Идеализация. Мысленный эксперимент

Эксперимент

Важнейшей составной частью научных исследований является эксперимент. Более 2/3 всех трудовых ресурсов науки затрачивается на эксперименты. Основой эксперимента является научно поставленный опыт (опыты) с точно учитываемыми и управляемыми условиями, позволяющими следить за его ходом, управлять им, воссоздавать его каждый раз при повторении этих условий. Само слово эксперимент происходит от лат. experimentum – проба. Под опытом понимают воспроизведение исследуемого явления в определенных условиях проведения эксперимента при возможности регистрации его результатов. Опыт – отдельная элементарная часть эксперимента.

От обычного, обыденного пассивного наблюдения эксперимент отличается активным воздействием исследователя на изучаемое явление.

В научном языке и исследовательской работе термин «эксперимент» обычно используется в значении, общем для целого ряда сопряженных понятий: опыт, целенаправленное наблюдение, воспроизведение объекта познания, организация особых условий его существования. В это понятие вкладывается научная постановка опытов и наблюдение исследуемого явления в точно учитываемых условиях, позволяющих следить за ходом явлений и воссоздавать его каждый раз при повторении этих условий.

Основной целью эксперимента являются выявление свойств исследуемых объектов и проверка справедливости гипотез

При проведении экспериментальных исследований могут решаться две основные задачи :

1. Выявление количественных закономерностей, устанавливающих отношение между переменными, которые описывают объект исследования.

2. Нахождение значений переменных, обеспечивающих оптимальный (по определенному критерию) режим функционирования объекта.

Различают натурный и модельный эксперимент. Если первый ставится непосредственно с объектом, то второй – с его заместителем – моделью. В настоящее время наиболее распространенными типами моделей являются математические, а эксперименты, проводимые на таких моделях называются вычислительными.

Перед каждым экспериментом составляется его программа, которая включает:

– цель и задачи эксперимента; выбор варьируемых факторов (входных переменных);

– обоснование объема эксперимента, числа опытов;

– определение последовательности изменения факторов;

– выбор шага изменения факторов, задание интервалов между будущими экспериментальными точками;

– обоснование средств измерений;

– описание проведения эксперимента;

– обоснование способов обработки и анализа результатов эксперимента.

Перед экспериментом надо выбрать варьируемые факторы, т.е. установить основные и второстепенные характеристики, влияющие на исследуемый процесс, проанализировать расчетные (теоретические) схемы процесса. Основным принципом установления степени важности характеристики является ее роль в исследуемом процессе.

Нередко работа экспериментатора настолько хаотична и неорганизованна, а ее эффективность ее так мала, что полученные результаты не в состоянии оправдать даже тех средств, которые были израсходованы на проведение опытов. Поэтому вопросы организации эксперимента, снижения затрат на его проведение и обработку полученных результатов являются достаточно актуальными.

Современные методы планирования эксперимента и обработки его результатов, разработанные на основе теории вероятностей и математической статистики, позволяют:

– существенно (зачастую в несколько раз) сократить число необходимых для проведения опытов;

– сделать работу экспериментатора более целенаправленной и организованной,

– существенно повысить как производительность его труда, так и надежность получаемых результатов.

Теория планирования эксперимента началась с работ английского ученого Р. Фишера в 30-х годах XX столетия, использовавшего ее для решения агробиологических задач.

Планирование эксперимента состоит в выборе числа и условий проведения опытов, позволяющих получить необходимые знания об объекте исследования с требуемой точностью. Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов, при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Общая направленность теории планирования эксперимента может быть сформулирована следующим образом – «меньше опытов – больше информации – выше качество результатов».

Эксперименты обычно ставятся небольшими сериями по заранее составленному алгоритму. После каждой небольшой серии опытов производится обработка результатов наблюдений и принимается строго обоснованное решение о том, что делать дальше. При выборе алгоритма планирования эксперимента, естественно, учитывается цель исследования, так и априорная информация о механизме изучаемого явления. Эта информация всегда бывает неполной, за исключением, может быть, тривиального случая – демонстрационных опытов.

Как правило, любой объект исследования (носитель некоторых неизвестных и подлежащих изучению свойств или качеств) можно представить в виде «черного ящика» с определенным количеством входов и выходов (рис. 2.2.).


Рис. 5.1. Структурная схема объекта исследования

Входные переменные Х i , i = 1, 2,…k (где k – число переменных), определяющие состояние объекта называются факторами . Фиксированное значение фактора называют уровнем фактора . Основное требование к факторам достаточная управляемость, под которой понимается возможность установить нужный уровень фактора и стабилизировать его в течение всего опыта.

Выходная переменная Y g (обычно g = 1) – это реакция объекта на входные воздействия; она носит название отклика , а зависимость

Y = f(X 1 , X 2 , …X i ,…X k) (2.1)

называется функцией отклика или цели . Обычно о характере этой зависимости имеется лишь общее представление. Выбор функции отклика определяется целью исследования, которая может представлять собой оптимизацию экономической (стоимость, производительность), технологической (точность, быстродействие), конструктивной (габариты, надежность) или другой характеристики объекта.

Геометрическое представление функции отклика в факторном пространстве Х 1 , Х 2 , …, Х k называется поверхностью отклика

Истинный вид функции отклика (2.1) до эксперимента чаще всего неизвестен, в связи с чем, для математического описания поверхности отклика используется статистическая модель процесса

Y р = f(X 1 , X 2 , …X i ,…X k). (2.2)

Уравнение (2.2) получают в результате эксперимента и называют аппроксимирующей функцией или регрессионной моделью процесса. Под аппроксимацией понимают замену точных аналитических выражений приближенными. В качестве уравнения регрессии обычно используют полином некоторой степени. Причем наибольшее распространение в расчетах получили полиномы первого и второго порядка, так как необходимая точность расчетов обычно весьма невелика (порядка 5 – 15 %).

Например, при k = 1 полином n-ой степени имеет вид

при k = 2 и n = 1, обычно записывается в виде

где a 0 , a 1 , a 2 ,…a n – неизвестные коэффициенты регрессии, которые вычисляются на основании результатов эксперимента

Кроме того, в силу конечного числа членов аппроксимирующего полинома расхождение между истинным и приближенным значениями функции отклика вне экспериментальных точек может быть значительным. В связи с изложенным возникает задача нахождения такого вида полинома и такого количества опытов, чтобы удовлетворялся некоторый критерий. Обычно в качестве критерия принимают сумму квадратов отклонений экспериментальных значений Y j от их расчетного значения Y j р. Наилучшим приближением аппроксимирующей функции к истинной считается функция, удовлетворяющая условию минимума этой суммы.

Для определения неизвестных коэффициентов регрессионной модели (5.2) обычно применяется наиболее универсальный метод наименьших квадратов (МНК) .

Посредством МНК значения a 0 , a 1 , a 2 , …, a n находятся из условия минимизации суммы квадратов отклонений экспериментальных значений отклика Y j от получаемых Y j р с помощью регрессионной модели, т. е. путем минимизации суммы:

Минимизация суммы квадратов производится обычным способом с помощью дифференциального исчисления путем приравнивания к 0 первых частных производных по a 0 , a 1 , a 2 ,…., a n . В итоге получается замкнутая система алгебраических уравнений, с неизвестными a 0 , a 1 , a 2 ,…. ,a n .

При использовании метода наименьших квадратов необходимым условием получения статистических оценок является выполнение неравенства N > d, т.е. количество опытов N должно быть больше, чем число неизвестных коэффициентов d.

Основной особенностью рассматриваемой статистической (регрессионной) модели является то, что подобная модель не может точно описать поведение объекта в любом конкретном опыте. Исследователь не может предсказать точное значение Y в каждом опыте, но с помощью соответствующей статистической модели может указать, вокруг какого центра будут группироваться значения Y при данном сочетании значений факторов X ij .

Индукция и дедукция

Индукция – это вид обобщения, заключающийся в переходе от знания отдельных фактов и от менее общего знания к более общему знанию. При индуктивном способе исследования по частным фактам и явлениям устанавливаются общие принципы и законы.

Процесс индукции обычно начинается со сравнения и анализа данных наблюдений и экспериментов. По мере расширения множества этих данных может выявиться регулярная повторяемость какого-либо свойства или отношения. Наблюдаемая в опытах многократность повторения при отсутствии исключений внушает уверенность в универсальности явления и приводит к индуктивному обобщению – предположению, что именно так будет обстоять дело и во всех сходных случаях. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широкого множества единичных фактов. Так, например, Д.И. Менделеев, используя частные факты о химических элементах, сформулировал периодический закон.

Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы

Дедукция - это операция мышления, заключающаяся в том, что новые знания выводятся на основании знаний более общего характера, полученных ранее путем обобщения наблюдений, опытов, практической деятельности, т. е. с помощью индукции. При применении дедуктивного метода частные положения выводятся из общих закономерностей, аксиом и т. д. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Так, например, на основе общих законов механики получают уравнения движения автомобиля.

Недостатком дедуктивного способа исследования являются ограничения, вытекающие из общих закономерностей, на основе которых исследуется частный случай. Так, например, чтобы всесторонне исследовать движение автомобиля, недостаточно знать лишь законы механики, необходимо применить и другие принципы, вытекающие из анализа системы: «водитель – автомобиль – внешняя среда».

Индукция и дедукция тесно связаны между собой и дополняют одна другую. Например, научный работник, обосновывая гипотезу научного исследования, устанавливает ее соответствие общим законам естествознания (дедукция). В то же время гипотезу формулируют на основе частных фактов (индукция).

Анализ и синтез

Анализ (от греческого analysis - разложение): метод, применяя который исследователь мысленно разъединяет изучаемый объект на различные компоненты (как части, так и элементы), уделяя особое внимание связям между ними. Анализ – органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от нерасчлененного описания изучаемого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез (от греческого synthesis - соединение): применяя этот метод, исследователь мысленно объединяет различные компоненты (как части, так и элементы) изучаемого объекта в единую систему. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Методы анализа и синтеза одинаково используют в научных исследованиях. Так, выделяя отдельные элементы (подсистемы и механизмы) при исследовании функционирования двигателя, применяют метод анализа, изучая двигатель как систему состоящую из элементов используют метод синтеза. Метод синтеза позволяет обобщать понятия законы, теории. Операции анализа и синтеза неразрывно связаны друг с другом; каждая из них осуществляется с помощью и посредством другой.

Аналогия

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете. Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Абстрагирование и формализация

Абстрагирование – это метод научного исследования, основанный на том, что при изучении некоторого объекта отвлекаются от его несущественных в данной ситуации сторон, признаков. Это позволяет упрощать картину исследуемого явления и рассматривать его в «чистом» виде. Абстрагирование связано с представлением об относительной независимости явлений и их сторон, что позволяет отделить существенные стороны от несущественных. При этом, как правило, производится замещение первоначального предмета исследования другим – эквивалентным, исходя из условий данной задачи. Например, при исследовании работы какого-либо механизма анализируют расчетную схему, которая отображает основные, существенные свойства механизма.

Различают следующие виды абстрагирования:

– отождествление (образование понятий путем объединения предметов, связанных по своим свойствам в особый класс). Т. е. на основе одинаковости некоторого множества предметов, сходных в некотором отношении, производится построение абстрактного предмета. Например, в результате обобщения-свойства электронных, магнитных, электромашинных, релейных, гидравлических, пневматических устройств усиливать входные сигналы возникла такая обобщенная абстракция (абстрактный предмет), как усилитель. Он является представителем свойств приравненных в определенном отношении разнокачественных предметов.

– изолирование (выделение свойств, неразрывно связанных с предметами). Изолирующая абстракция производится для вычленения и четкой фиксации исследуемого явления. Примером может служить абстракция действительной суммарной силы, действующей на границе подвижного жидкого элемента. Число этих сил, как и число свойств, жидкого элемента, бесконечно. Однако из этого разнообразия можно вычленить силы давления и трения путем мысленного выделения на границе потока элемента поверхности, через которую внешняя: среда действует на поток с некоторой силой (причинами возникновения такой силы в данном случае исследователь не интересуется). Мысленно разложив силу на две составляющие, силу давления можно определить как нормальную составляющую внешнего воздействия, а силу трения – как касательную.

– идеализация соответствует цели замещения реальной ситуации идеализированной схемой для упрощения изучаемой ситуации и более эффективного использования методов и средств исследования. Процесс идеализации – это мысленное конструирование понятий об объектах несуществующих и неосуществимых, но имеющих прообразы в реальном мире. Например, идеальный газ, абсолютно твердое тело, материальная точка и т.п. В результате идеализации реальные объекты лишаются некоторых присущих им свойств и наделяются гипотетическими свойствами.

Современный исследователь часто с самого начала ставит задачу упрощения изучаемого явления и построения его абстрактной идеализированной модели. Идеализация выступает здесь как исходный пункт в построении теории. Критерием плодотворности идеализации является удовлетворительное во многих случаях совпадение теоретических и эмпирических результатов исследования.

Формализация – метод изучения некоторых областей знания в формализованных системах с помощью искусственных языков. Таковы, например, формализованные языки химии, математики, логики. Формализованные языки позволяют кратко и четко фиксировать знания, избегать многозначности терминов естественного языка. Формализацию, основой которой являются абстрагирование и идеализация, можно рассматривать как разновидность моделирования (знаковое моделирование).


Похожая информация.


К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.
Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.
Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.
Идеализация - это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.
Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.
Формализация - использование специальной символики вместо реальных объектов.
Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.
Индукция
Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента, получение общего вывода на основании частных посылок, движение от частного к общему.
Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Но в окружающем нас мире не так много подобных объектов одного класса, число которых ограниченно настолько, что исследователь может изучить каждый из них.
Поэтому гораздо чаще ученые прибегают к неполной индукции, которая строит общий вывод на основании наблюдения ограниченного числа фактов, если среди них не встретились такие, которые противоречат индуктивному умозаключению. Например, если ученый в ста или более случаях наблюдает один и тот же факт, он может сделать вывод, что этот эффект проявится и при других сход ных обстоятельствах. Естественно, что добытая таким путем истин неполна, полученное знание носит вероятностный характер и тре бует дополнительного подтверждения.
Дедукция
Индукция не может существовать в отрыве от дедукции.
Дедукция - метод научного познания, представляющий собой получение частных выводов на основе общих знаний, вывод от общего к частному.
Дедуктивное умозаключение строится по следующей схеме: все предметы класса А обладают свойством В, предмет а относится к классу А; следовательно, а обладает свойством В. Например: «Все люди смертны»; «Иван - человек»; следовательно, «Иван - смертен».
Дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Поэтому она не может существовать в отрыве от индукции. Как индукция, так и дедукция незаменимы в процессе научного познания.
Гипотеза
Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории.
Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании.
Поэтому гипотеза - это не достоверное, а вероятное знание, истинность или ложность которого еще не установлена.

К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.

Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.

Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.

Идеализация - это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.

Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.

Формализация - использование специальной символики вместо реальных объектов.

Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.

Индукция

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента, получение общего вывода на основании частных посылок, движение от частного к общему.

Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Но в окружающем нас мире не так много подобных объектов одного класса, число которых ограниченно настолько, что исследователь может изучить каждый из них.

Поэтому гораздо чаще ученые прибегают к неполной индукции, которая строит общий вывод на основании наблюдения ограниченного числа фактов, если среди них не встретились такие, которые противоречат индуктивному умозаключению. Например, если ученый в ста или более случаях наблюдает один и тот же факт, он может сделать вывод, что этот эффект проявится и при других сход ных обстоятельствах. Естественно, что добытая таким путем истин неполна, полученное знание носит вероятностный характер и тре бует дополнительного подтверждения.

Дедукция

Индукция не может существовать в отрыве от дедукции.

Дедукция - метод научного познания, представляющий собой получение частных выводов на основе общих знаний, вывод от общего к частному.

Дедуктивное умозаключение строится по следующей схеме: все предметы класса А обладают свойством В, предмет а относится к классуА; следовательно, а обладает свойством В. Например: «Все люди смертны»; «Иван - человек»; следовательно, «Иван - смертен».

Дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Поэтому она не может существовать в отрыве от индукции. Как индукция, так и дедукция незаменимы в процессе научного познания.

Гипотеза

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории.

Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании.

Поэтому гипотеза - это не достоверное, а вероятное знание, истинность или ложность которого еще не установлена.

Особенные универсальные методынаучного познания

К универсальным методам научного познания относятся аналогия, моделирование, анализ и синтез.

Аналогия

Аналогия - метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо одного объекта, на другой, менее изученный, но схожий с первым объектом по каким-то существенным свойствам.

Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, причем сходство устанавливается в результате

сравнения предметов между собой. Таким образом, в основе метода аналогии лежит метод сравнения.

Применение метода аналогии в научном познании требует определенной осторожности. Дело в том, что можно принять чисто внешнее, случайное сходство между двумя объектами за внутреннее, существенное, и на этом основании сделать вывод о сходстве, которого на самом деле нет. Так, хотя и лошадь, и автомобиль используются как транспортные средства, было бы неверным переносить знания об устройстве машины на анатомию и физиологию лошади. Данная аналогия будет ошибочной.

Тем не менее, метод аналогии занимает намного более значимое место в познании, чем это может показаться на первый взгляд. Ведь аналогия не просто намечает связи между явлениями. Важнейшей особенностью познавательной деятельности человека является то, что наше сознание не способно воспринять абсолютно новое знание, если у него нет точек соприкосновения с уже известным нам знанием. Именно поэтому при объяснении нового материала на занятиях всегда прибегают к примерам, которые и должны провести аналогию между известным и неизвестным знанием.

Моделирование

Метод аналогии тесно связан с методом моделирования.

Метод моделирования предполагает изучение каких-либо объектов посредством их моделей с дальнейшим переносом полученных данных на оригинал.

В основе этого метода лежит существенное сходство объекта-оригинала и его модели. К моделированию следует относиться с той же осторожностью, что и к аналогии, строго указывать пределы и границы допустимых при моделировании упрощений.

Современной науке известно несколько типов моделирования: предметное, мысленное, знаковое и компьютерное.

Предметное моделирование представляет собой использование моделей, воспроизводящих определенные геометрические, физические, динамические или функциональные характеристики прототипа. Так, на моделях исследуются аэродинамические качества самолетов и других машин, ведется разработка различных сооружений (плотин, электростанций и др.).

Мысленное моделирование - это использование различных мысленных представлений в форме воображаемых моделей. Широко известна идеальная планетарная модель атома Э. Резерфорда, напоминавшая Солнечную систему: вокруг положительно заряженно-

го ядра (Солнца) вращались отрицательно заряженные электроны (планеты).

Знаковое (символическое) моделирование использует в качестве моделей схемы, чертежи, формулы. В них в условно-знаковой форме отражаются какие-то свойства оригинала. Разновидностью знакового является математическое моделирование, осуществляеемое средствами математики и логики. Язык математики позволяет выразить любые свойства объектов и явлений, описать их функционирование или взаимодействие с другими объектами с помощью системы уравнений. Так создается математическая модель явления. Часто математическое моделирование сочетается с предметным моделированием.

Компьютерное моделирование получило широкое распространение в последнее время. В данном случае компьютер является одновременно и средством, и объектом экспериментального исследования, заменяющим оригинал. Моделью при этом является компьютерная программа (алгоритм).

Анализ

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части и их отдельное изучение.

Эта процедура ставит своей целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи этих частей друг с другом.

Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от описания нерасчлененного изучаемого объекта к выявлению его строения, состава, а также свойств и признаков. Для постижения объекта как единого целого недостаточно знать, из чего он состоит. Важно понять, как связаны друг с другом составные части объекта, а это можно сделать, лишь изучив их в единстве. Для этого анализ дополняется синтезом.

Синтез

Синтез - метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета.

Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. Важно понять, что синтез вовсе не является простым механическим соединением разъединенных элементов в единую систему. Он показывает место и роль каждого элемента в этой системе, его связь с другими составными частями системы. Таким образом, при синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта.

Синтез - такая же необходимая часть научного познания, как и анализ, и идет вслед за ним. Анализ и синтез - это две стороны единого аналитико-синтетического метода познания, которые не существуют друг без друга.

Классификация

Классификация - метод научного познания, позволяющий объединить в один класс объекты, максимально сходные друг с другом в существенных признаках.

Классификация позволяет свести накопленный многообразный материал к сравнительно небольшому числу классов, типов и форм, выявить исходные единицы анализа, обнаружить устойчивые признаки и отношения. Как правило, классификации выражаются в виде текстов на естественных языках, схем и таблиц.

Разнообразие методов научного познания создает трудности в их использовании и понимании их значимости. Эти проблемы решаются особой областью знания - методологией, т.е. учением о методах. Важнейшая задача методологии - изучение происхождения, сущности, эффективности и других характеристик методов познания.

Идеализация - это особый вид абстрагирования, представляющий собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований. В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Примером такого вида идеализации может служить широко распространенная в механике идеализация - материальная точка, причем под ней могут подразумевать любое тело, от атома до планеты.

Другим видом идеализации является наделение объекта какими-то свойствами, которые в реальной действительности неосуществимы. Примером такой идеализации является абсолютно черное тело. Такое тело наделяется не существующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя.

Спектр излучения абсолютно черного тела является идеальным случаем, ибо на него не оказывает влияние ни природа вещества излучателя, ни состояние его поверхности. Проблемой расчета количества излучения, испускаемого идеальным излучателем - абсолютно черным телом, занялся Макс Планк, который работал над ней 4 года. В 1900 г. ему удалось найти решение в виде формулы, которая правильно описывала спектральное распределение энергии излучаемого абсолютно черного тела. Так работа с идеализированным объектом помогла заложить основы квантовой теории, ознаменовавшей радикальный переворот в науке.

Целесообразность использования идеализации определяется следующими обстоятельствами:

во-первых, идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности, математического анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную для описания свойств и поведения этих реальных объектов;

во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение. Пример - идеальная паровая машина Сади Карно;

в-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. Так, если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальной точки, то такая идеализация недопустима при изучении структуры атома.

Если существуют разные теоретические подходы, то возможны и разные варианты идеализации. В качестве примера можно привести три разных понятия «идеального газа», сформировавшихся под влиянием различных теоретико-физических представлений: Максвелла-Больцмана, Бозе-Эйнштейна, Ферми-Дирака. Однако полученные при этом все три варианта идеализации оказались плодотворными при изучении газовых состояний различной природы. Так, идеальный газ Максвелла-Больцмана стал основой исследований обычных молекулярных разряженных газов, находящихся при достаточно высоких температурах; идеальный газ Бозе-Эйнштейна был применён для изучения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.

Идеализация в отличие от чистого абстрагирования допускает элемент чувственной наглядности. Обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью. Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент.

Мысленный эксперимент - это мысленный подбор тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. Мысленный эксперимент предполагает оперирование идеализированным объектом, которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществлен на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования.

Вместе с тем, мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него. Это отличие заключается в следующем:

Реальный эксперимент - это метод, связанный с практическим, «орудийным» познанием окружающего мира. В мысленном же эксперименте исследователь оперирует не материальными объектами, а их идеализированными образами и само оперирование производится в его сознании, т.е. чисто умозрительно, без всякого материально-технического обеспечения.

В реальном эксперименте приходится считаться с реальными физическими и иными ограничениями поведения объекта исследования. В этом плане мысленный эксперимент имеет явное преимущество перед экспериментом реальным. В мысленном эксперименте можно абстрагироваться от действия нежелательных факторов, проведя его в идеализированном, «чистом» виде.

В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

Наглядным примером роли мыслительного эксперимента является история открытия явления трения. В течение тысячелетия господствовала концепция Аристотеля, утверждавшая, что движущееся тело останавливается, если толкающая его сила прекращается. Доказательством служило движение тележки или шара, которое прекращалось само собой, если воздействие не возобновлялось.

Галилею удалось путем мыслительного эксперимента поэтапной идеализацией представить идеальную поверхность и открыть закон механики движения. «Закон инерции, - писали А. Эйнштейн и Л. Инфельд, - нельзя вывести непосредственно из эксперимента, его можно вывести умозрительно - мышлением, связанным с наблюдением». Этот эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных процессов.

Мыслительный эксперимент может иметь большую эвристическую ценность, помогая интерпретировать новое знание, полученное чисто математическим путем. Это подтверждается многими примерами из истории науки. Одним из них является мысленный эксперимент В. Гейзенберга, направленный на разъяснение соотношения неопределенности. В этом мысленном эксперименте соотношение неопределенности было найдено благодаря абстрагированию, разделившему целостную структуру электрона на две противоположности: волну и корпускулу. Тем самым совпадение результата мысленного эксперимента с результатом, достигнутым математическим путем, означало доказательство объективно существующей противоречивости электрона как цельного материального образования и дало возможность понять его сущность.

Метод идеализации, весьма плодотворный во многих случаях, имеет в то же время определенные ограничения. Развитие научного познания заставляет иногда отказываться от ранее существовавших идеализаций. К примеру, Эйнштейн отказался от таких идеализаций как «абсолютное пространство» и «абсолютное время». Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем.

Сама по себе идеализация, хотя и может быть плодотворной и даже подводить к научному открытию, еще не достаточна для того, чтобы сделать это открытие. Здесь определяющую роль играют теоретические установки, из которых исходит исследователь. Так, идеализация паровой машины, удачно осуществленная Сади Карно, подвела его к открытию механического эквивалента теплоты, которого он не смог открыть, так как верил в существование теплорода.

Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на её основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.

Формализация. Язык науки.

Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков). Примером формализации может служить математическое описание.

Для построения любой формальной системы необходимо:

1) задание алфавита, т.е. определенного набора знаков;

2) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

3) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

Достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею. Вряд ли удалось успешно пользоваться, например, теоретическими выводами Максвелла, если бы они не были компактно выражены в виде математических уравнений, а описаны с помощью обычного естественного языка.

Разумеется, формализованный язык не столь богат и гибок как естественный, но зато он не многозначен (полисемия), а обладает однозначной семантикой. Таким образом, формализованный язык обладает свойством моносемичности. Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии тоже есть своя символика вместе с правилами оперирования ею. Она представляет собой один из вариантов формализованного искусственного языка.

Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.

Вместе с тем следует иметь в виду, что создание какого-то единого формализованного языка науки не представляется возможным. Одновременно формализованные языки не могут быть единственной формой языка современной науки, ибо стремление к максимальной адекватности требует использования и неформализованных форм языка. Но в той мере, в какой адекватность немыслима без точности, тенденция к возрастающей формализации языков всех и особенно естественных наук является объективной и прогрессивной.

К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.

Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.

Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.

Идеализация - это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.

Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.

Формализация - использование специальной символики вместо реальных объектов.

Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.

Использование символики обеспечивает полноту обозрения определенной области проблем, краткость и четкость фиксации знания, позволяет избежать многозначности терминов. Познавательная ценность формализации состоит в том, что она является средством систематизации и уточнения логической структуры теории. Одно из наиболее ценных достоинств формализации - ее эвристические возможности, в частности возможность обнаружения и доказательства ранее неизвестных свойств изучаемых объектов. Различают два типа формализованных теорий: полностью формализованные и частично формализованные теории. Полностью формализованные теории строятся в аксиоматически дедуктивной форме с явным указанием языка формализации и использованием четких логических средств. В частично формализованных теориях язык и логические средства, используемые для развития данной научной дисциплины, явным образом не фиксируются. На современном этапе развития науки в ней преобладают частично формализованные теории. В методе формализации заложены большие эвристические возможности. Процесс формализаций носит творческий характер. Отталкиваясь от определенного уровня обобщения научных фактов, формализация преобразует их, выявляет в них такие особенности, которые не были зафиксированы на содержательно-интуитивном уровне. Идеализация, абстрагирование - замена отдельных свойств предмета или всего предмета символом или знаком, мысленное отвлечение от чего-то с целью выделения чего-то другого. Идеальные объекты в науке отражают устойчивые связи и свойства объектов: массу, скорость, силу и др. Но идеальные объекты могут и не иметь реальных прообразов в предметном мире, т.е. по мере развития научного знания одни абстракции могут образовываться из других без обращения к практике. Поэтому различают эмпирические и идеальные теоретические объекты. Идеализация является необходимым предварительным условием построения теории, поскольку система идеализированных, абстрактных образов и определяет специфику данной теории.



Моделирование. Модель - мысленное или материальное замещение наиболее существенных сторон изучаемого объекта. Модель - это специально созданный человеком предмет или система, устройство, которое в определенном отношении имитирует, воспроизводит реально существующие предметы или системы, являющиеся объектом научного исследования. В моделировании опираются на аналогии свойств и отношений между оригиналом и моделью. Изучив взаимосвязи, существующие между величинами, описывающими модель, их затем переносят на оригинал и таким образом делают правдоподобное заключение об особенностях поведения последнего. Моделирование как метод, научного познания основано на способности человека абстрагировать изучаемые признаки или свойства у различных предметов, явлений и устанавливать определенные соотношения между ними. Хотя ученые давно пользовались этим методом, только с середины XIX в. моделирование завоевывает прочное, признание у ученых и инженеров. В связи с развитием электроники и кибернетики моделирование превращается в чрезвычайно эффективный метод исследования. Благодаря применению моделирования закономерностей действительности, которые могли в оригинале изучаться лишь, путем наблюдения, они становятся доступными экспериментальному исследованию. Возникает возможность многократного повторения в модели явлений, соответствующих уникальным процессам природы или общественной жизни. Если рассматривать историю науки и техники с точки зрения применения тех или иных моделей, то можно констатировать, что на первых порах развития науки и техники применялись материальные, наглядные модели. В последующем они постепенно утрачивали одну за другой конкретные черты оригинала, их соответствие оригиналу приобретало все более абстрактный характер. В настоящее время все боль­шее значение приобретает поиск моделей, базирующихся на логических основаниях. Существует множество вариантов классификации моделей. На наш взгляд, наиболее убедительным является следующий вариант: а) естественно-природные модели (существующие в природе в естественном виде). Пока ни одна из конструкций, созданная человеком, не может конкурировать с природными конструкциями по сложности решаемых задач. Существует наука бионика, цель которой - исследование уникальных природных моделей с целью дальнейшего использования полученных знаний при создании искусственных устройств. Известно например, что создатели модели формы подводной лодки в качестве аналога взяли форму тела дельфина, при конструировании первых летательных аппаратов использовалась модель размаха крыльев птиц и т.д.; б) вещественно-технические модели (в уменьшенном или увеличенном виде полностью воспроизводящие оригинал). При этом эксперты различают а) модели, создаваемые для того, чтобы воспроизвести пространственные свойства изучаемого объекта (макеты домов, застройки районов и т.д.); б) модели воспроизводящие динамику изучаемых объектов, закономерные связи, величины, параметры (модели самолетов, кораблей, платан и т.д.). Наконец существует третий вид моделей - в) знаковые модели, в том числе математические. Знаковое моделирование позволяет упростить изучаемый предмет, выделить в нем те структурные отношения, которые больше всего интересуют исследователя. Проигрывая вещественно-техническим моделям в наглядности, знаковые модели выигрывают за счет более глубокого проникновения в структуру изучаемого фрагмента объективной реальности. Так, с помощью знаковых систем удается понять сущность таких сложных явлений, как устройство атомного ядра, элементарных частиц, Вселенной. Поэтому применение знаковых моделей особенно важно в тех областях науки, техники, где имеют дело с изучением предельно общих связей, отношений, структур. Особенно расширились возможности знакового моделирования в связи с появлением компьютеров. Появились варианты построения сложных знаково-математических моделей, позволяющих выбирать наиболее оптимальные значения величин сложных изучаемых реальных процессов и осуществлять длительные эксперименты над ними. В ходе исследования часто возникает необходимость построения разнообразных моделей изучаемых процессов, начиная от вещественных и кончая концептуальными и математическими моделями. В целом «построение моделей не только наглядных, но и концептуальных, математических сопровождает процесс научного поиска от его начала до конца, давая возможность охватить в единой системе наглядных и абстрактных образов основные особенности исследуемых процессов» (70. С. 96). Метод исторического и логического: первый воспроизводит развитие объекта с учетом всех действующих на него факторов, второй воспроизводит только общее, главное в предмете в процессе развития.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека