождение в природе

Самородная сера встречается только в самой верхней части земной коры. Образуется при разнообразных процессах.

Большую роль в образовании месторождений серы играют животные и растительные организмы, с одной стороны, как аккумуляторы S, а с другой, как способствующие распаду H 2 S и других сернистых соединений. С деятельностью бактерий связывают образование серы в водах, илах, почвах, болотах и в нефтях; в последних она частью содержится в виде коллоидных частиц. Сера может выделяться из вод, содержащих H 2 S, под влиянием кислорода воздуха. В приморских районах местами сера выпадает при смешении пресной воды с соленой (из H 2 S морской воды, под действием кислорода, растворенного в пресных водах). Из некоторых природных вод сера выделяется в виде белой мути (р. Молочная в Куйбышевской обл, и др.). Из вод серных источников и из болотных вод, содержащих H 2 S и S, сера выпадает в северных районах России в зимний период в процессе вымораживания. Главным источником образования серы во многих месторождениях так или иначе является H 2 S, какого бы происхождения он ни был.

Значительные скопления серы наблюдаются в вулканических областях, в зоне окисления некоторых месторождений и среди осадочных толщ; месторождения последней группы служат основными источниками самородной серы, добываемой для практических целей. В вулканических областях сера выделяется как при извержениях вулканов, так и из фумарол, сольфатар, горячих источников и газовых струй. Иногда из кратера вулкана выливается расплавленная масса серы в виде потока (в Японии), причем сначала образуются β- или γ-сера превращающиеся позднее в α-серу с характерной зернистой структурой. При вулканических извержениях сера главным образом возникает при воздействии выделяющегося H 2 S на сернистый ангидрид или при окислении сероводорода кислородом воздуха; она может также возгоняться с парами воды. Пары S могут захватываться газами фумарол, струями углекислоты. Наблюдаемое впервые стадии вулканических извержений голубое пламя представляет облака горящей серы (Вулкано, на Липарских о-вах, Италия). Сероводородная стадия фумарол и сольфатар, сопровождающаяся образованием самородной серы, следует после стадии выделения фтористых и хлористых соединений и предшествует стадии углекислых выделений. Из сольфатар сера выделяется в виде рыхлых туфообразных продуктов, которые ветром и атмосферными осадками легко переносятся, образуя вторичные месторождения (Ков-Крик, шт. Юта в США).
Сера. Кристаллы в гипсе

Изменение минерала

В земной коре самородная сера легко окисляется с образованием серной кислоты и различных сульфатов; под влиянием бактерий может также давать сероводород.

Месторождения

Месторождения серы вулканического происхождения обычно невелики; они имеются на Камчатке (фумаролы), на горе Алагез в Армянии, в Италии (сольфатары Слит Поццуоли), в Исландии, Мексике, Японии, США, на Яве, на Липарских о-вах и т. д.
Выделение серы в горячих источниках сопровождается отложением опала, СаСО 3 , сульфатов и др. Местами сера замещает известняки около горячих источников, иногда выделяется в виде тончайшей мути. Горячие источники, отлагающие серу, наблюдаются в вулканических областях и в районах молодых тектонических нарушений, например, в России - на Кавказе, в Средней Азии, на Дальнем Востоке, на Курильских о-вах; в США - в Иеллоустонском национальном парке, в Калифорнии; в Италии, Испании, Японии и др.
Нередко самородная сера образуется в процессе гипергенных изменений при разложении сульфидных минералов (пирита, марказита , мельниковита, галенита, антимонита и др.). Довольно большие скопления найдены в зоне окисления колчеданных залежей, например, в Сталинском месторождении Свердловской обл. и в Блявинском месторождении Оренбургской обл.; в последнем сера имеет вид плотной, но хрупкой массы слоистой текстуры, различной окраски. В месторождении Майкаин в Павлодарской области (Казахстан) крупные скопления самородной серы наблюдались между зоной ярозитов и зоной колчеданных руд.
В небольших количествах самородная сера встречается в зоне окисления очень многих месторождений. Известно образование серы в связи с каменноугольными пожарами при самовозгорании пирита или марказита (порошковатая сера в ряде месторождений Урала), при пожарах в месторождениях нефтеносных сланцев (например, в Калифорнии).

В черном морском иле сера образуется при его посерении на воздухе за счет изменения находящегося в нем односернистого железа.

Наиболее крупные промышленные месторождения серы находятся среди осадочных пород, главным образом третичного или пермского возраста. Их образование связано с восстановлением серы сульфатов, преимущественно гипса, реже - ангидрита. Вопрос о происхождении серы в осадочных образованиях является спорным. Гипс под влиянием органических соединений, бактерий, свободного водорода и др. восстанавливается сначала, возможно, до CaS или Ca(HS) 2 , которые под действием углекислоты и воды переходят в кальцит с выделением сероводорода; последний при взаимодействии с кислородом дает серу. Скопления серы в осадочных толщах иногда имеют пластовый характер. Часто они приурочены к соляным куполам. В этих месторождениях сера сопровождается асфальтом, нефтью, озокеритом, газообразными углеводородами, сероводородом, целестином, галитом, кальцитом, арагонитом, баритом, пиритом и другими минералами. Известны псевдоморфозы серы по волокнистому гипсу (селениту). В России такого типа месторождения имеются в районе Средней Волги (Сюкеевское Татарстан, Алекееевское, Водинское Самарская обл. и др.), в Туркменистане (Гаурдак, Каракумы), в Урало- Эмбенском р-не Казахстана, где ряд месторождений приурочен к соляным куполам, в Дагестане (Аварская и Махачкалинская группы) и в других районах.
Вне России крупные месторождения серы, приуроченные к осадочным толщам, имеются в Италии (Сицилия, Романья), в США (шт. Луизиана и Техас), Испании (около Кадиса) и в других странах.

June 19th, 2016

Очень популярная тема в интернете, потому что очень эффектная и шокирующая. Кратер вулкана Иджен (Ijen Volcano) - один из самых привлекательных и опасных на Земле. Активный вулкан, постоянно извергающий клубы серного дыма, крупнейшее в мире кислотное озеро Кава Иджен (Kawah Ijen), невероятный по своей красоте синий огонь и нечеловеческие условия работы шахтеров, добывающих серу.

Не уж то это до сих пор происходит, задают себе вопрос многие. Давайте попробуем тут собрать наиболее полную информацию об этом месте.

Фото 2.

На самом деле Иджен - это не просто вулкан, а вулканический комплекс, из более чем из десятка вулканических объектов: стратовулканов, вулканических конусов, кратеров, расположенных в радиусе 20 км вокруг кальдеры.

Но туристов привлекает именно кратер с кислотным озером, берега которого являются естественным крупным месторождением природной серы. Кратер в радиусе составляет 361 метр и имеет глубину 200 метров.

Озеро Кава (Kawah) в кратере вулкана Иджен — это самое большое кислотное озеро в мире. Оно состоит из растворенной в воде концентрированных соляной и серной кислоты. Вулкан выбрасывает хлористый водород с виде газа. Взаимодействуя с водой, он образовывает серную кислоту с PH около нуля. Растворённая в воде соляная кислота и придает озеру красивый бирюзовый цвет.

Озеро является смертельно опасным, тем не менее его можно потрогать рукой. Температура на поверхности составляет 50-60°С, а в глубине — свыше 200°С. Глубина озера достигает 200 метров.

Фото 4.

Удивительное явление синего огня - это на самом деле сернистый газ, горящий при температуре 600°С, что и придает огню характерный синий цвет. Свечение достаточно слабое, поэтому увидеть его можно только ночью.

Порой серу поджигают сами рабочие. Часть дыма конденсируется в установленных в кратере керамических трубах и вытекает из труб, образуя сталактиты натуральной серы. Жидкая сера красного цвета извергается из вентиляционных отверстий и охлаждается до желтого на поверхности. Эти сталактиты, кстати, продают туристам в качестве сувениров.

Вот такие эффектные фотографии сделал известный французский фотограф Оливье Грюневальда, совершивший несколько путешествий в серные рудники в кратере вулкана Kawaha Ijen. Там он сделал при помощи специального оборудования захватывающие сюрреалистичные фотографии этого места в лунном свете, освещенного факелами и синем пламенем горящей расплавленной серы.


Потоки лавы, горящей синим пламенем, можно наблюдать на Иджене крайне редко. К сожалению, многие сайты показывают фотографии Оливьера Грюневальда и создают впечатление, что это происходит каждую ночь. Не верьте! Обычно горит только сернистый газ и нет никакой лавы.

Фото 5.

В кратере местные жители вручную добывают серу. Это очень тяжелая и опасная работа. Без защитных костюмов, а многие даже без масок, шахтеры ломами откалывают куски серы и помещают их в корзину. Эти корзины они несут 200 метров к вершине кратера, а потом спускаются 3 км к подножью вулкана в деревню, где и получают вознаграждение за проделанную работу. Вес такой корзины 60-80 кг, некоторые умудряются поднимать до 90 кг.

Фото 6.

Обычно рабочие проделывают такое путешествие дважды в день. За 1 кг серы платят 900-1000 IDR, это значит около 5$ за корзину или 10$ в день. По местным меркам это высокооплачиваемая и престижная работа. На острове Ява очень высокая плотность населения и безработица. Шахтеры, добывающие серу, являются своеобразной рабочей элитой.


Однако это никак не помогает им долго жить. Серные пары настолько опасны для здоровья, что молодые парни выглядят стариками, а средняя продолжительность жизни около 47 лет.

Фото 7.

Несмотря на ужасающие условия труда, рабочие — удивительно приветливые и жизнерадостные люди. Вот что пишет MARIA GONCHAROVA : Я испытала культурный шок, когда рабочий, на плечах которого корзина, вес которой превышает его собственный, уступил мне дорогу на камнях, ведущих к вершине кратера. Много раз нам подсказывали более удачный путь и с удовольствием позировали туристам.

Лучшее, что вы можете сделать для рабочих - подарить им респиратор или хотя бы просто защитную маску. Они не могут позволить себе купить даже сменные фильтры, нет ни денег, ни возможности. Многие рабочие даже не знают о том, что воздух, которым они дышат опасен.

Рабочие все как один курят. Говорят, что это им помогает немного сбить запах серы, который становится просто невозможным через какое-то время.

Фото 7.

можно посмотреть путешествие блогера mb_world по этим рудникам.


Чтобы люди могли представить всю опасность озера для жизней своих, был проведен эксперимент. В озеро на 20 минут опустили лист алюминия, уже при погружении он стал покрываться пузырями, а по прошествии всего времени, алюминиевый лист стал тонким, словно кусок ткани.

Фото 8.

На дне кратера сборщики серы оборудуют небольшой палаточный лагерь, в котором живут какое-то время, пока ведут на этом месте добычу. Как только сера извергается в другом месте, они перемещаются к нему. Таких «залежей» здесь несколько. Они оборудованы трубами, из которых стекает расплавленная сера. Когда она остывает и затвердевает, рабочие начинают ее собирать.

Фото 9.

Серу собирают в две корзины, соединенные между собой перекладиной из бамбука. Спасаясь от ядовитых паров, сборщики придумали собственное средство защиты. Представляет оно собой обычный кусок намоченной хлопчатобумажной ткани. Они сжимают его зубами и дышат через него или же просто обматывают тканью часть лица.

Фото 10.

Фото 11.

Фото 12.

Фото 13.

Фото 14.

Фото 15.

Фото 16.

Фото 17.

Фото 18.

Фото 19.

Фото 20.

Вследствие активности вулкана в кратере сквозь трещины постоянно выделяется сернистый пар. Горячий пар проходит через специально проложенные трубы, охлаждается вниз и стекает по склону кратера, постепенно затвердевая. Технология добычи весьма примитивна, но в данном случае большего и не нужно. Далее за дело берутся старатели, которые ломами и арматурой разбивают глыбы серы на куски, складывают в корзины и относят в приемный пункт. Для этого приходится преодолеть около 2500 метров по пересеченной местности с грузом в 45-90 кг на плечах.

Рабочие не используют специальных средств защиты, иногда только закрываясь платками. В противогазах и респираторах здесь появляются только пожарные, которые тушат горящую серу. Работают здесь вахтовым методом по 15 дней.

Добытая сера используется для вулканизации резины, обесцвечивания сахара и других промышленных процессов. Рабочие делают из нее маленькие сувениры на продажу, отливая из расплавленной серы различные фигурки.

Фото 21.

Фото 22.

Фото 23.

Фото 24.

Фото 25.



Индонезийский рабочий показывает купоны на оплату заработанных средств за доставленный груз серы из жерла вулкана Кава Иджен в восточной части острова Ява, Индонезия. Три купона — три ходки в жерло вулкана.

Фото 26.

Фото 27.

Фото 28.

Фото 29.

Фото 30.

Фото 31.

Фото 32.

Фото 33.

Фото 34.

Фото 35.

Фото 36.

Фото 37.

Фото 38.

Фото 39.

Фото 40.

Фото 42.

Фото 43.

Фото 44.

Фото 45.

Фото 46.

Фото 47.

Фото 48.

Фото 49.

Фото 50.

Фото 51.

Фото 52.

Фото 53.

Фото 54.

Фото 55.

Фото 56.

Фото 57.

Фото 58.

Фото 59.

Фото 60.

Фото 61.

Фото 1.

Фото 2.

Фото 4.

Фото 6.

источники

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека