Что такое ядро клетки кратко. Что такое ядро — это в биологии: свойства и функции

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Клеточное ядро - окруженная мембранами структура, которая содержит наследственную информацию, контролирует рост и размножение . Это командный центр эукариотической клетки и, как правило, наиболее значимая .

Структура и значение клеточного ядра

Схема структуры ядра / Wikimedia

Ядро клетки окружено двойной мембраной, называемой ядерной оболочкой. Эта мембрана отделяет содержимое ядра от .

Как и клеточная мембрана, ядерная оболочка состоит из фосфолипидов, образующих липидный бислой. Она помогает поддерживать форму ядра и регулирует поток молекул в/из ядра через ядерные поры.

Хромосомы расположены внутри ядра. Они состоят из ДНК, содержащей информацию о наследственности, росте, развитии и воспроизведения клеток. Когда клетка находится в состоянии «покоя», то есть не делится, хромосомы организованы в длинные запутанные структуры, называемые , а не в отдельные хромосомы, как мы обычно думаем.

Ядрышко

Внутри ядра находится плотная структура, состоящая из РНК и белков, называемая ядрышком, которое содержит ядрышковые организаторы, являющиеся частями хромосом с генами для синтеза рибосом. Ядрышко помогает синтезировать рибосомы путем транскрибирования и сборки рибосомной РНК. Рибосома состоит из рибосомной РНК (рРНК) и белков.

Синтез белка

Ядро регулирует синтез белков в цитоплазме с помощью мессенджера РНК (мРНК), который представляет собой транскрибированный сегмент ДНК, служащий в качестве матрицы для производства белка. Он продуцируется в ядре и перемещается в цитоплазму через ядерные поры в мембране.

Попав в цитоплазму рибосомы и другие молекулы РНК, называемые передаточной РНК, работают вместе, чтобы перевести мРНК для продуцирования белков.

Структура эукариотических клеток

Кроме ядра клетки, существуют и другие типы клеточных органелл. Ниже перечисленные структуры клеток также могут быть обнаружены в типичной эукариотической :

  • - помогают организовать сборку микротрубочек.
  • - хранилище клеточной ДНК.
  • - обеспечивают клеточную локомоцию.
  • - защищает целостность внутренней части клетки.
  • - синтезирует углеводы и липиды.

Ядро - важнейшая составная часть клетки. Клеточное ядро содержит ДНК, т.е. гены, и, благодаря этому,выполняет две главные функции:

1)хранения и воспроизведения генетической информации

2)регуляции процессов обмена веществ, протекающих в клетке

Безъядерная клетка не может долго существовать, и ядро тоже не способно к самостоятельному_существованию, поэтому цитоплазма и ядро образуют взаимозависимую систему. Большинство клеток имеет одно ядро. Нередко можно наблюдать 2-3 ядра в одной например в клетках печени. Известны и многоядерные клетки, причем число ядер может достигать нескольких десятков. Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной. Различают ядра шаровидные, многолопастные. Впячивания и выросты ядерной оболочки значительно увеличивают поверхность ядра и тем самым усиливают связь ядерных и цитоплазматических структур и веществ.

Строение ядра

Ядро окружено оболочкой,которая состоит из двух мембран, имеющих типичное строение. Наружная ядерная мембрана с поверхности,обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая.

Ядерная оболочка-часть мембранной системы клетки.Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети,образуя единую систему сообщающихся каналов.Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями.Во-первых,ядерная оболочка пронизана многочисленными порами,через которые происходит обмен молекулами между ядром и цитоплазмой.Во-вторых, вещества из ядра в цитоплазму и обратно могут попадать вследствии отшнуровывания впячиваний и выростов ядерной оболочки.Несмотря на активный обмен веществами между ядром и цитоплазмой, ядерная оболочка ограничивает ядерное содержимое от цитоплазмы,обеспечивая тем самым различия в химическом составе ядерного сока и цитоплазмы.Это необходимо для нормального функционирования ядерных структур.

Содержимое ядра подразделяют на ядерный сок,хроматин и ядрышко.

В живой клетке ядерный сок выглядит бесструктурной массой,заполняющей промежутки между структурами ядра.В состав ядерного сока входят различные белки,в том числе большенство ферментов ядра, белки хроматина и рибосомальные белки.В ядерном соке находятся также свободные нуклеотиды,необходимые для построения молекул ДНК и РНК,аминокислоты,все виды РНК, а также продукты деятельности ядрышка и хроматина,транспортируемые затем из ядра в цитоплазму.

Хроматином (то греч.chroma-окраска,цвет)называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличаются по форме от ядрышка. Хроматин содержит ДНК и белки и представляет собой спирализованные и уплотненные участки хромосом Спирализованные участки хромосом в генетическом отношении неактивны.

Свою специфическую роль-передачу генетической информации-могут осуществлять только деспирализованные-раскрученные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп.

В делящихся клетках все хромосомысильно спирализуются, укорачиваются и приобретают компактные размеры и форму.Хромосомой называют самостоятельные ядерные структуры,имеющие плечи и первичную перетяжку.Форма хромосом зависит от положения так называемой первичной перетяжки, или центормеры,-области,к которой во время деления клетки(митоза)прикрепляются нити веретена деления. Центромера делит хромосому на два плеча. Расположение центромеры определяет три основных типа хромосом:

1)равноплечие-с плечами равной или почти равной длинны;

2)неравноплечие-с плечами неравной длинны;

3)палочковидные - с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. Выделяются еще точечные хромосомы с очень короткими плечами.

Изучение хромосом позволило установить следующие факты.

1.Во всех соматических клетках любого растительного или животного организма число хромосом одинаково.

2.Половые клетки всегда содержат двое меньше хромосом, чем соматические клетки данного вида организма.

3.У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково.

Число хромосом не зависит от уровня организации и не всегда указывает на родство:одно и тоже число их может быть у очень далёких друг от друга систематических групп и может сильно отличаться у близких по происхождению видов.

Таким образом,само по себе число хромосом не является видоспецифическим признаком.Однако характеристика хромосомного набора в целом видоспецифична, т.е. свойственна только одному какому-то виду организмов растений растений или животных.

Совокупность количественных (число и размеры) и качественных (форма) признаковхромосомного набора соматической клетки называюткариотипом.

Число хромосом в кариотипе большинства видов живых организмов четное.Это объясняетя тем, что в соматических клетках находятся две одинаковые по форме и размеру хромосомы-одна из отцовского организма, вторая – из материнского. Хромосомы, одинаковые по форме и размеру и несущие одинаковые гены, называют гомологичными.

Хромосомный набор соматической клетки, в котором каждая хромосома имеет пару,носит название двойного или диплоидного и обозначается 2N. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают 2C.

Из каждой пары гомологичных хромосом в половые клетки попадает только одна, и поэтому хромосомный набор гамет называют одинарным или гаплоидным. Кариотип таких клеток обозначается 2n1c.

Диплоидное число хромосом у животных и растений.

Вид организмов Число хромосом
Малярийный плазмодий 2
Сазан 104
Лошадиная аскарида 2
Человек 46
Плодовая мушка дрозофила 8
Ясень обыкновенный 46
Головная вошь 12
Шимпанзе 48
Шпинат 12
Таракан 48
Домашняя муха 12
Перец 48
Тритон 24
Домашняя овца 54>
Ель,сосна 24
Домашняя собака 78
Окунь 28
Голубь 80

После завершения деления клетки хромосомы диспирализуются, и в ядрах образовавшихся дочерних клеток снова становятся видимыми только тонкая сеточка и глыбки хроматина.

Третья характерная для клетки структура – ядрышко.Оно представляет собой плотное округлое тельце, погруженное в ядерный сок. В ядрах разных клеток, а также в ядре одной и той же клетки в зависимости от её функционального состояния число ядрышек может колебаться от 1 до 5-7 и более. Количество ядрышек может превышать число хромосомом в наборе; это происходит за счет избирательной редупликации генов, отвечающих за синтез р-РНК. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают вследствие спирализации хромосом и выхода всех ранее образованных рибосом в цитоплазму, а после завершения деления возникают вновь.

Ядрышко не является самостоятельной структурой ядра.Оно образуется вокруг участка хромосомы, в котором закодирована структура р-РНК. Этот участок хромосомы-ген-носит название ядрышкового организатора(ЯО), и на нем происходит синтез р-РНК.

Кроме накопления р-РНК, в ядрышке формируются субъединицы рибосом, которые потом перемещаются в цитоплазму и, объединяясь при участии катионов Ca2+, формируют целостностные рибосомы, способные принимать участие в биосинтезе белка.

Таким образом, ядрышко – это скопление р-РНК и рибосом на разных этапах формирования, в основе которого лежит участок хромосомы, несущий ген – ядрышковый организатор, заключающий наследственную информацию о структуре р –РНК.

Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

В каждой живой клетке протекает множество биохимических реакций и процессов. Чтобы контролировать их, а также регулировать многие жизненно важные факторы, необходима специальная структура. Что такое ядро в биологии? Благодаря чему оно эффективно справляется с поставленной задачей?

Что такое ядро в биологии. Определение

Ядро - необходимая структура любой клетки организма. Что такое ядро? В биологии это важнейший компонент каждого организма. Ядро можно обнаружить и у одноклеточных простейших, и у высокоорганизованных представителей эукариотического мира. Главная функция этой структуры - хранение и передача генетической информации, которая здесь же и содержится.

После оплодотворения яйцеклетки сперматозоидом происходит слияние двух гаплоидных ядер. После слияния половых клеток образуется зигота, ядро которой уже несет диплоидный набор хромосом. Это значит, что кариотип (генетическая информация ядра) уже содержит копии генов и матери, и отца.

Состав ядра

Какова характеристика ядра? Биология тщательно изучает состав ядерного аппарата, т. к. это может дать толчок в развитии генетики, селекции и молекулярной биологии.

Ядро - это двумембранная структура. Мембраны являются продолжением что необходимо для транспорта образованных веществ из клетки. Содержимое ядра называется нуклеоплазма.

Хроматин - основное вещество нуклеоплазмы. Состав хроматина разнообразен: здесь находятся в первую очередь нуклеиновые кислоты (ДНК и РНК), а также белки и многие ионы металлов. ДНК в нуклеоплазме расположена упорядочено в виде хромосом. Именно хромосомы при делении удваиваются, после чего каждый их наборов переходит в дочерние клетки.

РНК в нуклеоплазме чаще всего встречается двух типов: мРНК и рРНК. образуется в процессе транскрипции - считывания информации с ДНК. Молекула такой рибонуклеиновой кислоты позже покидает ядро и в дальнейшем служит матрицей для образования новых белков.

Рибосомальная РНК образуется в специальных структурах под названием ядрышки. Ядрышко построено из концевых участков хромосом, образованных вторичными перетяжками. Эта структура может быть видна в световой микроскоп в виде уплотненного пятнышка на ядре. Рибосомальные РНК, которые синтезируются здесь, также поступают в цитоплазму и далее вместе с белками образуют рибосомы.

Непосредственное влияние на функции оказывает состав ядра. Биология как наука изучает свойства хроматина для лучшего пониманию процессов транскрипции и деления клетки.

Функции ядра. Биология процессов в ядре

Первой и самой важной функцией ядра является хранение и передача наследственной информации. Ядро - уникальная структура клетки, т. к. в нем содержится большая часть генов человека. Кариотип может быть гаплоидный, диплоидный, триплоидный и так далее. Плоидность яда зависит от функции самой клетки: гаметы гаплоидные, а соматические клетки диплоидные. Клетки эндосперма покрытосеменных растений триплоидные, и, наконец, многие сорта посевных культур имеют полиплоидный набор хромосом.

Передача в цитоплазму из ядра происходит при образовании мРНК. В процессе транскрипции нужные гены кариотипа считываются, и в итоге синтезируются молекулы матричной или информационной РНК.

Также наследственность проявляется при делении клетки митозом, мейозом или амитозом. В каждом из случаев ядро выполняет свою определенную функцию. Например, в профазе митоза разрушается оболочка ядра и сильно компактизированные хромосомы попадают в цитоплазму. Однако в мейозе перед разрушением мембраны в ядре происходит кроссинговер хромосом. А в амитозе ядро вовсе разрушается и вносит небольшой вклад в процессе деления.

Кроме того, ядро косвенно участвует в транспорте веществ из клетки из-за непосредственной связи мембраны с ЭПС. Вот что такое ядро в биологии.

Форма ядер

Ядро, его строение и функции могут зависеть от формы мембраны. Ядерный аппарат может быть округлым, вытянутым, в виде лопастей и т. д. Часто форма ядра специфична для отдельных тканей и клеток. Одноклеточные организмы различаются по типу питания, жизненного цикла, а вместе с тем различаются и формы мембраны ядер.

Разнообразие в форме и размере ядра можно проследить на примере лейкоцитов.

  • Ядро нейтрофилов может быть сегментированным и не сегментированным. В первом случае говорят о подковообразном ядре, и такая форма характерна для молодых клеток. Сегментированное ядро - это результат образования нескольких перегородок в мембране, в результате чего образуется несколько частей, связанных между собой.
  • У эозинофилов ядро имеет характерную гантелевидную форму. В этом случае ядерный аппарат состоит из двух сегментов, связанных перегородкой.
  • Почти весь объем лимфоцитов занят огромным ядром. Лишь небольшая часть цитоплазмы остается по периферии клетки.
  • В железистых клетках насекомых ядро может иметь разветвленное строение.

Количество ядер в одной клетке может быть разным

Не всегда в клетке организма присутствует только одно ядро. Порой необходимо присутствие двух или более ядерных аппаратов для осуществления нескольких функций одновременно. И наоборот, некоторые клетки могут вовсе обходиться без ядра. Вот некоторые примеры необычных клеток, в которых ядер больше одного или оно вообще отсутствует.

1. Эритроциты и тромбоциты. Эти форменные элементы крови транспортируют гемоглобин и фибриноген соответственно. Чтобы одна клетка смогла вместить максимальное количество вещества, она утратила свое ядро. Характерна такая особенность не для всех представителей животного мира: у лягушек в крови находятся огромные по размерам эритроциты с ярко выраженным ядром. Это показывает примитивность данного класса в сравнении с более развитыми таксонами.

2. Гепатоциты печени. Эти клетки содержат в себе два ядра. Одно из них регулирует очистку крови от токсинов, а другое отвечает за образование гемма, который в последующем войдет в состав гемоглобина крови.

3. Миоциты поперечно-полосатой скелетной ткани. Мышечные клетки многоядерные. Это связано с тем, что в них активно проходит синтез и распад АТФ, а также сборка белков.

Особенности ядерного аппарата у простейших

Для примера рассмотрим два вида простейших: инфузории и амебы.

1. Инфузория-туфелька. Этот представитель одноклеточных организмов имеет два ядра: вегетативное и генеративное. Т. к. они отличаются как по функциям, так и по размерам, такая особенность получила название ядерного дуализма.

Вегетативное ядро отвечает за повседневную жизнедеятельность клетки. Оно регулирует процессы ее метаболизма. Генеративное ядро участвует в клеточном делении и в конъюгации - половом процессе, при котором происходит обмен генетической информацией с особями того же вида.

Заболевания

Многие генетические заболевания связаны с нарушениями в наборе хромосом. Вот список наиболее известных отклонений в генетическом аппарате ядра:

  • синдром Дауна;
  • сиддром Патау;
  • синдром Клайнфелтера;
  • синдром Шерешевского-Тернера.

Список можно продолжать, и каждая из болезней отличается порядковым номером пары хромосом. Также подобные заболевания часто затрагивают половые X и Y хромосомы.

Заключение

Ядро играет важную роль в Оно регулирует биохимические процессы, является хранилищем наследственной информации. Транспорт веществ из клетки, синтез белков также связаны с функционированием этой центральной структуры клетки. Вот что такое ядро в биологии.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека