Проба оценивающая функциональное состояние дыхательной системы. Изучение и оценка функциональных проб дыхательной системы у подростков

Дистанционный этап краевого форума «Молодежь и наука»

Полное название темы работы

Изучение и оценка функциональных проб дыхательной системы у подростков.

Название секции форума

Медицина и здоровье

Тип работы

Исследовательская работа

Александрова Светлана Андреевна

Ярушина Дарья Игоревна

Место учебы :

Муниципальное бюджетное общеобразовательное учреждение

«Северо-Енисейская средняя школа №2»

Класс

Место выполнения работы

МБОУ «Северо-Енисейская средняя школа №2»

Руководитель

Носкова Елена Михайловна учитель биологии

Научный руководитель

Ответственный за корректуру текста работы

e-mail (обязательно)
Контактный телефон

Ele20565405 @yandex.ru

Аннотация

Александрова Светлана Андреевна Ярушина Дарья Игоревна

МБОУ «Северо-Енисейская средняя школа №2», 8а класс

Изучение и оценка функциональных проб дыхательной системы у подростков

Руководитель: Носкова Елена Михайловна, МБОУ ССШ№2 , учитель биологии

Цель научной работы: научиться объективно оценивать состояние дыхательной системы подростка и организма в целом и выявить зависимость её состояния от занятий спортом.

Методы исследования :

Основные результаты научного исследования: Человек в состоянии оценить состояние своего здоровья и оптимизировать свою деятельность. Для этого подростки, могут овладеть необходимыми знаниями и умениями, обеспечивающими возможность ведения здорового образа жизни.

Введение

У нашей соседки Юли родилась недоношенная дочь. И из разговоров взрослых было только и слышно, что многие недоношенные дети умирают, потому что у них не начинается самостоятельное дыхание. Что жизнь человека начинается с первого крика. Строение дыхательной системы и понятие жизненная емкость легких мы изучили на уроках биологии. Так же мы узнали, что во внутриутробном развитии легкие не участвуют в акте дыхания и находятся в спавшемся состоянии. Расправление их начинается с первым вдохом ребенка, однако полностью оно происходит не сразу, и отдельные группы альвеол могут оставаться нерасправленными. Таким детям нужен особый уход. Нас заинтересовал вопрос. Чем же с возрастом должна заниматься эта девочка, чтобы объем легких и жизненная емкость увеличилась?

Актуальность работы. Физическое развитие детей и подростков является одним из важных показателей здоровья и благополучия. Но дети часто болеют простудными заболеваниями, не занимаются спортом, курят.

Цель работы: научиться объективно оценивать состояние дыхательной системы подростка и организма в целом и выявить зависимость её состояния от занятий спортом.

Для достижения цели поставлены следующие задачи :

- изучить литературу о строении и возрастных особенностях дыхательной системы у подростков, о влиянии загрязнений воздуха на работу дыхательной системы;

Дать оценку состояния дыхательной системы двух групп подростков: активно занимающихся спортом и не занимающихся спортом.

Объект исследования : учащиеся школы

Предмет исследования исследование состояния дыхательной системы двух групп подростков: активно занимающихся спортом и не занимающихся спортом.

Методы исследования: анкетирование, эксперимент, сравнение, наблюдение, беседа, анализ продуктов деятельности.

Практическая значимость . Полученные результаты можно использовать в качестве пропаганды здорового образа жизни и активных занятий такими видами спорта: легкая атлетика, лыжи, плавание

Гипотеза исследования:

Считаем, что если нам в ходе исследования удастся выявить определённое положительное влияние

занятий спортом на состояние дыхательной системы, то можно будет пропагандировать их

Как одно из средств укрепления здоровья.

Теоретическая часть

1. Строение и значение дыхательной системы человека.

Дыхание – это основа жизни любого организма. В ходе дыхательных процессов кислород поступает ко всем клеткам тела и используется для энергетического обмена – расщепления пищевых веществ и синтеза АТФ. Сам процесс дыхания состоит из трех этапов: 1 -внешнее дыхание (вдох и выдох), 2 -газообмен между альвеолами легких и эритроцитами, транспорт кислород а и углекислого газа кровью, 3- клеточное дыхание – синтез АТФ при участии кислорода в митохондриях. Дыхательные пути (носовая полость, гортань, трахея, бронхи и бронхиолы) служат для проведения воздуха, а газообмен происходит между клетками легких и капиллярами и между капиллярами и тканями организма. Вдох и выдох происходят за счет сокращений дыхательной мускулатуры – межреберных мышц и диафрагмы. Если при дыхании преобладает работа межреберных мышц, то такое дыхание называется грудным (у женщин), а если диафрагмы – то брюшным (у мужчин). Регулирует дыхательные движения дыхательный центр, который находится в продолговатом мозге. Его нейроны реагируют на импульсы, приходящие от мышц и легких, а также на повышение концентрации углекислого газа в крови.

Жизненная емкость легких - это тот максимальный объем воздуха, который можно выдохнуть после максимального входа. Жизненная ёмкость легких является возрастным и функциональным показателем системы дыхания. Величина ЖЕЛ в норме зависит от пола и возраста человека, его телосложения, физического развития, а при различных заболеваниях она может существенно уменьшаться, что снижает приспособляемость больного к выполнению физической нагрузки. При регулярных занятиях спортом увеличивается жизненная емкость легких, происходит наращивание мощности дыхательных мыщц, подвижности грудной клетки, эластичности лекгих. Жизненную ёмкость легких и составляющие её объёмы определяли с помощью спирометра. Спирометр имеется в медицинском кабинете каждой школы.

Практическая часть

1. Определение максимального времени задержки дыхания на глубоком вдохе и выдохе (проба Генчи-Штанге) Проба Штанге: обследуемый в положении стоя делает вдох, затем глубокий выдох и вновь вдох, составляющий 80 - 90 процентов от максимального. Отмечается время задержки дыхания в секундах. При обследовании детей проба проводится после трех глубоких вдохов. Проба Генчи: после обычного выдоха исследуемый человек задерживает дыхание. Время задержки определяется в секундах.

Для проведения экспериментального исследования нами было подобрано две группы добровольцев восьмых классов по 10 человек, различающиеся тем, что в одной группе были учащиеся, активно занимающиеся спортом (таблица 1), а в другой равнодушные к занятиям физкультуры и спорта (таблица 2).

Таблица 1. Группа испытуемых ребят, занимающихся спортом

№ п/п

Имя испытуемого

Вес

(кг.)

Рост (м.)

Индекс Кетле

(вес кг./рост м 2 )

N = 20-23

фактически

норма

Алексей

1,62

17,14 меньше нормы

19,81

Денис

14 лет 2 мясаца

1,44

20,25 норма

16,39

Анастасия

14 лет 7 месяцев

1,67

17,92 меньше нормы

20,43

Сергей

14 лет 3 месяца

1,67

22,59 норма

20,43

Михаил

14лет 5 месяцев

1,70

22,49 норма

20,76

Елизавета

14 лет 2 месяца

1,54

19,39 меньше нормы

18,55

Алексей

14 лет 8 месяцев

1,72

20,95 норма

20,95

Максим

14 лет 2 месяца

1,64

21,19 норма

20,07

Никита

14 лет 1 месяц

1,53

21,78 норма

18,36

Андрей

15 лет 2 месяца

1,65

21,03 норма

20,20

ИМТ = m| h 2 , где m – масса тела в кг, h – рост в м. Формула идеального веса: рост минус 110 (для подростков)

Таблица 2. Группа испытуемых ребят, не занимающихся спортом

№ п/п

Имя испытуемого

Возраст (полных лет и месяцев)

Вес

(кг.)

Рост (м.)

Индекс Кетле

(вес кг./рост м 2 )

N = 20-25

фактически

норма

Алина

14 лет 7 месяцев

1,53

21,35 норма

18,36

Виктория

14 лет 1 месяц

1,54

18,13 меньше нормы

18,55

Виктория

14 лет3 месяца

1,59

19,38 меньше нормы

21,91

Нина

14 лет 8 месяцев

1,60

19,53 меньше нормы

19,53

Карина

14 лет 9 месяцев

19,19 меньше нормы

22,96

Светлана

14 лет 3 месяца

1,45

16,64 меньше нормы

16,64

Дарья

14 лет 8 месяцев

1,59

17,79 меньше нормы

19,38

Антон

14 лет 8 месяцев

1,68

24,80 норма

20,54

Анастасия

14 лет 3 месяца

1,63

17,68 меньше нормы

19,94

Руслана

14 лет 10 месяцев

1,60

15,23 меньше нормы

19,53

Анализируя данные таблицы, мы заметили, что абсолютно у всех ребят из группы не занимающихся спортом индекс Кетле (массо-ростовой показатель) ниже нормы, а по физическому развитию ребята имеют средний уровень. Ребята из первой группы наоборот все имеют уровень физического развития выше среднего и по 50 % испытуемых по массо-ростовому индексу соответствуют норме, оставшаяся половина не значительно превышают показатели нормы. По внешнему облику ребята из первой группы сложены более атлетически.

У здоровых 14 -летних школьников время задержки дыхания равняется у мальчиков 25, девочек 24 секунд . При пробе Штанге испытуемый задерживает дыхание на вдохе, прижав нос пальцами. У здоровых 14 – летних школьников время задержки дыхания равняется у мальчиков 64, девочек – 54 секунд . Все пробы повторяли три раза.

На основе полученных результатов было найдено среднее арифметическое и данные были занесены в таблицу № 3.

Таблица 3. Результаты функциональной пробы Генчи-Штанге

№ п/п

Имя испытуемого

Проба Штанге (сек.)

Оценка результата

Проба Генчи

(сек.)

Оценка результата

Группа, занимающихся спортом

Алексей

Выше нормы

Выше нормы

Денис

Выше нормы

Выше нормы

Анастасия

Выше нормы

Выше нормы

Сергей

Выше нормы

Выше нормы

Михаил

Выше нормы

Выше нормы

Елизавета

Выше нормы

Выше нормы

Алексей

Выше нормы

Выше нормы

Максим

Выше нормы

Выше нормы

Никита

Выше нормы

Выше нормы

Андрей

Выше нормы

Выше нормы

Алина

Ниже нормы

Ниже нормы

Виктория

Ниже нормы

Ниже нормы

Виктория

Ниже норма

Ниже нормы

Нина

Ниже нормы

Ниже нормы

Карина

Ниже нормы

Ниже нормы

Светлана

Ниже нормы

Норма

Дарья

Ниже норма

Выше нормы

Антон

Ниже нормы

Выше нормы

Анастасия

Норма

Норма

Руслана

Норма

Норма

C пробой Генчи в первой группе все справились успешно: 100 % ребят показали результат выше нормы, а во второй группе только 20 % показали результат выше нормы, 30% соответствует норме,а 50 % – наоборот ниже нормы.

С пробой Штанге в первой группе 100 % ребят дали результат выше нормы, а во второй группе с задержкой дыхания на вдохе в пределах нормы справились 20%, а оставшаяся группа показала результаты ниже нормы. 80%

2. Определение времени максимальной задержки дыхания после дозированной нагрузки (проба Серкина)

Для более объективной оценки состояния дыхательной системы испытуемых мы провела с ними ещё одну функциональную пробу – пробу Серкина.

После проведенных испытаний результаты оцениваются по данным таблицы 4:

Таблица 4. Данные результаты для оценки пробы Серкина

Задержка дыхания в покое, t сек А

Задержка дыхания после 20 приседаний, t сек.

Б –после работы

Б/А 100%

Задержка дыхания после отдыха в течение 1 мин, t сек С- после отдыха

В/А 100%

Здоров, тренирован

50 – 70

Более 50 % от фазы 1

Более 100 % от фазы 1

Здоров, не тренирован

45 – 50

30 – 50 % от фазы 1

70 – 100 % от фазы 1

Скрытая недостаточность кровообращения

30 – 45

Менее 30 % от фазы 1

Менее 70 % от фазы 1

Полученные результаты всех участников эксперимента занесены в таблицу 5:

Таблица 5. Результаты пробы Серкина

№ п/п

Имя испытуемого

Фаза 1 – задержка дыхания в покое, t сек

Задержка дыхания после 20 приседаний

Задержка дыхания после отдыха в течение 1 мин

Оценка результатов

T 25 0 , сек

% от фазы 1

t, сек

% от фазы 1

Группа, занимающихся спортом

Алексей

Здоров не тренирован

Денис

Здоров тренирован

Анастасия

Здорова не тренирован

Сергей

Здоров тренирован

Михаил

Здоров не тренирован

Елизавета

Здорова тренирована

Алексей

Здоров тренирован

Максим

Здоров тренирован

Никита

Здоров не тренирован

Андрей

Здоров не тренирован

Группа, не занимающихся спортом

Алина

Здорова не тренирована

Виктория

Здорова не тренирована

Виктория

Здорова не тренирована

Нина

Здорова не тренирована

Карина

Здорова не тренирована

Светлана

Здорова не тренирована

Дарья

Здорова не тренирована

Антон

Здоров не тренирован

Анастасия

Здорова не тренирована

Руслана

Здоров не тренирован

Проанализировав результаты обеих групп, можем сказать следующее:

Во-первых, ни в первой, ни во второй группе не выявлено детей со скрытой недостаточностью кровообращения;

Во-вторых, все ребята второй группы относятся к категории «здоровые не тренированные», что в принципе и следовало ожидать.

В-третьих, в группе ребят, активно занимающихся спортом, только 50 % относится к категории «здоровые, тренированные», а об остальных пока такового не скажешь. Хотя этому есть разумное объяснение. Алексей участвовал в эксперименте после перенесенного ОРЗ.

в – четвертых, отклонение от нормальных результатов при задержки дыхания после дозированной нагрузки, можно объяснить общей гиподинамией 2 группы, что отражается на развитии дыхательной системы

Выводы

Подводя итоги своего исследования, хотим отметить следующее:

Экспериментальным путем нам удалось доказать, что занятия спортом способствуют развитию дыхательной системы, так как по результатам пробы Серкина можно сказать что у 60 % детей из группы 1 время задержки дыхания возросло, а это значит, что у них дыхательный аппарат более подготовлен к нагрузкам;

Функциональные пробы Генчи-Штанге также показали, что ребята из группы 1 находятся в более выгодном положении. Их показатели выше нормы по обеим пробам соответственно 100 % и 100 %.

Новорожденная девочка у молодой мамы выжила. Даже была на исскуственной вентиляции легких. Ведь дыхание – самая важная функция организма, влияющая на физическое и умственное развитие. Недоношенные дети входят в группу риска по заболеванию пневмонией.

Хорошо развитый дыхательный аппарат - надежная гарантия полноценной жизнедеятельности клеток. Ведь известно, что гибель клеток организма в конечном итоге связана с недостатком в них кислорода. И напротив, многочисленными исследованиями установлено, что чем больше способность организма усваивать кислород, тем выше физическая работоспособность человека. Тренированный аппарат внешнего дыхания (легкие, бронхи, дыхательные мышцы) - это первый этап на пути к улучшению здоровья. Потому в будущем мы посоветуем ей заняться спортом.

Для укрепления и развития дыхательной системы необходимо заниматься спортом регулярно.

Список литературы

1.Георгиева С. А. « Физиология» Медицина 1986г. Стр 110 - 130

2. Федюкевич Н И. «Анатомия и физиология человека» Феникс 2003г. Стр181 – 184

3. Колесов Д.В.., Маш Р.Д. Беляев И.Н.Биология: человек. – Москва, 2008 8 кл.

4. Федорова М.З. В.С.Кучменко Т.П. Лукина. Экология человека Культура здоровья Москва 2003 стр 66-67

Ресурсы интернет

5.http://www.9months.ru/razvitie_malysh/1337/rannie-deti

Динамическая спирометрия – определение изменений ЖЕЛ под влиянием физической нагрузки (проба Шафранского). Определив исходную величину ЖЕЛ в покое, обследуемому предлагают выполнить дозированную физическую нагрузку - 2-минутный бег на месте в темпе 180 шаг/мин при подъеме бедра под углом 70-80°, после чего снова определяют ЖЕЛ. В зависимости от функционального состояния системы внешнего дыхания и кровообращения и их адаптации к нагрузке ЖЕЛ может уменьшиться (неудовлетворительная оценка), остаться неизменной (удовлетворительная оценка) или увеличиться (оценка, т.е. адаптация к нагрузке, хорошая). О достоверных изменениях ЖЕЛ можно говорить только в том случае, если она превысит 200 мл.

Проба Розенталя - пятикратное измерение ЖЕЛ, проводимое через 15-секундные интервалы времени. Результаты данной пробы позволяют оценить наличие и степень утомления дыхательной мускулатуры, что, в свою очередь, может свидетельствовать о наличии утомления других скелетных мышц.


Результаты пробы Розенталя оценивают следующим образом:

Увеличение ЖЕЛ от 1-го к 5-му измерению - отличная оценка;

Величина ЖЕЛ не изменяется - хорошая оценка;

Величина ЖЕЛ снижается на величину до 300 мл - удовлетворительная оценка;

Величина ЖЕЛ снижается более чем на 300 мл - неудовлетворительная оценка.


Проба Шафранского заключается в определении ЖЕЛ до и после стандартной физической нагрузки. В качестве последней используются подъемы на ступеньку (22,5 см высоты) в течение 6 мин в темпе 16 шаг/мин. В норме ЖЕЛ практически не изменяется. При снижении функциональных возможностей системы внешнего дыхания значения ЖЕЛ уменьшаются более чем на 300 мл.
Гипоксические пробы дают возможность оценить адаптацию человека к гипоксии и гипоксемии.
Проба Генчи - регистрация времени задержки дыхания после максимального выдоха. Исследуемому предлагают сделать глубокий вдох, затем максимальный выдох. Исследуемый задерживает дыхание при зажатом носе и рте. Регистрируется время задержки дыхания между вдохом и выдохом. норме величина пробы Генчи у здоровых мужчин и женщин составляет 20-40 с и для спортсменов – 40-60 с.
Проба Штанге - регистрируется время задержки дыхания при глубоком вдохе. Исследуемому предлагают сделать вдох, выдох, а затем вдох на уровне 85-95% от максимального. Закрывают рот, зажимают нос. После выдоха регистрируют время задержки.Средние величины пробы Штанге для женщин – 35-45 с для мужчин – 50-60 с, для спортсменок – 45-55 с и более, для спортсменов - 65-75 с и более.
Проба Штанге с гипервентиляцией
После гипервентиляции (для женщин - 30 с, для мужчин - 45 с) производится задержка дыхания на глубоком вдохе. Время произвольной задержки дыхания в норме возрастает в 1,5-2,0 раза (в среднем значения для мужчин – 130-150 с, для женщин – 90-110 с).
Проба Штанге с физической нагрузкой. После выполнения пробы Штанге в покое выполняется нагрузка - 20 приседаний за 30 с. После окончания физической нагрузки тотчас же проводится повторная проба Штанге. Время повторной пробы сокращается в 1,5-2,0 раза.По величине показателя пробы Генчи можно косвенно судить об уровне обменных процессов, степени адаптации дыхательного центра к гипоксии и гипоксемии и состояния левого желудочка сердца.Лица, имеющие высокие показатели гипоксемических проб, лучше переносят физические нагрузки. В процессе тренировки, особенно в условиях среднегорья, эти показатели увеличиваются.У детей показатели гипоксемических проб ниже, чем у взрослых.
7.2.3. Инструментальные методы исследования системы дыхания
Пневмотахометрия - определение максимально объемной скорости потока воздуха при вдохе и выдохе. Показатели пневмотахометрии (ПТМ) отражают состояние бронхиальной проходимости и силу дыхательной мускулатуры. Бронхиальная проходимость - важный показатель состояния функции внешнего дыхания. Чем шире суммарный просвет воздухоносных путей, тем меньше сопротивление, оказываемое ими потоку воздуха и тем больше его объем способен вдохнуть и выдохнуть человек при максимально форсированном дыхательном акте. От величины бронхиальной проходимости зависят энергетические траты на вентиляцию легких. При увеличении бронхиальной проходимости один и тот же объем вентиляции легких требует меньше усилий. Систематические занятия физической культурой и спортом способствуют совершенствованию регуляции бронхиальной проходимости и ее увеличению.
Объемная скорость потока воздуха на вдохе и выдохе измеряется в литрах в секунду (л/с).
У здоровых нетренированных людей соотношение объемной скорости вдоха к объемной скорости выдоха (мощность вдоха и выдоха) близко единице. У больных людей это соотношение всегда меньше единицы. У спортсменов мощность вдоха превышает мощность выдоха, и это соотношение достигает 1,2-1,4.
Для более точной оценки бронхиальной проходимости легче пользоваться расчетом должных величин. Для расчета должной величины фактическая величина ЖЕЛ умножается на 1,24. Нормальная бронхиальная проходимость равна мощности вдоха и выдоха, т.е. 100 ± 20% его от должной величины.
Показатели ПТМ колеблются у женщин от 3,5 до 4,5 л/с; у мужчин - от 4,5 до 6 л/с. У спортсменок величины ПТМ составляют 4-6 л/с, у спортсменов – 5-8 л/с.
В последние годы функцию внешнего дыхания определяют с помощью компьютера «IBM PC» на аппарате «Спироскоп ТМ» методами спирографии и петля поток - объем форсированного выхода (ППО), как наиболее приемлемых для динамического исследования дыхания. Так, самые высокие показатели ЖЕЛ, объема форсированного выдоха за 1 с (ОФВ 1), МВЛ, выявлены в группе выносливости, несколько ниже, но также высокие - в группе единоборств и игровых видов спорта, что указывает на то, что в этих видах спорта развитию качества выносливости уделяется существенное внимание (Дьякова П.С., 2000).
Спирография - метод комплексного исследования системы внешнего дыхания с регистрацией показателей частоты дыхания (ЧД), глубины дыхания (ГД), минутного объема дыхания (МОД), жизненной емкости легких с ее компонентами: резервный объем вдоха - (РОВД), резервный объем выдоха - (РОВЬШ), дыхательный объем - (ДО), форсированной ЖЕЛ (ФЖЕЛ), максимальной вентиляции легких (МВЛ) и потребление кислорода (ПО2).
ЧД в норме в условиях покоя у взрослых практически здоровых людей колеблется от 14 до 16 дыханий в минуту. У спортсменов с ростом тренированности ЧД может урежаться и составлять от 8 до 12 в минуту, у детей - несколько больше.
ГД, или дыхательный объем (ДО) также измеряется на спирограмме равномерного спокойного дыхания. ДО составляет примерно 10% емкости легких или 15-18% ЖЕЛ и равен у взрослых 500-700 мл, у спортсменов ДО возрастает и может достигать 900-1300 мл.
МОД (легочная вентиляция) представляет собой произведение ДО на ЧД в 1 мин (при равномерном дыхании равной глубины). В покое в условиях нормы эта величина колеблется от 5 до 9 л/мин. У спортсменов его величина может достигать 9-12 л/мин и более. Важно, чтобы МОД при этом возрастал за счет глубины, а не частоты дыхания, что не приводит к избыточному расходу энергии на работу дыхательной мускулатуры. Иногда увеличение МОД в покое может быть связано с недостаточным восстановлением после тренировочных нагрузок.
Резервный объем вдоха (РО ВД) - это объем воздуха, который исследуемый может вдохнуть при максимальном усилии вслед за обычным вдохом. В покое этот объем примерно равен 55-63% ЖЕЛ. Этот объем в первую очередь используется для углубления дыхания при нагрузке и определяет способность легких к дополнительному их расширению и вентиляции.
Резервный объем выдоха (РО ВЫД) - это объем воздуха, который исследуемый может выдохнуть при максимальном усилии вслед за обычным выдохом. Его величина колеблется от 25 до 345 от ЖЕЛ в зависимости от положения тела.
Форсированная ЖЕЛ (ФЖЕЛ или проба Тиффно-Вотчела) - максимальный объем воздуха, который можно выдохнуть за 1 с. При определении этой величины из положения максимального вдоха испытуемый делает максимально форсированный выдох. Рассчитывается этот показатель в мл/с и выражается в процентах к обычной ЖЕЛ. У здоровых лиц, не занимающихся спортом, этот показатель колеблется от 75 до 85%. У спортсменов этот показатель может достигать больших значений при одновременном увеличении ЖЕЛ и ФЖЕЛ: их процентные соотношения изменяются незначительно. ФЖЕЛ ниже 70% указывает на нарушение бронхиальной проходимости.
Максимальная вентиляция легких (МВЛ) - это наибольший объем воздуха, вентилируемый легкими за 1 мин при максимальном усилении дыхания за счет увеличения его частоты и глубины. МВЛ относится к числу показателей, которые наиболее полно характеризуют функциональную способность системы внешнего дыхания. На величину МВЛ влияют ЖЕЛ, сила и выносливость дыхательной мускулатуры, бронхиальная проходимость. Кроме того, МВЛ зависит от возраста, пола, физического развития, состояния здоровья, спортивной специализации, уровня тренированности и периода подготовки. В норме у женщин МВЛ – 50-77 л/мин, у мужчин – 70-90 л/мин. У спортсменов может достигать 120-140 л/мин - женщины, 190-250 л/мин - мужчины. При определении МВЛ измеряют объем вентиляции при максимально произвольном усилении дыхания в течение 15-20 с, а затем приводят полученные данные к минуте и выражают в л/мин. Более продолжительная гипервентиляция приводит к гипокапнии, что вызывает снижение артериального давления и появление у исследуемых головокружений. Оценку уровня функциональной способности системы внешнего дыхания можно получить при сопоставлении МВЛ с должной МВЛ (ДМВЛ):


ДМВЛ = (ЖЕЛ / 2Ж) х 35

МВЛ, в % ДМВЛ = (факт. МВЛ х 100) / ДМВЛ


Нормальная величина МВЛ составляет 100±10 ДМВЛ. У спортсменов МВЛ достигает 150% ДМВЛ и более.Если из МВЛ вычесть МОД в покое, получим величину, показывающую, насколько спортсмен может увеличить вентиляцию легких, так называемый резерв дыхания. В норме он составляет 91-92% МВЛ.
Дыхательный эквивалент (ДЭ) - это абстрактная величина, выражающая количество литров воздуха, которое необходимо провентилировать, чтобы использовать 100 мл кислорода.ДЭ рассчитывается по формуле:ДЭ = МОДДдолжное потребление кислорода хЮ), где должное потребление кислорода рассчитывается как частное от деления должного основного обмена (ккал) по таблице Гарриса-Бенедикта на коэффициент 7,07.

Принципы оценки. В норме в состоянии покоя дыхательный эквивалент колеблется в пределах от 1,8 до 3,0 и составляет в среднем 2,4.
Вентиляционный эквивалент (ВЭ) , по существу, является тем же показателем, что и ДЭ, но вычисляется не по отношению к должному поглощению кислорода, а по отношению к фактическому.
ВЭ рассчитывается по формуле:ВЭ = МОД/на величину потребления кислорода в литрах.Принципы оценки: чем выше величина ВЭ, тем ниже эффективность дыхания.
Коэффициент резервных возможностей дыхания (КРД) отражает резервные возможности системы внешнего дыхания.КРД = (МВЛ - МОД) х 10 / МВЛ.Принципы оценки : КРД (RHL) ниже 70% указывает на значительную степень снижения функциональных возможностей дыхания.

8. ДИФФУЗИОННАЯ СПОСОБНОСТЬ ЛЕГКИХ (ДЛ) - количество газа, проходящее через альвеол яр но-капилл яр ную мембрану за минуту i расчета на 1 мм рт. ст. разницы парциального давления газа по обе стороны мембраны. Существующие методы определения диффузионной способности легких сложны и трудоемки, Они используются лишь в некоторых специализированных клиниках. Поэтому здесь излагаются только принципы этих методов.
Методы определения. Для определения диффузионной способности легких используются газы, лучше растворимые в крови, чем в альвео-лярно-капиллярныХ мембранах. К таким газам относятся кислород, окись углерода. Поскольку используются небольшие концентрации окиси углерода (0,1-0,2%) и вдыхание газа кратковременно, то применение этого газа для определения диффузионной способности легких безопасно.
Определение диффузионной способности легких с помощью окиси углерода методом одиночного вдоха. Вдыхается газовая смесь: 0,3% СО, 10% гелия, 21% О; в азоте. После 10-секундной задержки дыхания исследуемому предлагается сделать форсированный выдох. Предварительно были определены жизненная емкость и остаточный объем. ДЛ вычисляется по формуле: где ОЕЛ - общая емкость легких; F- исходная альвеолярная концентрация окиси углерода, F -концентрация СО в выдыхаемом газе; --время задержки дыхания в секундах.

Исходная альвеолярная концентрация окиси углерода вычисляется по концентрации гелия в пробе выдыхаемого газа (Fa ,), поскольку гелий нерастворим, его разведение в альвеолярном воздухе равно разведению окиси углерода до начала се поглощения кровью. Это вычисление проводится но формуле:

Газометром определяется концентрация окиси углерода в выдыхаемом воздухе после 10-секундной задержки дыхания.

Определение диффузионной способности легких с п ом ощ ь ю окиси углерода в условиях устойчивого состояния. В течение 15 минут пациент дышит атмосферным воздухом, затем 6 минут вдыхает смесь воздуха с 0,1% окиси углерода (или делает 6 вдохов этой смеси). На 2-й и 6-й минуте измеряется концентрация окиси углерода в выдыхаемом воздухе. Альвеолярное напряжение окиси углерода определяют по пробе альвеолярного газа либо вычисляют, определив предварительно мертвое пространство. Разница количества СО во вдыхаемом и выдыхаемом газе определит количество поглощенной за период исследования окиси углерода. Диффузионная способность для окиси углерода вычисляется по формуле:

где Vco - количество поглощенной окиси углерода в минуту; РАсо~~ напряжение СО в альвеолярном воздухе.

Для получения величины диффузионной способности легких для кислорода полученную величину ДЛС0 умножают на 1,23.

Определение диффузионной способности по кислороду из-за значительной сложности методики распространения не получило. Поэтому описание метода здесь не приводится.

Нормальные величины. Величина диффузионной способности легких зависит от метода исследования, поверхности тела. У женщин она ниже, чем у мужчин. Нижняя граница ДЛ0 в покое составляет примерно 15 мл Ogминмм рт. ст.

Максимальная диффузионная способность легких наблюдается при физической нагрузке. В это время она достигает 60 мл 0.,минмм рт. ст. и более.

Отмечено снижение максимальной диффузионной способности легких с возрастом. Зависимость максимальной диффузионной способности от возраста выражается формулой:

ДЛ0(Макс = 0,67 X рост (в см) -0,55Xвозраст (в годах) -40,9.

Варианты патологии. Нарушения диффузионной способности легких наблюдаются при пневмосклерозс, саркоидозе, силикозе, эмфиземе легких, при митральном стенозе с выраженными застойными явлениями в легких.

При максимальной физической нагрузке фактическая вентиляция легких составляет всего 50% от максимального дыхательного объема. Кроме того, насыщение гемоглобина артериальной крови кислородом происходит даже во время самой тяжелой физической нагрузки. Поэтому дыхательная система не может быть фактором, ограничивающим способность здорового человека переносить физическую нагрузку. Однако для людей в плохой физической форме натренированность дыхательных мышц может стать проблемой. Фактором, ограничивающим способность переносить физическую нагрузку, является способность сердца накачивать кровь к мышцам, которая, в свою очередь, влияет на максимальную скорость переноса 02 Функциональное состояние сердечно-сосудистой системы является распространенной проблемой. Митохондрии в сокращающейся мышце - это конечные потребители кислорода и важнейший определяющий фактор выносливости.
Давление в ротовой полости. Измерение максимального инспираторного и экспираторного давления в ротовой полости - это самое распространенное исследование общей силы инспираторных и экспираторных мышц. Необходимые маневры трудно выполнять некоторым пациентам, поскольку они основываются на максимальной произвольной попытке. Имеются нормальные пределы, но они значительно различаются даже у здоровых субъектов. Минимальная величина нормального предела является следствием легкой слабости или субмаксимальной попытки у здорового субъекта. При нормальном давлении однозначно исключается слабость дыхательных мышц. Давление в полости носа. Инспираторное давление в носовой полости при быстром вдохе носом (шмыганье) основывается на маневре, более простом в исполнении, чем при максимальном инспираторном давлении, и представляет собой точное, простое и неинвазивное определение общей силы инспираторных мышц. Оно в особенности полезно, когда необходимо решить, имеются ли признаки низкого максимального инспираторного давления или же недооценивается сила инспираторных мышц при ХОБЛ, когда передача давления изнутри грудной клетки замедляется. Необходимое для этого исследования оборудование становится все более доступным. Давление во время кашля. Давление или максимальный поток во время кашля помогают определить силу экспираторных мышц. Специальные или инвазивные исследования силы дыхатыльеных мышц Неинвазивные исследования основываются на быстрой передаче давления из грудной клетки в ротовую полость, а также на хорошем понимании, взаимодействии и мотивации пациента определить общую силу инспираторных и экспираторных мышц. При введении катетеров для определения давления в пищевод и желудок можно произвести специальные измерения инспираторного, экспираторного и трансдиафрагмального давления во время быстрого вдоха носом и покашливания. Сочетая инвазивное измерение давления с электрической или магнитной стимуляцией диафрагмального нерва, осуществляют непроизвольное измерение силы диафрагмы. Эти исследования выявляют одностороннюю слабость диафрагмы или поражение диафрагмального нерва, но редко применяются вне специализированных лабораторий. Определение активности дыхательных мышц играет важную роль в понимании того, как легкие вентилируются. Ступенчатый подход к исследованию дыхательных мышц дает представление о прогрессировании различных патологических состояний и о необъяснимых дыхательных симптомах.

9. Влияние физической нагрузки на сердечно-сосудистую систему
Исследования физиологического спортивного сердца (аппарата кровообращения) путей его развития и методов оценки является важной задачей спортивной кардиологии. Правильное и рациональное использование физических упражнений вызывает существенные положительные сдвиги в морфологии и функции сердечно-сосудистой системы. Высокое функциональное состояние физиологического спортивного сердца - это результат долговременной адаптации к регулярным тренировкам. Чтобы понять природу адаптационных изменений, происходящих в физиологическом спортивном сердце, необходимо рассмотреть современные представления об основных закономерностях адаптации организма к физическим нагрузкам. Адаптация индивида - это процесс, позволяющий организму приобретать отсутствующую ранее устойчивость к определенному фактору внешней среды и таким образом получить возможность жить в условиях, считавшихся ранее неразрешимыми (Меерсон Ф.З., 1986). Стадийность процесса адаптации аппарата кровообращения к длительному непрерывному увеличению функции доказана в монографиях Ф.З. Меерсона и его сотрудников (1965-1993). Автор выделил 4 стадии адаптации сердца при его компенсаторной гиперфункции: стадии аварийной, переходной и устойчивой адаптации, четвертая стадия - изнашивания - сопровождается функциональной недостаточностью сердца. При мобилизации функции аппарата кровообращения, вызванной воздействием факторов внешней среды, и в частности воздействием физических нагрузок, столь четкой стадийности процесса адаптации выявить не удается. О стадиях адаптации аппарата кровообращения к физическим нагрузкам можно говорить весьма условно, различая в многолетнем длительном процессе становления спортивного мастерства начальный (точнее, предыдущий) этап срочной адаптации и последующий этап долговременной адаптации.
Срочный этап адаптации
к физическим нагрузкам возникает непосредственно после начала действия физической нагрузки на организм нетренированного человека и реализуется на основе готовых физиологических механизмов. Срочная адаптации включает в себя все механизмы регуляции аппарата кровообращения, которые призваны в условиях выполнения физической нагрузки поддерживать, гомеостаз. Однако выполнение нагрузки лицом неподготовленным не позволяет ему достичь быстроты двигательной реакции и выполнять нагрузку достаточно долго.Срочная адаптационная реакция, как правило, оказывается недостаточно совершенной, чтобы достичь желаемого результата.
Долговременный этап адаптации
наступает постепенно, благодаря достаточному и дробному воздействию адаптогенного фактора, т.е. путем перехода количества в качество. Именно благодаря дробному воздействию на организм физических нагрузок, используемых в современном тренировочном процессе, спортсмену удается добиться высоких спортивных результатов. С другой стороны, для спортсмена, хорошо адаптированного к определенным физическим нагрузкам, этот, уже достигнутый уровень адаптации является исходным для достижения еще более высокого результата
10. Прежде всего это касается вопроса о так называемых особенностях аппарата кровообращения спортсмена и, во-вторых, о триаде признаков, считавшихся характерными для высокого уровня функционального состояния сердечно-сосудистой системы спортсмена и даже оценивавших состояние его тренированности в целом. Речь идет о брадикардии, гипотензии и гипертрофии миокарда. Некоторые авторы называют эти 3 признака «синдромом спортивного сердца» [Кгеmer R., 1974].
Что касается особенностей физиологического «спортивного сердца», то, например, ЭКГ спортсмена, отражающую положительные физиологические сдвиги в сердце, характеризуют синусовая брадикардия, умеренно выраженная синусовая аритмия (при разнице в интервалах R-R от 0,10 до 0,15 с), вертикальная или полувертикальная электрическая позиция сердца, снижение амплитуды зубца Р, большая амплитуда зубцов R и Т, особенно в грудных отведениях, небольшой подъем сегментов ST выше изоэлектрического уровня. При повышении уровня функционального состояния отмечаются существенные положительные сдвиги, в основе которых лежит включение компенсаторно-приспособительных механизмов под влиянием повышения тонуса блуждающего нерва, что проявляется в его отрицательном инотропном и отрицательном хронотропном влиянии.
Физиологические особенности спортивного аппарата кровообращения, описанные Г. Ф. Лангом, нашли полное подтверждение в работах последних лет. Речь идет, например, о меньшем у спортсменов, чем у не занимающихся спортом, минутном объеме кровообращения, необходимом для обеспечения работающих мышц, что обусловлено лучшим использованием кислорода крови на периферии. Особое значение Г. Ф. Ланг придавал улучшению капиллярного кровообращения в сердечной мышце при занятиях физическими упражнениями. К особенностям физиологического «спортивного сердца» Г. Ф. Ланг справедливо относил также способность к увеличению минутного объема кровообращения при физической нагрузке не столько за счет учащения сердечных сокращений, сколько за счет увеличения ударного объема.
Придавая огромное значение особенностям сердечно-сосудистой системы спортсмена, Г. Ф. Ланг справедливо подчеркивал, что в цепи изменений организма в целом, отдельных его систем и органов это - только звено, правда очень важное.
Из краткого перечисления особенностей физиологического «спортивного сердца» становится очевидной невозможность дать их подробный анализ в этой книге.
Что же касается второго вопроса, а именно о трех основных признаках высокого уровня функционального состояния (брадикардия, гипотензия и гипертрофия миокарда), то в свете современных данных это представление требует пересмотра. Эти 3 признака считали, да и сейчас считают, основными признаками тренированности спортсмена.
Прежде всего представляется неправильным говорить о тренированности спортсмена на основании только медицинских данных, ибо тренированность - понятие педагогическое. Тем более не следует говорить о состоянии тренированности какой-либо отдельно взятой системы или органа (в частности, сердечно-сосудистой системы), что, к сожалению, нередко делается. Но основное заключается в том, что, с одной стороны, состояние высокой тренированности не всегда сопровождается всеми этими признаками, а с другой стороны - в ряде случаев эти признаки могут быть проявлением патологических изменений в организме.
Наиболее постоянным и обязательным признаком высокого функционального состояния сердца спортсмена является брадикардия. Действительно, при этом частота сердечных сокращений уменьшается, и резко выраженная брадикардия (ниже 40 уд/мин), которая всегда вызывает сомнения в отношении ее физиологического происхождения, встречается чаще у мастеров спорта и спортсменов I разряда, причем среди мужчин чаще, чем среди женщин. Однако все же, если частота сердечных сокращений у спортсмена меньше 30-40 уд/мин, он обязательно должен быть подвергнут тщательному врачебному обследованию, прежде всего для исключения полной блокады сердца или каких-либо других его поражений.

11. Изменения регуляции системного кровообращения под влиянием физических нагрузок динамического характера полностью укладываются в известные и обсуждавшиеся выше принципы экономизации функции систем в покое и при малых нагрузках и максимальной производительности при выполнении предельных нагрузок.

Г.Ф. Ланг (1936) отмечал отчетливое снижение артериального давления у спортсменов, которое, однако, не выходило за пределы нижних границ нормы. Позднее эти наблюдения были многократно подтверждены многими исследователями (Дембо А.Г., Левин М.Я., 1969; Граевская Н.Д., 1975; Карпман В.Л., Любина Б.Г., 1982).

Влияние систематических тренировок на уровень артериального давления в покое было подробно изучено А. Г. Дембо и М.Я. Левиным (1969). Они доказали, что снижение артериального давления у спортсменов, тренирующих выносливость, встречается тем чаще, чем выше уровень спортивного мастерства, стаж спортивных тренировок, их объем и интенсивность. Последнее обстоятельство подтверждается ростом ги-потензии от подготовительного к соревновательному периоду.

Таким образом, можно утверждать, что регулярные тренировки динамического характера сопровождаются артериальной гипотензией, в основе развития которой лежат адаптивные изменения артериальной сосудистой системы.

Действительно, трудно себе представить увеличение производительности спортивного сердца без увеличения гидравлической проводимости сосудов большого круга кровообращения (Blomgvist С, Saltin В., 1983).

Другим проявлением экономизации функции аппарата кровообращения у спортсменов являются адаптивные изменения скорости кровотока, которая существенно снижается у спортсменов по мере роста тренированности. Это, в свою очередь, создает благоприятные условия для максимального извлечения кислорода из крови в ткани (Яковлев Н.Н., 1974).

Кроме того, в процессе адаптации к физическим нагрузкам динамического характера увеличивается растяжимость артерий, снижается их упругое сопротивление и в конечном счете увеличивается емкость артериального русла. Таким образом, снижение констрикторного тонуса сосудов облегчает движение крови и способствует снижению энергетических затрат сердца.

Снижение тонуса стенок артерий, возникающее под воздействием регулярных тренировок, прежде всего на выносливость, проявляется уменьшением скорости распространения пульсовой волны (СРПВ). Интенсивность кровотока через конечности у этих спортсменов также снижена. Показано, что при стандартной физической нагрузке приток крови к работающим мышцам спортсменов меньше, чем у нетренированных лиц (Озолинь П.П., 1984).

Все эти данные подтверждают представление об экономизации функции сосудистой системы в состоянии покоя. Механизмы описанных выше изменений сосудистого тонуса при систематических тренировках в настоящее время не вполне ясны. Трудно допустить, что первоосновой снижения тонуса сосудов в состоянии покоя у спортсменов является снижение метаболической активности мышечной ткани. Этому противоречит выявляемое у спортсменов существенное повышение артериовенознои разницы по кислороду по сравнению с нетренированными лицами (Васильева В.Д., 1971; Ekblom В. et al., 1968).

Эти данные скорее указывают, что при систематических тренировках увеличивается способность мышц использовать кислород. По современным представлениям, в совершенствовании регуляции сосудов резистивного типа участвуют три вида механизмов: гуморальный, местный и рефлекторный (Озолинь П.П., 1984).

Хотя гуморальные механизмы повышения сосудистого тонуса, несомненно, принимают участие в реакции артерий на нагрузку, их роль в регуляции сосудистого тонуса не является ведущей. В ряде исследований выявлено, что регулярные тренировки динамического характера существенно снижают уровень катехоламинов крови в ответ на тестирующую нагрузку. Это дает основание полагать, что реакцию сосудов определяет не уровень катехоламинов крови, а высокая чувствительность нервных приборов сосудистой стенки.

Местные сосудистые реакции также активно участвуют в регуляции кровотока, но центральное место в регуляции сосудистого тонуса в состоянии покоя принадлежит нервно-рефлекторным механизмам регуляции.

Результаты исследований В. Saltin и соавт. (1977) свидетельствуют, что мобилизация функции сердечно-сосудистой системы при физических нагрузках осуществляется рефлекторно при помощи сигналов, исходящих из рецепторов работающих мышц. Эти рефлекторные реакции претерпевают существенные изменения под воздействием систематических физических нагрузок. Авторы высказывают вполне обоснованное предположение, что сердечно-сосудистые рефлексы, совершенствующиеся при регулярных тренировках, формируются благодаря возбуждению хеморецепторов скелетных мышц.

В заключение следует подчеркнуть, что ведущую роль в изменении сосудистых реакций под влиянием систематических физических нагрузок играют рефлекторные механизмы, поскольку только они способны обеспечить тонкое взаимодействие различных систем жизнеобеспечения и точную регуляцию регионарного кровотока в различных областях.

При физических нагрузках статического характера, описанных выше, адаптационных изменений сосудистого тонуса не происходит. Напротив, при тренировках, направленных на развитие силы, интенсивность кровотока в состоянии покоя повышается (Озолинь П.П., 1984). У штангистов, как известно, отмечается наклонность к повышению артериального давления (Вольнов Н.И., 1958; Дембо А.Г., Левин М.Я., 1969; Матиашвили К.И., 1971).

Г.Ф. Ланг считал улучшение капиллярного кровотока в мышцах главным фактором, обеспечивающим лучшее использование кислорода. Что касается сердечной мышцы, то увеличение капиллярного кровотока, по мнению Г.Ф. Ланга, является непременным условием успешной адаптации к физическим нагрузкам. Сегодня факт увеличения пропускной способности коронарного русла и его емкости в результате адаптации к физическим нагрузкам полностью подтвержден и не вызывает сомнений (Пшенникова М.Г. 1986).

В путях адаптации аппарата кровообращения к повторяющимся нагрузкам того или иного характера имеются существенные различия. Если иметь в виду выполнение упражнений динамического или статического характера с вовлечением в работу больших групп мышц, то различия гемодинамического ответа обнаруживаются при однократных нагрузках, т.е. на стадии срочных адаптационных реакций.

Величина ударного объема (УО) возрастает линейно лишь до 1/3 от МПК, далее прирост величины УО незначителен. Однако МОК растет линейно до достижения уровня МПК в основном за счет роста ЧСС.

Определение предельно допустимой ЧСС, в зависимости от возраста, можно рассчитать по формуле R.Marshall &J.Shepherd (1968):ЧССмакс = 220 - Т (уд/мин).

Скорость нарастания величины УО существенно выше скорости роста ЧСС. В результате УО приближается к своему максимальному значению при VO 2 , равному примерно 40% от МПК и ЧСС около ПО уд/мин. Рост УО во время выполнения физической нагрузки обеспечивается благодаря взаимодействию ряда вышеописанных регуляторных механизмов. Так, при увеличении нагрузки под влиянием возрастающего венозного возврата, наполнение желудочков сердца увеличивается, что в сочетании с ростом растяжимости миокарда приводит к увеличению конечно-диастолического объема. Это, в свою очередь, означает возможность увеличения УО крови за счет мобилизации базального резервного объема желудочков. Увеличение сократительной способности сердечной мышцы сопряжено также с ростом ЧСС. Другим механизмом мобилизации базального резервного объема является нейрогуморальный механизм, регулирующийся через воздействие на миокард катехоламинов.

Реализация перечисленных механизмов срочной адаптации происходит через систему внутриклеточной регуляции процессов, протекающих в миокарди-оцитах, к которым относятся их возбуждение, сопряжение возбуждения и сокращения, расслабление миокардиальных клеток, а также их энергетическое и структурное обеспечение. Само собой разумеется, что в процессе срочных адаптационных реакций на физические нагрузки происходит интенсификация всех перечисленных выше процессов жизнедеятельности миокардиальных клеток, во многом определяется характером нагрузки.

Учитывая особенности гемодинамического ответа на динамическую нагрузку, полагают, что среди кардиальных механизмов увеличение УО ведущую роль играет увеличение скорости расслабления миокарда и связанное с ней совершенствование транспорта Са 2+ . При выполнении физических нагрузок динамического характера в ответ на изменение сердечного выброса и сосудистого тонуса отмечается подъем артериального давления. Прямое измерение артериального давления с помощью катетеров, введенных в плечевую и бедренную артерии молодых здоровых людей, занимающихся различными видами спорта, показало, что при нагрузках в 150-200 Вт систолическое давление повышалось до 170-200 мм.рт.ст., в то время как диастолическое и среднее давление изменялись весьма незначительно (5-10 мм.рт.ст.). При этом закономерно падает периферическое сопротивление, снижение его является одним из самых важных экстракардиальных механизмов срочной адаптации к динамическим нагрузкам.

Другим таким механизмом является увеличение использования кислорода из единицы объема крови. Доказательством включения этого механизма является изменение артериовенозной разницы по кислороду при нагрузке. Так, по расчетам В.В. Васильевой и Н.А. Степочкиной (1986), в состоянии покоя венозная кровь уносит за 1 мин примерно 720 мл неиспользованного кислорода, в то время как на высоте максимальной физической нагрузки в оттекающей от мышц венозной крови кислорода практически не содержится (Bevegard В., Shephard J., 1967).

При динамических нагрузках наряду с повышением сердечного выброса увеличивается сосудистый тонус. Последний характеризуется скоростью распространения пульсовой волны, которая, по данным многих исследователей, при физических нагрузках существенно повышается в сосудах эластического и мышечного типа (Смирнов К.М., 1969; Васильева В.В., 1971; Озолинь П.П., 1984).

Наряду с этими общими сосудистыми реакциями в ответ на такую нагрузку может существенно изменяться региональный кровоток, как показала В.В. Васильева (1971), происходит перераспределение крови между работающими и неработающими органами.

Небольшое увеличение МОК, наблюдающееся при статических нагрузках, достигается не увеличением УО, а ростом ЧСС. В отличие от реакции аппарата кровообращения на динамическую нагрузку, при которой отмечается увеличение АДс при сохранении исходного уровня, при статической АДс повышается незначительно, а АДд существенно. При этом периферическое сопротивление сосудов не снижается, как это имеет место при динамических нагрузках, а остается практически неизмененным. Таким образом, наиболее существенным отличием в реакции аппарата кровообращения на статические нагрузки является выраженный подъем АДд, т.е. увеличение постнагрузки. Это, как известно, существенно повышает напряжение миокарда и, в свою очередь, определяет включение тех механизмов долговременной адаптации, которые обеспечивают адекватное кровоснабжение тканей в этих условиях.

12. Сопоставление работоспособности (выполненной в тесте нагрузки) и приспособляемости (реакции), т.е. цены данной работы, достаточно полно характеризует функциональную подготовленность и состояние обследуемого. Даже высокая работоспособность при чрезмерном напряжении гемодинамики, выраженном метаболическом ацидозе, невысоком МПК и кислородном пульсе менее 20 мл на удар либо высоких показателях МПК при небольшом кислородном пульсе, инверсии зубцов Т либо появлении высоких (более 6-8 мм) остроконечных зубцов, снижении сегмента более чем на 1,5 мм (особенно восходящей или корытообразной формы), снижении или резком возрастании вольтажа зубцов R, появлении различных видов нарушения ритма, особенно политопных и групповых экстрасистол, дискоординации функций свидетельствует о функциональном неблагополучии.

Неблагоприятными признаками надо также считать снижение содержания гемоглобина и эритроцитов при уменьшении средней гемоглобинизации эритроцитов, гиперлейкоцитоз с выраженным сдвигом лейкоцитарной формулы влево, падение концентрации лимфоцитов и эозинофилов, а также идентичные изменения при нарастающей лейкопении, продолжительное после нагрузки изолированное повышение гематокрита или снижение количества гемоглобина на фоне повышения числа ретикулоцитов, выраженное снижение содержания белка в крови (Макарова Г.А., 1990), резкие изменения минерального обмена, в частности падение содержания ионов калия, натрия, фосфатидов (Виру А.А. и др., 1963; Лайцберг Л.А., Калугина Г.Е., 1969; Воробьев А.В., Воробьева Э.И., 1980; Финогенов B.C., 1987, и др.), некомпенсированный метаболический ацидоз (рН в пределах 7-7,1), появление в моче белка (более 0,066 г/л) и форменных элементов, выраженное снижение ее плотности, ухудшение функции ЦНС и нервно-мышечного аппарата. Особенно неблагоприятны чрезмерное напряжение (в том числе дискоординация) функций и замедленное восстановление их при невысоких показателях работоспособности. Высокая работоспособность даже при значительной (но адекватной) реакции гемодинамики, обмена и симпатоадреналового звена регуляции при нормальном течении процессов восстановления указывает на высокие функциональные возможности и способность организма к их мобилизации при предъявлении максимальных требований. Например, у высокотренированного бегуна на длинные дистанции при предельной мощности работы 2650 кгм/мин (310 кгм/кг) и МПК 78 л/кг ЧСС достигала 210 уд/мин, систолическое артериальное давление - 220 мм.рт.ст. при нулевом диастолическом, систолический объем увеличивался до 180 м, минутный - до 36 л/мин, наблюдались выраженные сдвиги на ПКГ и ЭКГ, но без нарушения ритма и деформации конечной части кривой, кислородный долг составлял 15 л, но уже к 2-й минуте после нагрузки в основном погашался, значительная часть лактата утилизировалась, гемодинамические сдвиги восстановились в пределах 25 мин. Существенной можно считать экономизацию кислородного пульса на субкритичном уровне.Эффективность и устойчивость системы внешнего дыхания при максимальных нагрузках проявляются высокой аэробной мощностью: МПК 5-6 л/мин (70-80 мл/кг), минутный объем дыхания - 70-80 л, кислородный пульс - 25-30 мл на удар, высокий и устойчивый коэффициент использования кислорода и выделения СО2.

13. Функциональная проба - это нагрузка, задаваемая обследуемому для определения функционального состояния и возможностей какого-либо органа, системы или организма в целом. Используется преимущественно при спортивно-медицинских исследованиях. Нередко термин «функциональная проба с физической нагрузкой» заменяется термином «тестирование». Однако, хотя «проба» и «тест» - это, по существу, синонимы (от англ. teste - проба), все же «тест» - термин в большей степени педагогический и психологический, ибо подразумевает определение работоспособности, уровня развития физических качеств, особенностей личности. Физическая работоспособность тесно связана с путями ее обеспечения, т.е. с реакцией организма на данную работу, но для педагога в процессе тестирования ее определение не обязательно. Для врача же реакция организма на данную работу - показатель функционального состояния. Даже высокие показатели работоспособности при чрезмерном напряжении (а тем более срыве) адаптации не позволяют высоко оценить функциональное состояние обследуемого.

структуре движения мощности работы обследуемого - специфические неспецифические используемой аппаратуре («простые и сложные»), по («рабочие») («послерабочие») и т.п.

14. Для того чтобы функциональные пробы с физическими нагрузками обеспечивали достаточную информативность при динамических исследованиях, они должны соответствовать следующим требованиям:

Заданная нагрузка должна быть знакома обследуемому и не требовать дополнительного освоения навыка;

Вызывать общее, а не локальное утомление;

Исключать возможность риска, болезненных ощущений, негативного отношения.

Должна быть обеспечена одинаковая модель нагрузок, одинаковые внешние условия, режим дня, время суток, время приема пищи, исключение применения больших нагрузок в день и накануне обследования, исключение каких-либо заболеваний и жалоб, общего переутомления, приема каких-либо лекарственных и восстановительных средств.

При трактовке полученных данных следует учитывать:

Сопоставление работоспособности и адаптации;

Соответствие реакции выполненной работы;

Индивидуальную оценку полученных данных.

Диагностика тренированности (функциональный ее компонент) в годовом и многолетнем циклах подготовки обусловлена календарем соревнований, здоровьем и уровнем спортивного мастерства. При правильной системе подготовки уровень тренированности постепенно повышается, достигая наивысшего к периоду основных соревнований, затем постепенно снижается. Может быть (в зависимости от значимости соревнований и сроков их проведения) несколько периодов спортивной формы в течение сезона.

15. Классификация функциональных проб
В практике спортивной медицины используются различные функциональные пробы - с переменой положения тела в пространстве, задержкой дыхания на вдохе и выдохе, натуживанием, изменением барометрических условий, пищевыми и фармакологическими нагрузками и др. Но в данном разделе мы коснемся лишь основных проб с физическими нагрузками, обязательных при обследовании занимающихся физическими упражнениями. Эти пробы часто называют пробами сердечно-сосудистой системы, поскольку главным образом используются методы исследования кровообращения и дыхания (частота сердечных сокращений, артериальное давление и пр.), но это не совсем правильно, эти пробы следует рассматривать шире, поскольку они отражают функциональное состояние всего организма.

Классифицировать их можно по разным признакам: по структуре движения (приседания, бег, педалирование и пр.), по мощности работы (умеренная, субмаксимальная, максимальная), по кратности, темпу, сочетанию нагрузок (одно- и двухмоментные, комбинированные, с равномерной и переменной нагрузкой, нагрузкой нарастающей мощности), по соответствию нагрузки направленности двигательной деятельности обследуемого - специфические (например, бег для бегуна, педалирование для велосипедиста, бой с тенью для боксера и т. п.) и неспецифические (с одинаковой нагрузкой при всех видах двигательной деятельности), по используемой аппаратуре («простые и сложные»), по возможности определять функциональные сдвиги во время нагрузки («рабочие») или только в восстановительном периоде («послерабочие») и т.п.

Идеальная проба характеризуется: 1) соответствием заданной работы привычному характеру двигательной деятельности обследуемого и тем, что не требуется освоения специальных навыков; 2) достаточной нагрузкой, вызывающей преимущественно общее, а не локальное утомление, возможностью количественного учета выполненной работы, регистрации «рабочих» и «послерабочих» сдвигов; 3) возможностью применения в динамике без большой затраты времени и большого количества персонала; 4) отсутствием негативного отношения и отрицательных эмоций обследуемого; 5) отсутствием риска и болезненных ощущений.

Для сравнения результатов исследования в динамике важны: 1) стабильность и воспроизводимость (близкие показатели при повторных измерениях, если функциональное состояние обследуемого и условия обследования остаются без существенных изменений); 2) объективность (одинаковые или близкие показатели, полученные разными исследователями); 3) информативность (корреляция с истинной работоспособностью и оценкой функционального состояния в естественных условиях).

Преимущество имеют пробы с достаточной нагрузкой и количественной характеристикой выполненной работы, возможностью фиксации «рабочих» и «послерабочих» сдвигов, позволяющие охарактеризовать аэробную (отражающую транспорт кислорода) и анаэробную (способность работать в бескислородном режиме, т.е. устойчивость к гипоксии) производительность.

Противопоказанием к тестированию является любое острое, подострое заболевание либо обострение хронического, повышение температуры тела, тяжелое общее состояние.

С целью увеличения точности исследования, уменьшения доли субъективизма в оценках, возможности использования проб при массовых обследованиях важно применять современную вычислительную технику с автоматическим анализом результатов.

Для того чтобы результаты были сравнимы при динамическом наблюдении (для слежения за изменениями функционального состояния в процессе тренировки или реабилитации), необходимы одинаковые характер и модель нагрузки, одинаковые (или весьма близкие) условия внешней среды, времени суток, режима дня (сон, питание, физические нагрузки, степень общего утомления и т.п.), предварительный (до исследования) отдых не менее 30 мин, исключение дополнительных воздействий на обследуемого (интеркуррентные заболевания, прием медикаментов, нарушения режима, перевозбуждение и др.). Перечисленные условия полностью относятся и к обследованию в условиях относительного мышечного покоя.

16.Оценить реакцию испытуемого на нагрузку можно по показателям, отражающим состояние различных физиологических систем. Обязательным является определение вегетативных показателей, поскольку изменение функционального состояния организма больше отражается на менее устойчивом звене моторного акта - вегетативном его обеспечении. Как показали наши специальные исследования, вегетативные показатели при физических нагрузках менее дифференцированы в зависимости от направленности двигательной деятельности и уровня мастерства и больше обусловлены функциональным состоянием к моменту обследования. В первую очередь это относится к сердечнососудистой системе, деятельность которой теснейшим образом связана со всеми функциональными звеньями организма, во многом определяя его жизнедеятельность и механизмы адаптации, и поэтому в значительной степени отражает функциональное состояние организма в целом. Видимо, в связи с этим методы исследования кровообращения в клинике и спортивной медицине разработаны наиболее подробно и широко используются при любом обследовании занимающихся. При пробах с субмаксимальными и максимальными нагрузками на основании данных о газообмене и биохимических показателях оцениваются также обмен, аэробная и анаэробная работоспособность.

При выборе метода исследования определенное значение имеет направленность двигательной деятельности занимающегося и его преимущественное влияние на то или иное функциональное звено организма. Например, при тренировке, характеризующейся преимущественным проявлением выносливости, кроме исследования сердечно-сосудистой системы, обязательно определение показателей, отражающих функцию дыхания, кислородный обмен и состояние внутренней среды организма, при сложнотехнических и координационных видах спорта - состояние центральной нервной системы и анализаторов, при скоростно-силовых видах, а также в процессе реабилитации после травм и заболеваний опорно-двигательного аппарата, после заболеваний сердца - показателей кровоснабжения и сократительной способности миокарда и т.д.

Определение до и после нагрузки частоты и ритма сердечных сокращений, артериального давления, снятие ЭКГ обязательны во всех случаях . Получившую в последнее время широкое распространение (особенно при физиологических и спортивно-педагогических исслдованиях) оценку реакции на нагрузку только по пульсовой ее стоимости (например, в классическом варианте степ-теста и пробы PWC-170) нельзя признать достаточной, поскольку одна и та же ЧСС может отражать разное функциональное состояние обследуемого, например хорошее при сопряженных и неблагоприятное при разнонаправленных изменениях ЧСС и артериального давления. Одновременно с подсчетом пульса измерение артериального давления позволяет судить о взаимосвязи разных компонентов реакции, т.е. о регуляции кровообращения, а электрокардиография - о состоянии миокарда, в наибольшей степени страдающего при чрезмерной нагрузке.

Улучшение функционального состояния проявляется экономизацией реакции при стандартных нагрузках умереной интенсивности: кислородный запрос удовлетворяется при меньшем напряжении обеспечивающих систем, главным образом кровообращения и дыхания. При предельных, выполняемых до отказа нагрузках более тренированный организм способен к большей мобилизации функций, что и обусловливает способность выполнить эту нагрузку, т.е. более высокую работоспособность. При этом сдвиги в дыхании, кровообращении, внутренней среде организма могут быть весьма значительными. Однако способность к максимальной мобилизации функций тренированного организма, установленная еще B.C. Фарфелем в 1949 г., благодаря совершенной регуляции используется рационально - лишь тогда, когда предъявленные требования действительно являются максимальными. Во всех остальных случаях действует основной защитный механизм саморегуляции - тенденция к меньшему отклонению от физиологического равновесия при более целесообразной взаимосвязи сдвигов. С улучшением функционального состояния развивается способность к правильному функционированию в широком диапазоне временного изменения гомеостаза: между экономизацией и максимальной мобилизационной готовностью существует диалектическое единство.

Таким образом, при оценке реакции на физическую нагрузку решающим фактором должна быть не величина сдвигов (конечно, при условии, что они находятся в пределах допустимых физиологических колебаний), а их соотношение и соответствие выполненной работе . Совершенствование условно-рефлекторных связей, установление согласованной работы органов и систем, усиление взаимосвязей между разными звеньями функциональной системы (главным образом двигательных и вегетативных функций) при физических нагрузках - важный критерий оценки реакций.

Функциональный резерв организма тем выше, чем меньше при нагрузке степень напряжения регуляторных механизмов, чем выше экономичность и стабильность функционирования эффекторных органов и физиологических систем организма при определенных (заданных) действиях и чем выше уровень функционирования при экстремальных воздействиях.

П.Е. Гуминер и Р.Е. Мотылянекая (1979) различают три варианта регулирования: 1) относительную стабильность функций в большом диапазоне мощности, что отражает хорошее функциональное состояние, высокий уровень функциональных возможностей организма; 2) снижение показателей при повышении мощности работы, что указывает на ухудшение качества регулирования; 3) повышение сдвигов при увеличении мощности, что свидетельствует о мобилизации резервов в затрудненных условиях.

Важнейший и почти абсолютный показатель при оценке адаптации к нагрузке и тренированности - быстрота восстановления . Даже очень большие сдвиги при быстром восстановлении не могут оцениваться отрицательно.

Применяемые при врачебном обследовании функциональные пробы можно условно разделить на простые и сложные. К простым относятся пробы, выполнение которых не требует специальных приспособлений и большой затраты времени, поэтому применение их доступно в любых условиях (приседания, прыжки, бег на месте). Сложные пробы выполняются с помощью специальных приспособлений и аппаратов (велоэргометр, третбан, гребной станок и пр.).

Проба Штанге.После обычного вдоха обследуемый задерживает дыхание, зажав нос пальцами.Длительность задержки дыхания зависит от возраста и колеблется у здоровых детей в возрасте от 6 до 18 лет в пределах 16-55с.

Проба Генчи.Обследуемый задерживает дыхание на выдохе,зажав нос пальцами.У здоровых школьников время задержки 12-13 с.Затем предлагается дозированная ходьба (44м в течение 30с) и вновь-задержка на выходе.У здоровых школьников время задержки дыхания уменьшается не более чнм на 50%.

Помимо указанных функциональных проб,широко распространены и другие,не дифферен цированные в возростном аспекте.

В.Н. Кардашенко, Л.П. Кондакова-Варламова, М.В. Прохорова, Е.П. Стромская, З.Ф. Степанова(96б)

29.Иучение питания организованных коллективов .
Изучение питания организованных коллективов можно осуществлять балансовым методом, проводя анализ ежемесячных и годовых отчетов о расходе продуктов питания. На основании этих отчетов устанавливают потребление продуктов питания на одного человека в день. Далее по данным потребления рассчитывают химический состав и питательную ценность рациона.
Изучения питания по меню-раскладкам осуществляется в детских и подростковых коллективах, обеспеченных круглосуточным питанием.

«Руководство к лабораторным занятиям по гигиене детей и подростков»

В.Н. Кардашенко, Л.П. Кондакова-Варламова, М.В. Прохорова, Е.П. Стромская, З.Ф. Степанова(105б)

31. Лабораторные методы изучения рационов питания детей и подростков в организованных коллективах. Углубленное изучение питания проводят лабораторным методом, при котором в определенные сроки, например в течение 10 дней в каждом сезоне, ежедневно исследуют пищу суточного рациона с определением основных показателей пищевой и биологической ценности. Этот метод изучения питания достаточно точный, наиболее достоверно отражающий истинное качество питания изучаемого детского коллектива. Рекомендуется следующий способ суточного отбора пробы: -порционные блюда отбирают в полном объеме, салаты, первые и третье блюда, гарниры не менее 100г; -пробу отбирают из котла (с линии раздачи) стерильными (или прокипяченными) ложками в промаркированную стерильную (или прокипяченными) стеклянную посуду с плотно закрывающимися стеклянными или металлическими крышками. Пробы сохраняют не менее 48ч (не считая выходных и праздничных дней) в специальном холодильнике или в специально отведенном месте в холодильнике при температуре +2….+6С. Особого внимания заслуживает лабораторный контроль за витаминизацией готовых блюд и пищевых продуктов массового потребления.

Функциональные пробы сердечно-сосудистой системы

Пульс - исключительно важный показатель. Подсчет частоты пульса и оценка его качества отражают деятельность сердечнососудистой системы. Пульс здорового нетренированного мужчины в состоянии покоя - 70-75 ударов в минуту, женщины - 75-80. Чаще всего пульс определяют нащупыванием тремя пальцами у основания кистей рук снаружи над лучевой костью (лучевая артерия), на основании височных костей (височная артерия), сонной артерии и в области сердечного толчка. Обычно пульс подсчитывают в течение 6 или 10 с и умножают соответственно на 10 и 6. При физической нагрузке здоровому человеку не рекомендуется превышать максимального числа сердечных сокращений ЧСС, рассчитываемого по следующей формуле: ЧСС макс. = 220 - возраст человека. У тренированных людей в состоянии покоя пульс реже.

Артериальное давление (АД) - один из важных практических показателей функционального состояния сердечно-сосудистой системы. Артериальное давление позволяет выявлять сдвиги, которые хорошо отражают приспособляемость организма к физическим нагрузкам. По изменениям АД судят о величине нагрузки и реакции на нее сердечно-сосудистой системы. Величина артериального давления определяется соотношением между сердечным выбросом и сопротивлением кровотоку, оказываемом на уровне артериол. АД измеряется с помощью ртутного или мембранного манометра, оно колеблется в зависимости от фаз сердечного цикла. В период систолы оно повышается (СД - систолическое, МАХ), в период диастолы - снижается (ДД - диастолическое, MIN). У здоровых людей в возрасте от 20 до 40 лет уровень СД колеблется в пределах 110-125, ДД - 60-75 мм. рт.ст. Взаимосвязь артериального давления и возраста выражается уравнением:

Для лиц от 7 до 20 лет: систолическое АД = 1,7 х возраст + 83; диастолическое АД = 1,6 х возраст + 42.

Для лиц от 20 до 80 лет: систолическое АД = 0,4 х возраст + 109; диастолическое ДА = 0,3 х возраст + 67.

Функциональная проба с приседанием (проба Мартинэ). Подсчитывается частота пульса в покое. После 20 глубоких приседаний (ноги на ширине плеч, руки вытянуты вперед), которые нужно проделать в течение 30 с, определяется процент учащения пульса от исходного. О восстановлении пульса по критериям: при хорошем функциональном состоянии сердечно-сосудистой системы пульс восстанавливается в течение 2-3 мин, артериальное давление (АД) - к концу 3-4- й мин. Нормальной реакцией на пробу 20 приседаний считается: хорошее на 25 %, удовлетворительное 50-75 %, неудовлетворительное - более чем 75 % .

Комбинированная проба Летунова. Определяется адаптация организма к скоростной работе и работе на выносливость. Данная проба состоит из 20 приседаний за 30 с, 15-секундного бега на месте в быстром темпе и 3-минутного бега на месте в темпе 180 шагов в минуту. Информация о пробе Летунова оценивается путем анализа характера изменения частоты пульса и артериального давления в восстановительном периоде. Оценка результатов ведется путем изучения типов реакций (нормотонический, гипертонический, астенический, дистонический).

Чтобы дать оценку восстановительного периода после физических нагрузок, необходимо провести анализ восстановительного периода по двум параметрам: по времени и характеру восстановительного пульса и артериальному давлению. Длительность восстановительного периода зависит от величины нагрузки, активности занимающегося при выполнении работы, функционального состояния и состояния нервной регуляции сердечно-сосудистой системы.

Ортостатическая проба - анализ реакции сердечно-сосудистой системы при изменении положения тела из горизонтального в вертикальное. При изменении положения тела происходит перераспределение крови. Это вызывает рефлекторную реакцию в системе регуляции кровообращения, обеспечивающую нормальное кровоснабжение органов, особенно головного мозга. Реакцией на ортостатическую пробу является учащение пульса при переходе из положения лежа в вертикальное. В положении лежа подсчитывается пульс, затем испытуемый спокойно встает и стоя производит измерения пульса сразу после изменения положения тела и через 1, 3, 5 мин. Переносимость пробы считается хорошей при учащении пульса не более чем на 11 ударов, удовлетворительной 12-18 ударов и неудовлетворительной - 19 и более ударов.

Клиностатическая проба - обратная ортостатической. Основана на урежении пульса при переходе из положения стоя в положение лежа. Если количество ударов уменьшилось на 4-6, пульс в норме; больше - выраженное замедление, повышен тонус нервной системы.

Для самоконтроля за функциональным состоянием дыхательной системы можно рекомендовать следующие пробы.

Одним из показателей тренированности является показатель жизненной емкости легких (ЖЕЛ), отражающий функциональные возможности системы дыхания. Измеряется с помощью сухого или водяного спирометра. Величина ЖЕЛ в среднем у юношей равна 3,8-4,5 л, а у девушек 2,5-3,2 л. Должную величину (ЖЕЛ) можно подсчитать по формуле:

юноши ДЖЕЛ = (40 х рост, см, + 30 х вес, кг) - 4 400;

девушки ДЖЕЛ = (40 х рост, см, + 10 х вес, кг) - 3 800.

Проба Штанге - задержка дыхания на вдохе. После 5-7 мин отдыха в положении сидя следует сделать полный вдох и выдох, затем снова вдох и задержка дыхания. Продолжительность задержки дыхания в большей степени зависит от волевых усилий человека. Результат можно оценить по 3-балльной системе: с задержкой дыхания менее 34 с неудовлетворительно; 35-39 с - удовлетворительно; свыше 40 с - хорошо.

Проба Генчи - задержка дыхания на выдохе. После полного выдоха и вдоха снова выдыхают и задерживают дыхание. Нетренированные люди способны задержать дыхание на 25-30 с, а занимающиеся физической культурой - 40-60 с. Результат можно подсчитать по 5-балльной системе: 50-60 с - отлично; 39-45 - хорошо; 20-34 - удовлетворительно; 10-19 - плохо; до 10 - очень плохо.

Физическая работоспособность является специальным понятием спортивной медицины и физиологии спорта и является методом объективной оценки функционального состояния и тренированности спортсменов. Физическая работоспособность пропорциональна тому количеству механической работы, которую спортсмен способен выполнять длительное время и с достаточно высокой интенсивностью. Оценка работоспособности может быть дана с помощью различных методических приемов (тестов).

ИГСТ - с его помощью оцениваются восстановительные процессы после дозированной мышечной работы. Во время тестирования испытуемый поднимается на ступеньку, высота которой подбирается соответственно возрасту и полу, и спускается с нее в темпе 30 раз в минуту в течение заданного времени. Высота ступеньки для мужчин 50,8 сантиметров, для женщин - 43 сантиметра. Время восхождения - 5 мин. При выполнении теста руки совершают те же движения, что и при ходьбе. Один цикл движений (подъем и спуск) совершается на 4 счета. Сразу после выполнения теста обследуемый садится, и у него трижды определяется ЧСС по 30-секундным отрезкам: первый раз спустя минуту в восстановительном периоде (до 1 мин 30 с), второй раз на 3-й минуте (от 2 мин до 2 мин 30 с), третий - на 4-й минуте (от 3 мин до 3 мин 30 с восстановительного периода). Расчет степ-теста (ИГСТ) осуществляется по формуле

где t - время выполнения пробы; - частота пульса за 30 с на

второй, третьей и четвертой минутах (уд/мин).

При величине ИГСТ ниже 54 физическая работоспособность оценивается как очень плохая; 54-64 - плохая; 65-79 - средняя; 80-89 - хорошая; 90 и выше - отличная. Тест представляет собой значительную физическую нагрузку. Поэтому его можно проводить лишь после медицинского осмотра, чтобы исключить лиц с выраженными проявлениями заболеваний сердца, сосудов и органов дыхания.

Двенадцатиминутный тест Купера рассчитан на определение возможностей обследуемого человека в упражнениях на выносливость. Во время выполнения теста нужно преодолеть (пробежать или пройти) как можно большее расстояние. По степени физической подготовленности занимающиеся делятся на 5 категорий по возрасту (табл. 3, 4).

Двенадцатиминутный тест для мужчин

Таблица 3

Двенадцатиминутный тесг для женщин

Таблица 4

Стремление к красоте, улучшению своей внешности вполне естественно для человека. Красивая осанка и хорошее телосложение - главные слагаемые привлекательности. Для определения телосложения используют ряд методик и тестов. Каждый человек имеет свой тип телосложения. Различают три основных типа: астенический, нормостенический, гиперстенический. Наиболее просто можно определить тип телосложения, измерив окружность запястья рабочей руки: астенический тип - меньше 16 см; нормостенический - 16-18,5 см; гиперстенический - более 18,5 см.

По росту:

низкий - 150 см и ниже; ниже среднего - 151-156 см; средний - 157-167 см; высокий - 168-175 см; очень высокий - 175 см и выше.

Весоростовой индекс Кетле определяет, сколько граммов веса должно приходиться на сантиметр роста. Для определения этого индекса нужно вес обследуемого в граммах разделить на рост в сантиметрах. Для юношей эта величина равна 350-400 г, для девушек 325-375 г на один см роста (длины тела).

Индекс Ливии отражает пропорциональность развития грудной клетки.

/ = / L) ? 100, где I - индекс Ливии; Т - окружность груди в паузе; L - длина тела (рост, см). Средний показатель для мужчин +5,8 см, для женщин +3,3 см.

Индекс Пинье (показатель крепости телосложения)Х= Р - (В + О), где Р - рост, см; В - масса тела, кг; О - окружность груди на фазе выдоха, см.

Величина оценивается по шкале: меньше 10 - крепкое телосложение; 10-20 - хорошее; 21-25 - среднее; слабое - 26-35; очень слабое - 36 и более.

Формула Брока - Бругша. Показатель оценки массы тела. У человека ростом 155-165 см вычитаем 100; при росте 165-175 см вычитаем 105; при росте 175-185 см вычитаем ПО.

Формула Купера - определение должной массы тела: юноши [(Рост, см х 1,57) -128] : 2,2; девушки [(Рост, см х 1,37) - 108] : 2,2.

Методика Анохина. Для подсчетов должных показателей по данной методике для девушек необходимо знать рост, а для юношей - окружность таза. Эти величины умножают на коэффициенты (табл. 5) и определяют окружность отдельных частей тела.

Таблица 5

Подсчет должных показателей по методике Анохина

Гибкость - это способность к выполнению движений с большой амплитудой в различных суставах. Гибкость - важное свойство опорно-двигательного аппарата. Она зависит от факторов эластичности мышц и связок, внешней температуры, времени суток. Тестирование можно проводить после соответствующей разминки.

Для определения подвижности позвоночника необходимо встать на табурет или стул и наклониться вперед (не сгибая ног в коленях), опустив руки. Измеряется расстояние от конца среднего пальца кисти до площадки. Если испытуемый достает пальцами до площадки, считается удовлетворительная подвижность. Если пальцы будут ниже нулевой отметки, подвижность хорошая и ставится знак «плюс». Если пальцы не достают горизонтальной плоскости, то подвижность позвоночника оценивается как недостаточная, в этом случае ставится знак «минус».

Тест для мышц спины и задней поверхности - не сгибая коленей, достать пол: отлично - ладонью; хорошо - фалангами пальцев; удовлетворительно - кончиками пальцев.

Тест для плечевого пояса - одна рука над плечом, другая - согнута за спиной: отлично - соединить руки ладонями; хорошо - фалангами пальцев; удовлетворительно - кончиками пальцев.

Тест для боковых мышц туловища - наклоны в сторону из положения стоя, руки по швам: отлично - ладонью ниже колена; хорошо - ладонью на уровне колена; удовлетворительно - кончиками пальцев на уровне колена.

Овладение методами самоконтроля помогает человеку вести наблюдение за состоянием здоровья и уровнем работоспособности. Систематическое самонаблюдение приучает студента сознательно относиться к занятиям физической культурой, вести здоровый образ жизни, использовать физические упражнения для укрепления и сохранения здоровья, физического самосовершенствования. Но необходимо знать, что нагрузка обязательно должна соответствовать возможностям и физической подготовленности.

Контрольные вопросы и задания

  • 1. Каковы цели и задачи самоконтроля?
  • 2. Что такое дневник самоконтроля?
  • 3. Перечислите объективные и субъективные показатели самоконтроля.
  • 4. Дайте определение жизненной емкости легких.
  • 5. Назовите оценки функциональной подготовленности по задержке дыхания на вдохе и выдохе.
  • 6. Дайте оценку физической работоспособности по результатам 12-минутного теста Купера.
  • 7. Расскажите о методике оценки гибкости.
  • 8. Назовите методы стандартов, антропометрических индексов, функциональных проб, упражнений-тестов для оценки физического развития и физической подготовленности.

Сердечнососудистая система как фактор спортивной работоспособности

В процессе систематической спортивной
тренировки развиваются функциональные
приспособительные изменения в работе
сердечно-сосудистой
системы,
которые
подкрепляются
морфологической
перестройкой
(«структурный
след»,)
аппарата кровообращения и некоторых
внутренних
органов.
Комплексная
структурно-функциональная
перестройка
сердечно-сосудистой системы обеспечивает
ее
высокую
работоспособность,
позволяющую
спортсмену
выполнять
интенсивные и длительные физические
нагрузки

Наиболее важны для спортсменов структурнофункциональные
изменения
систем
кровообращения и дыхания. Деятельность этих
систем при физической нагрузке строго
координируется нейрогуморальной регуляцией,
благодаря чему функционирует, по существу,
единая система транспорта кислорода в
организме, которую обозначают еще как
кардио-респираторную систему. Она включает
в себя аппарат внешнего дыхания, кровь,
сердечно-сосудистую
систему
и
систему
тканевого дыхания. От эффективности работы
кардио-респираторной системы во многом
зависит
уровень
спортивной
работоспособности.
Несмотря на то что внешнее дыхание не
является главным лимитирующим звеном в
комплексе систем, транспортирующих О2, оно
является
ведущим
в
формировании
необходимого кислородного режима организма.

Определение и оценка состояния сердечнососудистой системы спортсменов и физкультурников.

Пульс покоя. Измеряется в положении сидя
при прощупывании височной, сонной, лучевой
артерий или по сердечному толчку. ЧСС в
покое в среднем у мужчин (55–70) уд/мин., у
женщин - (60–75) уд/мин. При частоте свыше
этих
цифр
пульс
считается
учащенным
(тахикардия),
при
меньшей
частоте
-
(брадикардия).
Артериальное
давление.
Различают
максимальное (систолическое) и минимальное
(диастолическое)
давления.
Нормальными
величинами
артериального
давления
для
молодых людей считаются: максимальное от
100 до 129 мм рт. ст., минимальное - от 60 до
79 мм рт. ст. Артериальное давление выше
нормы
называется
гипертоническим
состоянием, ниже - гипотоническим.

Определение должных величин АД по формулам:
ДСАД= 102+0,6 х возраст (лет),
ДДАД= 63+0,4 х возраст (лет), мм рт.ст.
Определение части фактического АД от должных
величин АД по формулам:
фактическая величина АД мм рт. ст. х 100 (%)
должная величина АД мм рт. ст.
В норме фактические показатели АД составляют
85-115% от должных величин, меньше –
гипотония, больше – гипертония.
Расчет величины систолического объема (СО) и
минутного объема кровообращения (МОК) по
формуле Старра:
СО = [ (100 + 0.5 ПД) – 0.6 ДАД ] – 0.6 В (годы)
(мл), где ПД (пульсовое давление)=САД - ДАД;
МОК=(СО х ЧСС)/1000; л/мин;
Оценка результатов: у нетренированных людей в
норме СО = 40– 90 мл, у спортсменов – 50-100
мл (до 200 мл); МОК у нетренированных в норме
– 3-6 л/мин, у спортсменов – 3-10 л/мин (до
30л/мин).

Расчет показателей функционального состояния ССС:

Коэффициент выносливости (КВ): КВ=ЧСС/ПД
Увеличение его в процессе тренировки указывает на
ослабление возможностей ССС, уменьшение – на
возрастание адаптационных возможностей.
Показатель качества реакции Кушелевской
(ПКР) системы кровообращения на физическую
нагрузку (30 приседаний за 45 сек) –
опосредованная характеристика МОК
ПКР = (ПД2 – ПД1) : (ЧСС2 – ЧСС1),
где ЧСС1 и ПД1 – пульс за минуту и пульсовое
давление в покое; ЧСС2 и ПТ2 – тоже после
физической нагрузки.
ПКР – средние величины 0.5 – 0.97; отклонение от
средних свидетельствует о снижении
функциональных возможностей ССС.

Расчет индексов функционального состояния ССС:

Вегетативный
индекс
Кердо:
ВИК=(1-АДД
/ЧСС)*100%
ВИК свыше 10 соответствует нормальному состоянию
адаптации, от 0 до 9 – напряжению адаптации,
отрицательный – свидетельство дезадаптации
Индекс Робинсона: ИР=ЧСС*АДС/100
Оценка: средние значения - от 76 до 89; выше
среднего - 75 и меньше; ниже среднего - 90 и выше.
Индекс недостаточности кровообращения: ИНК =
АДС/ЧСС.
Снижение
его на всех стадиях тренировки по
сравнению
с
исходной
величиной,
отражает
нормализацию работы сердечно-сосудистой системы
Показатели гемодинамики:
пульсовое давление ПД = АДС-АДД;
среднединамическое давление СДД = 0,42ПД+АДД;

Индекс Руфье (ИР)

используется для оценки функциональных
резервов организма при физической нагрузке
(30 приседаний за 45 сек)
ИР=/10
где ЧСС1 – пульс за 15 сек в покое, ЧСС2 –
пульс
за
15
сек
на
первой
минуте
восстановления, ЧСС3 – пульс за 15 сек на
второй минуте восстановления.
Алгоритм оценки:
Меньше 3,0
высокий
3,99 – 5,99
выше среднего
6,00 – 10,99
средний
11,00 – 15,00
ниже среднего
больше 15,00
низкий

Классификация функциональных проб для системы кровообращения

Пробы с изометрическими физическими
нагрузками.
Пробы с динамическими физическими
нагрузками.
Пробы с медикаментами.
Пробы с изменениями условий внешней
среды.

Пробы с изометрическими физическими нагрузками

Удержание выпрямленных ног на
высоте ступни в течение 1 мин, лежа
на спине.
Сжимание кистевого динамометра с
50% от максимально возможного
усилия в течение 1 мин.
Норма: во время нагрузки АД
повышается менее чем на 20 мм рт ст
от исходного.
Гипертоническая: повышение более
чем на 20 мм рт ст от исходного

Пробы с динамическими физическими нагрузками

Велоэргометр,
тредбан,
ступенька

стандартизация
нагрузки
по
интенсивности
(1
Вт=6
кг/м)
и
длительности (3-5 мин).
Комбинированная проба Летунова
нагрузки,
не
требующие
каких-либо
приспособлений (20 приседаний, 15 сек
бега на месте в максимальном темпе, 3
мин бега на месте)
Проба
Мартине-Кушелевской
(20
приседаний за 30 сек).
Проба ГЦИФК (60 подскоков на месте)
Проба Котова –Демина (3 мин бега на
месте, 180 шагов в минуту)

Виды реакции на нагрузку

Нормотоническая – ЧСС >60-80%, САД
>15-30%, ДАД<10-15%, восстановление
– 3мин.
Гипертоническая – ЧСС > более 100%, САД
> более 30%, ДАД > , восстановление –
более 3мин.
Астенический – ЧСС > более 100%, САД не
изменяется
или
несущественно
колеблется,
ДАД
не
изменяется,
восстановление – более 3мин.
Дистонический – ЧСС > более 100%, САД >
не более 50%, ДАД > до бесконечного
тона, восстановление – более 3мин.
Ступенчатый – ЧСС, САД, ДАД изменяются
на 2-3 мин восстановления, ЧСС > более

Пробы с медикаментами

С хлоридом калия, βадреноблокаторами, βадреностимуляторами, αадреностимуляторами,
нитроглицерином, дипиридамолом.
Результат: оцениваются изменения
ЭКГ относительно покоя.

Пробы с изменениями условий внешней среды

Холодовая: В состоянии покоя у испытуемого
на плечевой артерии трижды до получения
стабильных цифр измеряют АД. Затем ему
предлагают на 1 мин погрузить кисть правой
руки (немного выше лучезапястного сустава)
в воду температуры +4°С. АД измеряют сразу
после прекращения холодового воздействия, а
затем в начале каждой минуты в течение
первых 5 мин восстановления и через каждые
3 мин последующего периода до момента
регистрации АД, соответствующего исходным
величинам.
Оценка: у людей с нормальной функцией
вазомоторных центров происходит повышение
АД не более чем на 5-10 мм рт.ст., а
исходный
уровень
давления
восстанавливается в течение 3 мин.

Оценка состояния дыхательной системы

Определение фактической ЖЕЛ. Закрыв
нос зажимом или пальцами, сделать
максимальный вдох и постепенно (за 5-7 с)
выдыхать в спирометр, повторить измерение 23-раза, фиксировать максимальный результат.
Должная ЖЕЛ связывает величину ЖЕЛ с
ростом человека, его возрастом и полом:
ЖЕЛ муж. = (27,63 -0,122 X В) X L
ЖЕЛ жен. = (21,78 - 0,101 X В) X L, где В -
возраст в годах; L - длина тела в см.
Отношение фактической ЖЕЛ к должной.
В нормальных условиях ЖЕЛ не бывает менее
90% от должной ее величины; у спортсменов
она - больше 100%.

Нормированный показатель ЖЕЛ,
отнесенной к массе тела,
называется жизненным
индексом (или относительной
ЖЕЛ), ЖИ=ЖЕЛ/МТ
Норма для мужчин составляет 5065 мл/кг, для женщин - 40-56
мл/кг.

Функциональные пробы для оценки внешнего дыхания

Проба Розенталя – определить ЖЕЛ 5 раз
через 15-секундные интервалы, построить
график. Оценка: возрастание – хорошее
функциональное состояние, без изменений –
удовлетворительное, снижение –
неудовлетворительное.
Проба Шафрановского. Определение ЖЕЛ
до нагрузки, на 1,3 и 4 минутах после нагрузки
(подъем и спуск по лестнице в течение 4 мин;
у спортсменов – 3 мин бега в темпе 180 шагов
в в минуту). У здоровых – изменений нет,
уменьшение – показатель функциональных
нарушений в системе дыхания.

Проба Штанге определение
продолжительности задержки дыхания после
максимального вдоха, проводится в положении
сидя. У детей проба Штанге может проводиться
после трех глубоких вдохов. У взрослых
людей, не занимающихся спортом, в норме
результаты пробы Штанге составляют 40-60 с,
у спортсменов - 90-120 с.
Проба Генчи определение продолжительности
задержки дыхания после максимального
выдоха (нос при этом зажимается пальцами). У
взрослых людей, не занимающихся спортом, в
норме результаты пробы Генчи составляют 2040 с, у спортсменов - 40-60 с. При снижении
устойчивости организма к гипоксии
продолжительность задержки дыхания на
вдохе и выдохе уменьшается.

Пневмотахометрия

Пневмотахометр измеряет объемную скорость
потока воздуха в воздухоносных путях при
форсированном вдохе и выдохе, выражаемую в
л/мин. По данным пневмотахометрии судят о
мощности вдоха и выдоха. У здоровых
нетренированных людей отношение мощности
вдоха к мощности выдоха близко к единице. У
больных людей это соотношение всегда
меньше единицы. У спортсменов же, наоборот,
мощность
вдоха
превышает
(иногда
существенно) мощность выдоха; соотношение
мощность вдоха: мощность выдоха достигает
1,2-1,4. Относительное увеличение мощности
вдоха у спортсменов чрезвычайно важно, так
как углубление дыхания идет в основном за
счет использования резервного объема вдоха.
Это особенно ярко проявляется в плавании:
как известно, вдох у пловца чрезвычайно
кратковременен, в то время как выдох,
выполняющийся
в
воду,
значительно
продолжительнее.
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека