Моделирование в информатике - это что такое? Виды и этапы моделирования.

Понятия «модель», «моделирование», различные подходы к классификации моделей. Этапы моделирования

Модель (modelium) – о латинского мера, образ, способ и т. д.

Модель - это новый объект, отличный от исходного, который обладает существенными для целей моделирования свойствами и в рамках этих целей замещающий исходный объект (объект – оригинал)

Или можно сказать другими словами: модель - это упрощенное представление о ре­альном объекте, процессе или явлении.

Вывод. Модель, необходима для того чтобы:

Понять, как устроен конкретный объект - каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром;

Научиться управлять объектом или процессом и определять наилучшие способы управления при заданных целях и критериях (оптимизация);

Прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект;

Классификация моделей.

Признаки, по которым классифицируются модели:

1. Область использования.

2. Учет фактора времени и области использования.

3. По способу представления.

4. Отрасль знаний (биологические, исторические, социологические и т. д.).

5. Область использования

Учебные : наглядные пособия, обучающие программы, различные тренажеры;

Опытные : модель корабля испытывается в бассейне для определения устойчивости судна при качке;

Научно-технические : ускоритель электронов, прибор, имитирующий разряд молнии, стенд для проверки телевизора;

Игровые : военные, экономические, спортивные, деловые игры ;

Имитационные : эксперимент либо многократно повторяется, чтобы изучить и оце­нить последствия каких либо действий на реальную обстановку, либо проводится одновре­менно со многими другими похожими объектами, но поставленными в разных условиях).

2. Учет фактора времени и области использования

Статическая модель - это как бы одномоментный срез по объекту.

Пример: Вы пришли в стоматологическую поликлинику для осмотра полости рта. Врач осмотрел и всю информацию записал в карточку. Записи в карточке, которые дают кар­тину о состоянии ротовой полости на данный момент времени (число молочных, постоян­ных, пломбированных, удаленных зубов) и будет являться статистической моделью.

Динамическая модель позволяет увидеть изменения объекта во времени.

Пример, та же самая карточка школьника, которая отражает изменения, происходя­щие с его зубами за определенный момент времени.

3. Классификация по способу представления

Первые две большие группы: материальные и информационные. Названия этих групп как бы показывают, из чего сделаны модели.

Материальные модели иначе можно назвать предметными, физическими. Они вос­производят геометрические и физические свойства оригинала и всегда имеют реальное во­площение.

Детские игрушки. По ним ребенок получает первое впечатление об окружающем ми­ре. Двухлетний ребенок играет с плюшевым медвежонком. Когда, спустя годы, ребенок уви­дит в зоопарке настоящего медведя, он без труда узнает его.

Школьные пособия, физические и химические опыты. В них моделируются процессы , например реакция между водородом и кислородом. Такой опыт сопровождается оглуши­тельным хлопком. Модель подтверждает о последствиях возникновения «гремучей смеси» из безобидных и широко распространенных в природе веществ.

Карты при изучении истории или географии, схемы солнечной системы и звездного неба на уроках астрономии и многое другое.

Вывод. Материальные модели реализуют материальный (потрогать, понюхать, уви­деть, услышать) подход к изучению объекта, явления или процесса.

Информационные модели нельзя потрогать или увидеть воочию, они не имеют мате­риального воплощения, потому что они строятся только на информации. В основе этого ме­тода моделирования лежит информационный подход к изучению окружающей действитель­ности.

Информационные модели - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.

Информация, характеризующая объект или процесс, может иметь разный объем и форму представления, выражаться различными средствами. Это многообразие настолько безгранично, насколько велики возможности каждого человека и его фантазии. К информа­ционным моделям можно отнести знаковые и вербальные.

Знаковая модель - информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка.

Знаковые модели окружают нас повсюду. Это рисунки, тексты, графики и схемы.

По способу реализации знаковые модели можно разделить на компьютерные и не­компьютерные.

Компьютерная модель - модель, реализованная средствами программной среды.

Вербальная (от лат «verbalis» - устный) модель - информационная модель в мыслен­ной или разговорной форме.

Это модели, полученные в результате раздумий, умозаключений. Они могут так и ос­таться мысленными или быть выражены словесно. Примером такой модели может стать на­ше поведение при переходе улицы.

Процесс построения модели называется моделированием, другими словами, мо­делирование - это процесс изучения строения и свойств оригинала с помощью модели.

Планетарии" href="/text/category/planetarii/" rel="bookmark">планетарий , в архитектуре - макеты зданий, в самолетостроении - модели летательных аппаратов и т. п.

От предметного (материального) моделирования принципиально отличается идеаль­ное моделирование.

Идеальное моделирование - основано не на материальной аналогии объекта и модели, а на аналогии идеальной, мыслимой.

Знаковое моделирование - это моделирование, использующее в качестве моделей зна­ковые преобразования какого-либо вида: схемы, графики, чертежи, формулы, наборы симво­лов.

Математическое моделирование - это моделирование, при котором исследование объекта осуществляется посредством модели, сформулированной на языке математики: опи­сание и исследование законов механики Ньютона средствами математических формул.

Процесс моделирования состоит из следующих этапов:

Основной задачей процесса моделирования является выбор наиболее адекватной к оригиналу модели и перенос результатов исследования на оригинал. Существуют достаточно общие методы и способы моделирования.

Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и «перевести» (отобразить) полученную структуру в какую-либо заранее определенную форму - формализовать информацию.

Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму.

Формализация - это приведение существенных свойств и признаков объекта моделирования в выбранной форме (к выбранному формальному языку).

Этапы моделирования

Прежде чем браться за какую-либо работу, нужно четко представить себе отправной и каждый пункт деятельности, а также примерные ее этапы. То же самое можно сказать и о моделировании. Отправной пункт здесь - прототип. Им может быть существующий или проектируемый объект или процесс. Конечный этап моделирования - принятие решения на основании знаний об объекте.

Цепочка выглядит следующим образом.

https://pandia.ru/text/78/457/images/image007_30.jpg" width="474" height="430 src=">

I ЭТАП. ПОСТАНОВКА ЗАДАЧИ.

Под задачей понимается некая проблема, которую надо решить. На этапе постановки задачи необходимо отразить три основных момента: описание задачи, определение целей моделирования и анализ объекта или процесса.

Описание задачи

Задача формулируется на обычном языке, и описание должно быть понятным. Главное здесь - определить объект моделирования и понять, что собой должен представлять результат.

Цель моделирования

1) познание окружающего мира

2) создание объектов с заданными свойствами (определяется постановкой задачи «как делать, чтобы...».

3) определение последствий воздействия на объект и принятие правильного решения. Цель моделирования задач типа «что будет, если...», (что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Анализ объекта

На этом этапе четко выделяют моделируемый объект и его основные свойства, из чего он состоит, какие существуют связи между ними.

Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.

II ЭТАП. РАЗРАБОТКА МОДЕЛИ

1. Информационная модель

На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель.

Модели должны отражать наиболее существенные признаки, свойства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте.

2. Знаковая модель

Прежде чем приступить к процессу моделирования, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

3. Компьютерная модель

Компьютерная модель - это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют проводить исследование (моделирование) информационных моделей. Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов.

Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний - среда текстового редактора.

III ЭТАП. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

С развитием вычислительной техники появился новый уникальный метод исследования - компьютерный эксперимент. Компьютерный эксперимент включает последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

IV ЭТАП АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Моделирование – замещение одного объекта (оригинала) другим (моделью) и фиксация или изучение свойств оригинала путем исследования свойств модели.

Модель – представление объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования.

Польза от моделирования может быть достигнута только при соблюдении следующих достаточно очевидных условий:

Модель адекватно отображает свойства оригинала, существенных с точки зрения цели исследования;

Модель позволяет устранять проблемы, присущие прове6дению измерений на реальных объектах.

Подходы (методы) к моделированию.

1) Классический (индуктивный) рассматривает систему путем перехода от частного к общему, т.е. модель системы строится снизу вверх и синтезируется путем слияния моделей-элементов составляющих систем, разрабатываемых отдельно.

2) Системный . Переход от общего к частному. В основе построения модели лежит цель исследования. Именно из нее исходят, создавая модель. Цель – то, что хотим узнать об объекте.

Рассмотрим основные принципы моделирования.

1) Принцип информационной достаточности . Необходимо собрать информацию, которая обеспечит достаточный уровень информации.

2) Принцип осуществимости. Модель должна обеспечить достижение цели в течение реально заданного времени.

3) Принцип агрегирования. Сложная система состоит из подсистем (агрегатов), для кот. Можно построить самостоятельные модели и свести их в общую модель. Модель получается гибкой. При изменении цели можно использовать ряд составляющих модулей. Модель осуществима, если

и
.

Классификация методов моделирования.

1) По характеру изучаемых процессов

Детерменированные – при функционировании моделируемого объекта случайные факторы не учитываются (все предопределено).

Стохастические – учитывается воздействие различных факторов на существующие реальные системы

2) По признаку развития во времени

Статические – поведение объекта описывается в определённое время

Динамические – за определённый промежуток времени

3) По представлению информации в модели

Дискретные – если события, приводящие к изменению состояний наступают в определённый момент времени.

Непрерывные, дискретно-непрерывные.

4) По форме представления объекта моделирования

Мысленное - если объект моделирования не существует, либо существует вне условий для его физического создания.

А) Символьное. Создание логического объекта, замещающего реальный.

Б) Математическое

Аналитическое. Объект описывается с помощью функциональных отношений с последующей попыткой получить решение в явном виде.

Имитационное. Описывающий функционирование системы алгоритм воспроизводит процесс работы объекта во времени. Этот метод так же называют статистическим, т.к производится сбор статисктики имитируемых явлений. (базируется на методе Монте-Карло – метод статических испытаний)

В) Наглядное

Реальное - объект есть.

А) Натуральное. Экспер-т проводится над самим объектом моделирования. Наиболее распространённая форма – испытания.

В) Физическое. Исследования ведутся на спец. Установках, процессы в кот. Имеют физическое подобие с процессами в реальных объектах.

Аналитическая модель может быть исследовано методами:

а) аналитическим : попытка плучить решения в явном виде (общий характер);

б) численными: получают численное решение при заданных начальных условиях (частный характер решений);

в) качественными: не имея в явном виде решения можно найти свойства решения в явном виде.

При имитационном моделировании описывающий функционирование системы алгоритм воспроизводит процесс работы объекта во времени. Этот метод так же называют статистическим, т.к производится сбор статисктики имитируемых явлений. (базируется на методе Монте-Карло)

Метод моделирования наиболее перспективный метод исследования требует от психолога определенного уровня математической подготовки. Здесь психические явления изучаются на основе приближенного образа реальности - ее модели. Модель дает возможность сосредоточить внимание психолога лишь на главных, наиболее существенных чертах психики. Модель - это полномочный представитель изучаемого объекта (психического явления, процесса мышления и др.). Конечно, лучше сразу получить целостное представление об изучаемом явлении. Но это, как правило, невозможно из-за сложности психологических объектов.

Модель связана со своим оригиналом соотношением подобия.

Познание оригинала с позиций психологии происходит через сложные процессы психического отражения. Оригинал и его психическое отражение соотносятся как объект и его тень. Полное познание объекта осуществляется последовательно, асимптотически, через длинную цепь познания приближенных образов. Вот эти приближенные образы и являются моделями познаваемого оригинала.

Необходимость моделирования возникает в психологии, когда:
- системная сложность объекта является непреодолимым препятствием для создания его целостного образа на всех уровнях детальности;
- требуется оперативное изучение психологического объекта в ущерб детальности оригинала;
- изучению подлежат психические процессы с высоким уровнем неопределенности и неизвестны закономерности, которым они подчиняются;
- требуется оптимизация исследуемого объекта путем варьирования входных факторов.

Задачи моделирования:

- описание и анализ психических явлений на различных уровнях их структурной организации;
- прогнозирование развития психических явлений;
- идентификация психических явлений, т. е. установление их сходства и различия;
- оптимизация условий протекания психических процессов.

Коротко о классификации моделей в психологии. Выделяют модели предметные и знаковые. Предметные имеют физическую природу и в свою очередь подразделяются на естественные и искусственные. Основу естественных моделей составляют представители живой природы: люди, животные, насекомые. Вспомним верного друга человека -собаку, послужившую моделью для изучения работы физиологических механизмов человека. В основе искусственных моделей лежат элементы «второй природы», созданные трудом человека. В качестве примера можно привести гомеостат Ф. Горбова и кибернометр Н. Обозова, служащие для исследования групповой деятельности.

Знаковые модели создаются на основе системы знаков, имеющих самую различную природу. Это:
- буквенно-цифровые модели, где в качестве знаков выступают буквы и цифры (такова, например, модель регуляции совместной деятельности Н. Н. Обозова);
- модели специальной символики (например, алгоритмические модели деятельности А. И. Губинского и Г. В. Суходольского в инженерной психологии или нотная запись для оркестрового музыкального произведения, в которой заложены все необходимые элементы, синхронизирующие сложную совместную работу исполнителей);
- графические модели, описывающие объект в виде кружков и линий связи между ними (первые могут выражать, например, состояния психологического объекта, вторые - возможные переходы из одного состояния в другое);
- математические модели, использующие разнообразный язык математических символов и имеющие свою классификационную схему;
- кибернетические модели построены на основе теории систем автоматического управления и имитации, теории информации и т. д.

Иногда модели пишут на языках программирования, но это долгий и дорогой процесс. Для моделирования можно использовать математические пакеты, но, как показывает опыт, в них обычно не хватает многих инженерных инструментов. Оптимальным является использование среды моделирования.

В нашем курсе в качестве такой среды выбрана . Лабораторные работы и демонстрации, которые вы встретите в курсе, следует запускать как проекты среды Stratum-2000.

Модель, выполненная с учётом возможности её модернизации, конечно, имеет недостатки, например, низкую скорость исполнения кода. Но есть и неоспоримые достоинства. Видна и сохранена структура модели, связи, элементы, подсистемы. Всегда можно вернуться назад и что-то переделать. Сохранен след в истории проектирования модели (но когда модель отлажена, имеет смысл убрать из проекта служебную информацию). В конце концов, модель, которая сдаётся заказчику, может быть оформлена в виде специализированного автоматизированного рабочего места (АРМа), написанного уже на языке программирования, внимание в котором уже, в основном, уделено интерфейсу, скоростным параметрам и другим потребительским свойствам, которые важны для заказчика. АРМ, безусловно, вещь дорогая, поэтому выпускается он только тогда, когда заказчик полностью оттестировал проект в среде моделирования, сделал все замечания и обязуется больше не менять своих требований.

Моделирование является инженерной наукой, технологией решения задач. Это замечание — очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина:

  • изучает способы решения задач, то есть является инженерной наукой;
  • является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области.

Смежными моделированию предметами являются: программирование, математика, исследование операций.

Программирование — потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения…), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм — один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно.

Какова разница между алгоритмом и моделью?

Алгоритм — это процесс решения задачи путём реализации последовательности шагов, тогда как модель — совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм — это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения.

модель + вопрос + дополнительные условия = задача .

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.

Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.

Проектирование — процесс создания объекта и его модели; моделирование — способ оценки результата проектирования; моделирования без проектирования не существует.

Смежными дисциплинами для моделирования можно признать электротехнику, экономику, биологию, географию и другие в том смысле, что они используют методы моделирования для исследования собственного прикладного объекта (например, модель ландшафта, модель электрической цепи, модель денежных потоков и т. д.).

В качестве примера посмотрим, как можно обнаружить, а потом описать закономерность.

Допустим, что нам нужно решить «Задачу о разрезаниях», то есть надо предсказать, сколько потребуется разрезов в виде прямых линий, чтобы разделить фигуру (рис. 1.16 ) на заданное число кусков (для примера достаточно, чтобы фигура была выпуклой).

Попробуем решить эту задачу вручную.

Из рис. 1.16 видно, что при 0 разрезах образуется 1 кусок, при 1 разрезе образуется 2 куска, при двух — 4, при трёх — 7, при четырёх — 11. Можете ли вы сейчас сказать наперёд, сколько потребуется разрезов для образования, например, 821 куска? По-моему, нет! Почему вы затрудняетесь? — Вам неизвестна закономерность K = f (P ) , где K — количество кусков, P — количество разрезов. Как обнаружить закономерность?

Составим таблицу, связывающую известные нам числа кусков и разрезов.

Пока закономерность не ясна. Поэтому рассмотрим разности между отдельными экспериментами, посмотрим, чем отличается результат одного эксперимента от другого. Поняв разницу, мы найдём способ перехода от одного результата к другому, то есть закон, связывающий K и P .

Уже кое-какая закономерность проявилась, не правда ли?

Вычислим вторые разности.

Теперь все просто. Функция f называется производящей функцией . Если она линейна, то первые разности равны между собой. Если она квадратичная, то вторые разности равны между собой. И так далее.

Функция f есть частный случай формулы Ньютона:

Коэффициенты a , b , c , d , e для нашей квадратичной функции f находятся в первых ячейках строк экспериментальной таблицы 1.5.

Итак, закономерность есть, и она такова:

K = a + b · p + c · p · (p – 1)/2 = 1 + p + p · (p – 1)/2 = 0.5 · p 2 + 0.5 · p + 1 .

Теперь, когда закономерность определена, можно решить обратную задачу и ответить на поставленный вопрос: сколько надо выполнить разрезов, чтобы получить 821 кусок? K = 821 , K = 0.5 · p 2 + 0.5 · p + 1 , p = ?

Решаем квадратное уравнение 821 = 0.5 · p 2 + 0.5 · p + 1 , находим корни: p = 40 .

Подведём итоги (обратите на это внимание!).

Сразу угадать решение мы не смогли. Поставить эксперимент оказалось затруднительно. Пришлось построить модель, то есть найти закономерность между переменными. Модель получилась в виде уравнения. Добавив к уравнению вопрос и уравнение, отражающее известное условие, образовали задачу. Поскольку задача оказалась типового вида (канонического), то её удалось решить одним из известных методов. Поэтому задача оказалась решена.

И ещё очень важно отметить, что модель отражает причинно-следственные связи. Между переменными построенной модели действительно есть крепкая связь. Изменение одной переменной влечёт за собой изменение другой. Мы ранее сказали, что «модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта, установить связь причины и следствия между собой». Это означает, что модель позволяет определить причины явлений, характер взаимодействия её составляющих. Модель связывает причины и следствия через законы, то есть переменные связываются между собой через уравнения или выражения.

Но!!! Сама математика не даёт возможности выводить из результатов экспериментов какие-либо законы или модели , как это может показаться после рассмотренного только что примера. Математика это только способ изучения объекта, явления, и, причём, один из нескольких возможных способов мышления. Есть ещё, например, религиозный способ или способ, которым пользуются художники, эмоционально-интуитивный, с помощью этих способов тоже познают мир, природу, людей, себя.

Итак, гипотезу о связи переменных А и В надо вносить самому исследователю, извне, сверх того. А как это делает человек? Посоветовать внести гипотезу легко, но как научить этому, объяснить это действо, а значит, опять-таки как его формализовать? Подробно мы покажем это в будущем курсе «Моделирование систем искусственного интеллекта».

А вот почему это надо делать извне, отдельно, дополнительно и сверх того, поясним сейчас. Носит это рассуждение имя Геделя, который доказал теорему о неполноте — нельзя доказать правильность некоторой теории (модели) в рамках этой же теории (модели). Посмотрите ещё раз на рис. 1.12 . Модель более высокого уровня преобразует эквивалентно модель более низкого уровня из одного вида в другой. Или генерирует модель более низкого уровня по эквивалентному опять же её описанию. А вот саму себя она преобразовать не может. Модель строит модель. И эта пирамида моделей (теорий) бесконечна.

А пока, чтобы «не подорваться на ерунде», вам надо быть настороже и проверять все здравым смыслом. Приведём пример, старую известную шутку из фольклора физиков.

Согласно этому признаку модели делятся на два обширных класса:

  • абстрактные (мысленные) модели;
  • материальные модели.


Рис. 1.1.

Нередко в практике моделирования присутствуют смешанные, абстрактно-материальные модели.

Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.

Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:

  • символические;
  • математические.

Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса , графики, диаграммы и т. п.

Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.

Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.

Математическое моделирование - главная цель и основное содержание изучаемой дисциплины.

Математические модели могут быть:

  • аналитическими;
  • имитационными;
  • смешанными (аналитико-имитационными).

Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.

Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.

Имитационное моделирование . Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.

Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.

Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.

В чем заключается отличие имитационных и аналитических моделей?

В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.

В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.

Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием .

Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы, и для которых, возможно, используют аналитические модели, а для остальных подпроцессов строят имитационные модели.

Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство - модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.

Нередко создаются материально-абстрактные модели . Та часть операции, которая не поддается математическому описанию, моделируется материально, остальная - абстрактно. Таковы, например, командно-штабные учения, когда работа штабов представляет собой натурный эксперимент, а действия войск отображаются в документах.

Классификация по рассмотренному признаку - способу реализации модели - показана на рис. 1.2 .


Рис. 1.2.

1.3. Этапы моделирования

Математическое моделирование как, впрочем, и любое другое, считается искусством и наукой. Известный специалист в области имитационного моделирования Роберт Шеннон так назвал свою широко известную в научном и инженерном мире книгу: " Имитационное моделирование - искусство и наука". Поэтому в инженерной практике нет формализованной инструкции, как создавать модели. И, тем не менее, анализ приемов, которые используют разработчики моделей, позволяет усмотреть достаточно прозрачную этапность моделирования.

Первый этап : уяснение целей моделирования. Вообще-то это главный этап любой деятельности. Цель существенным образом определяет содержание остальных этапов моделирования. Заметим, что различие между простой системой и сложной порождается не столько их сущностью, но и целями, которые ставит исследователь.

Обычно целями моделирования являются:

  • прогноз поведения объекта при новых режимах, сочетаниях факторов и т. п.;
  • подбор сочетания и значений факторов, обеспечивающих оптимальное значение показателей эффективности процесса;
  • анализ чувствительности системы на изменение тех или иных факторов;
  • проверка различного рода гипотез о характеристиках случайных параметров исследуемого процесса;
  • определение функциональных связей между поведением ("реакцией") системы и влияющими факторами, что может способствовать прогнозу поведения или анализу чувствительности;
  • уяснение сущности, лучшее понимание объекта исследования, а также формирование первых навыков для эксплуатации моделируемой или действующей системы.

Второй этап : построение концептуальной модели. Концептуальная модель (от лат. conception ) - модель на уровне определяющего замысла, который формируется при изучении моделируемого объекта. На этом этапе исследуется объект , устанавливаются необходимые упрощения и аппроксимации. Выявляются существенные аспекты, исключаются второстепенные. Устанавливаются единицы измерения и диапазоны изменения переменных модели. Если возможно, то концептуальная модель представляется в виде известных и хорошо разработанных систем: массового обслуживания, управления, авторегулирования, разного рода автоматов и т. д. Концептуальная модель полностью подводит итог изучению проектной документации или экспериментальному обследованию моделируемого объекта.

Результатом второго этапа является обобщенная схема модели, полностью подготовленная для математического описания - построения математической модели.

Третий этап : выбор языка программирования или моделирования, разработка алгоритма и программы модели. Модель может быть аналитической или имитационной, или их сочетанием. В случае аналитической модели исследователь должен владеть методами решения.

В истории математики (а это, впрочем, и есть история математического моделирования) есть много примеров тому, когда необходимость моделирования разного рода процессов приводила к новым открытиям. Например, необходимость моделирования движения привела к открытию и разработке дифференциального исчисления (Лейбниц и Ньютон) и соответствующих методов решения. Проблемы аналитического моделирования остойчивости кораблей привели академика Крылова А. Н. к созданию теории приближенных вычислений и аналоговой вычислительной машины.

Результатом третьего этапа моделирования является программа , составленная на наиболее удобном для моделирования и исследования языке - универсальном или специальном.

Четвертый этап : планирование эксперимента. Математическая модель является объектом эксперимента. Эксперимент должен быть в максимально возможной степени информативным, удовлетворять ограничениям, обеспечивать получение данных с необходимой точностью и достоверностью. Существует теория планирования эксперимента, нужные нам элементы этой теории мы изучим в соответствующем месте дисциплины. GPSS World, AnyLogic и др.) и могут применяться автоматически. Не исключено, что в ходе анализа полученных результатов модель может быть уточнена, дополнена или даже полностью пересмотрена.

После анализа результатов моделирования осуществляется их интерпретация , то есть перевод результатов в термины предметной области . Это необходимо, так как обычно специалист предметной области (тот, кому нужны результаты исследований) не обладает терминологией математики и моделирования и может выполнять свои задачи, оперируя лишь хорошо знакомыми ему понятиями.

На этом рассмотрение последовательности моделирования закончим, сделав весьма важный вывод о необходимости документирования результатов каждого этапа. Это необходимо в силу следующих причин.

Во-первых, моделирование процесс итеративный, то есть с каждого этапа может осуществляться возврат на любой из предыдущих этапов для уточнения информации, необходимой на этом этапе, а документация может сохранить результаты, полученные на предыдущей итерации.

Во-вторых, в случае исследования сложной системы в нем участвуют большие коллективы разработчиков, причем различные этапы выполняются различными коллективами. Поэтому результаты, полученные на каждом этапе, должны быть переносимы на последующие этапы, то есть иметь унифицированную форму представления и понятное другим заинтересованным специалистам содержание.

В-третьих, результат каждого из этапов должен являться самоценным продуктом. Например, концептуальная модель может и не использоваться для дальнейшего преобразования в математическую модель, а являться описанием, хранящим информацию о системе, которое может использоваться как архив , в качестве средства обучения и т. д.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека