Метод множителей Лагранжа. Экономический смысл множителей Лагранжа

Наименование параметра Значение
Тема статьи: Метод Лагранжа.
Рубрика (тематическая категория) Математика

Найти полином означает определить значения его коэффициента . Для этого используя условие интерполяции можно сформировать систему линœейных алгебраических уравнений (СЛАУ).

Определитель этой СЛАУ принято называть определителœем Вандермонда. Определитель Вандермонда не равен нулю при для , то есть в том случае, когда в интерполяционной таблице нет совпадающих узлов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно утверждать, что СЛАУ имеет решение и это решение единственно. Решив СЛАУ и определив неизвестные коэффициенты можно построить интерполяционный полином .

Полином, удовлетворяющий условиям интерполяции, при интерполяции методом Лагранжа строится в виде линœейной комбинации многочленов n-ой степени:

Многочлены принято называть базисными многочленами. Для того, чтобы многочлен Лагранжа удовлетворял условиям интерполяции крайне важно, чтобы для его базисных многочленов выполнялись следующие условия:

для .

В случае если эти условия выполняются, то для любого имеем:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выполнение заданных условий для базисных многочленов означает, что выполняются и условия интерполяции.

Определим вид базисных многочленов исходя из наложенных на них ограничений.

1-е условие: при .

2-е условие: .

Окончательно для базисного многочлена можно записать:

Тогда, подставляя полученное выражение для базисных многочленов в исходный полином, получаем окончательный вид многочлена Лагранжа:

Частная форма многочлена Лагранжа при принято называть формулой линœейной интерполяции:

.

Многочлен Лагранжа взятый при принято называть формулой квадратичной интерполяции:

Метод Лагранжа. - понятие и виды. Классификация и особенности категории "Метод Лагранжа." 2017, 2018.

  • - Метод Лагранжа (метод вариации произвольной постоянной).

    Линейные ДУ. Определение. ДУ вида т.е. линейное относ-но неизвестной ф-ции и ее производной наз-ся линейным. Для реш-я такого типа ур-й рассмотрим два метода: метод Лагранжа и метод Бернулли.Рассмотрим однородное ДУ Это ур-е с разделяющимися переем-ми Решение ур-я Общее... .


  • - Линейные ДУ, однород-е и неоднород-е. Понятие общего реш-я. Метод Лагранжа вариации произв-х постоянных.

    Определение. ДУ наз-ся однород-м, если ф-я может быть представлена, как ф-я отнош-я своих аргументов Пример. Ф-я наз-ся однородной ф-й измерения если Примеры: 1) - 1-й порядок однородности. 2) - 2-й порядок однородности. 3) - нулевой порядок однородности (просто однородная... .


  • - Лекция 8. Применение частных производных: задачи на экстремум. Метод Лагранжа.

    Задачи на экстремум имеют большое значение в экономических расчетах. Это вычисление, например, максимумов дохода, прибыли, минимума издержек в зависимости от нескольких переменных: ресурсов, производственных фондов и т.д. Теория нахождения экстремумов функций... .


  • - Т.2.3. ДУ высших порядков. Уравнение в полных дифференциалах. Т.2.4. Линейные ДУ второго порядка с постоянными коэффициентами. Метод Лагранжа.

    3. 2. 1. ДУ с разделяющимися переменными С.Р. 3. В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или...

  • С уть метода Лагранжа заключается в сведении задачи на условный экстремум к решению задачи безусловного экстремума. Рассмотрим модель нелинейного программирования:

    (5.2)

    где
    – известные функции,

    а
    – заданные коэффициенты.

    Отметим, что в данной постановке задачи ограничения заданы равенствами, отсутствует условие неотрицательности переменных. Кроме того, полагаем, что функции
    непрерывны со своими первыми частными производными.

    Преобразуем условия (5.2) таким образом, чтобы в левых или правых частях равенств стоял ноль :

    (5.3)

    Составим функцию Лагранжа. В нее входит целевая функция (5.1) и правые части ограничений (5.3), взятые соответственно с коэффициентами
    . Коэффициентов Лагранжа будет столько, сколько ограничений в задаче.

    Точки экстремума функции (5.4) являются точками экстремума исходной задачи и наоборот: оптимальный план задачи (5.1)-(5.2) является точкой глобального экстремума функции Лагранжа.

    Действительно, пусть найдено решение
    задачи (5.1)-(5.2), тогда выполняются условия (5.3). Подставим план
    в функцию (5.4) и убедимся в справедливости равенства (5.5).

    Таким образом, чтобы найти оптимальный план исходной задачи, необходимо исследовать на экстремум функцию Лагранжа. Функция имеет экстремальные значения в точках, где ее частные производные равны нулю . Такие точки называютсястационарными.

    Определим частные производные функции (5.4)

    ,

    .

    После приравнивания нулю производных получим системуm+n уравнений сm+n неизвестными

    ,(5.6)

    В общем случае система (5.6)-(5.7) будем иметь несколько решений, куда войдут все максимумы и минимумы функции Лагранжа. Для того чтобы выделить глобальный максимум или минимум, во всех найденных точках вычисляют значения целевой функции. Наибольшее из этих значений будет глобальным максимумом, а наименьшее – глобальным минимумом. В некоторых случаях оказывается возможным использование достаточных условий строгого экстремума непрерывных функций (см. ниже задачу 5.2):

    пусть функция
    непрерывна и дважды дифференцируема в некоторой окрестности своей стационарной точки(т.е.
    )). Тогда:

    а ) если
    ,
    (5.8)

    то – точка строгого максимума функции
    ;

    б) если
    ,
    (5.9)

    то – точка строгого минимума функции
    ;

    г ) если
    ,

    то вопрос о наличии экстремума остается открытым.

    Кроме того, некоторые решения системы (5.6)-(5.7) могут быть отрицательными. Что не согласуется с экономическим смыслом переменных. В этом случае следует проанализировать возможность замены отрицательных значений нулевыми.

    Экономический смысл множителей Лагранжа. Оптимальное значение множителя
    показывает на сколько изменится значение критерияZ при увеличении или уменьшении ресурсаj на одну единицу, так как

    Метод Лагранжа можно применять и в том случае, когда ограничения представляют собой неравенства. Так, нахождение экстремума функции
    при условиях

    ,

    выполняют в несколько этапов:

    1. Определяют стационарные точки целевой функции, для чего решают систему уравнений

    .

    2. Из стационарных точек отбирают те, координаты которых удовлетворяют условиям

    3. Методом Лагранжа решают задачу с ограничениями-равенствами (5.1)-(5.2).

    4. Исследуют на глобальный максимум точки, найденные на втором и третьем этапах: сравнивают значения целевой функции в этих точках – наибольшее значение соответствует оптимальному плану.

    Задача 5.1 Решим методом Лагранжа задачу 1.3, рассмотренную в первом разделе. Оптимальное распределение водных ресурсов описывается математической моделью

    .

    Составим функцию Лагранжа

    Найдем безусловный максимум этой функции. Для этого вычислим частные производные и приравняем их к нулю

    ,

    Таким образом, получили систему линейных уравнений вида

    Решение системы уравнений представляет собой оптимальный план распределения водных ресурсов по орошаемым участкам

    , .

    Величины
    измеряются в сотнях тысяч кубических метров.
    - величина чистого дохода на одну сотню тысяч кубических метров поливной воды. Следовательно, предельная цена 1 м 3 оросительной воды равна
    ден. ед.

    Максимальный дополнительный чистый доход от орошения составит

    160·12,26 2 +7600·12,26-130·8,55 2 +5900·8,55-10·16,19 2 +4000·16,19=

    172391,02 (ден. ед.)

    Задача 5.2 Решить задачу нелинейного программирования

    Ограничение представим в виде:

    .

    Составим функцию Лагранжа и определим ее частные производные

    .

    Чтобы определить стационарные точки функции Лагранжа, следует приравнять нулю ее частные производные. В результате получим систему уравнений

    .

    Из первого уравнения следует

    . (5.10)

    Выражение подставим во второе уравнение

    ,

    откуда следует два решения для :

    и
    . (5.11)

    Подставив эти решения в третье уравнение, получим

    ,
    .

    Значения множителя Лагранжа и неизвестной вычислим по выражениям (5.10)-(5.11):

    ,
    ,
    ,
    .

    Таким образом, получили две точки экстремума:

    ;
    .

    Для того чтобы узнать являются ли данные точки точками максимума или минимум, воспользуемся достаточными условиями строгого экстремума (5.8)-(5.9). Предварительно выражение для , полученное из ограничения математической модели, подставим в целевую функцию

    ,

    . (5.12)

    Для проверки условий строгого экстремума следует определить знак второй производной функции (5.11) в найденных нами экстремальных точках
    и
    .

    ,
    ;

    .

    Таким образом, (·)
    является точкой минимума исходной задачи (
    ), а (·)
    – точкой максимума.

    Оптимальный план :

    ,
    ,
    ,

    .

    Метод Множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

    Рассмотрим классическую задачу оптимизации

    max (min) z=f(x) (7.20)

    Эта задача выделяется из задачи (7.18), (7.19) тем, что среди ограничений (7.21) нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции f(x) и непрерывны и имеют частные производные по крайней мере второго порядка.

    Классический подход к решению задачи (7.20), (7.21) дает систему уравнений (необходимые условия), которым должна удовлетворять точка х*,доставляющая функции f(x)локальный экстремум на множестве точек, удовлетворяющих ограничениям (7.21) (для задачи выпуклого программирования найденная точка х*в соответствии с теоремой 7.6 будет одновременно и точкой глобального экстремума).

    Предположим, что в точке х* функция (7.20) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

    (7.22)

    есть функция Лагранжа; - множители Лагранжа.

    Существуют также и достаточные условия, при выполнении которых решение системы уравнений (7.22) определяет точку экстремума функции f(x). Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

    Можно указать следующий порядок решения задачи (7.20), (7.21) методом множителей Лагранжа:

    1) составить функцию Лагранжа (7.23);

    2) найти частные производные функции Лагранжа по всем переменным и приравнять их нулю. Тем самым будет получена система (7.22), состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

    3) из стационарных точек, взятых без координат , выбрать точки, в которых функция f(x) имеет условные локальные экстремумы при наличии ограничений (7.21). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.



    Пример 7.3 . Найти оптимальное распределение ограниченного ресурса в a ед. между n потребителями, если прибыль, получаемая при выделении j-му потребителю x j единиц ресурса, вычисляется по формуле .

    Решение. Математическая модель задачи имеет следующий вид:


    Составляем функцию Лагранжа:

    .

    Находим частные производные функции Лагранжа и приравниваем их нулю:

    Решая эту систему уравнений, получаем:

    Таким образом, если j-му потребителю будет выделено ед. ресурса, то суммарная прибыль достигнет максимальной величины и составит ден. ед.

    Мы рассмотрелиметод Лагранжа применительно к классической задаче оптимизации. Можно обобщить этот метод на случай, когда переменные неотрицательны и некоторые ограничения заданы в форме неравенств. Однако это обобщение имеет преимущественно теоретическое значение и не приводит к конкретным вычислительным алгоритмам.

    В заключение дадим множителям Лагранжа экономическую интерпретацию. Для этого обратимся к простейшей классической задаче оптимизации

    max (min) z =f (x 1 , х 2); (7.24)

    𝜑(x 1 , х 2)=b. (7.25)

    Предположим, что условный экстремум достигается в точке . Соответствующее экстремальное значение функции f (x )

    Допустим, что в ограничениях (7.25) величина b может меняться, тогда координаты точки экстремума, а следовательно, и экстремальное значение f* функции f (x ) станут величинами, зависящими от b , т. е. ,, а поэтому производная функции (7.24)

    Жозеф Луи Лагранж родился в Турине (Италия) в итало-французской семье. Он учился, а затем преподавал в Артиллерийском училище. В 1759 г. по рекомендации Эйлера 23-летнего Лагранжа избирают в члены Берлинской академии наук. В 1766 г. он уже стал ее президентом. Фридрих II пригласил Лагранжа в Берлин. После смерти Фридриха II в 1786 г. Лагранж переехал в Париж. С 1722 г. он был членом Парижской академии наук, в 1795 г. его назначили членом Бюро долгот, и он принял активное участие в создании метрической системы мер. Круг научных исследований Лагранжа был необычайно широк. Они посвящены механике, геометрии, математическому анализу, алгебре, теории чисел, а также теоретической астрономии. Основным направлением исследований Лагранжа было представление самых различных явлений в механике с единой точки зрения. Он вывел уравнение, описывающее поведение любых систем под действием сил. В области астрономии Лагранж много сделал для решения проблемы устойчивости Солнечной системы; доказал некоторые частные случаи устойчивого движения, в частности для малых тел находящихся в так называемых треугольных точках либрации.

    Метод Лагранжа ─ это метод решения задачи условной оптимизации, при котором ограничения, записываемые как неявные функции, объединяются с целевой функцией в форме нового уравнения, называемого лагранжианом .

    Рассмотрим частный случай общей задачи нелинейного программирования:

    Дана система нелинейных уравнений (1):

    (1) gi(x1,x2,…,xn)=bi (i=1..m),

    Найти наименьшее (или наибольшее) значение функции (2)

    (2) f (х1,х2,…,хn),

    если отсутствуют условия неотрицательности переменных и f(х1,х2,…,хn) и gi(x1,x2,…,xn) ─ функции, непрерывные вместе со своими частными производными.

    Чтобы найти решение этой задачи, можно применить следующий метод: 1. Вводят набор переменных λ1, λ2,…, λm, называемых множителями Лагранжа, составляют функцию Лагранжа (3)

    (3) F(х1,х2,…,хn , λ1,λ2,…,λm) = f(х1,х2,…,хn)+ λi .

    2. Находят частные производные от функции Лагранжа по переменным xi и λi и приравнивают их нулю.

    3. Решая систему уравнений, находят точки, в которых целевая функция задачи может иметь экстремум.

    4.Среди точек, подозрительных не экстремум, находят такие, в которыхдостигается экстремум, и вычисляют значения функции в этих точках.

    4. Сравнить полученные значения функции f и выбрать наилучшее.

    По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве х1 изделия I способом затраты равны 4*х1+х1^2 руб., а при изготовлении х2 изделий II способом они составляют 8*х2+х2^2 руб. Определить, сколько изделий каждым из способов следует изготовить, так чтобы общие затраты на производство продукции были минимальными.

    Решение: Математическая постановка задачи состоит в определении наименьшего значения функции двух переменных:

    f = 4*x1+x1^2 +8*x2 +x2^2, при условии x1 +x2 = 180.

    Составим функцию Лагранжа:

    F(x1,x2,λ) = 4*x1+x1^2+8*x2+x2^2+λ*(180-x1-x2).

    Вычислим ее частные производные по х1,х2, λ и приравняем их к 0:

    Перенесем в правые части первых двух уравнений λ и приравняем их левые части, получим 4 + 2*x1 = 8 + 2*x2, или x1 − x2 = 2.

    Решая последнее уравнение совместно с уравнением x1 + x2 = 180, находим x1 = 91, x2 = 89, то есть получили решение, удовлетворяющее условиям:

    Найдем значение целевой функции f при этих значениях переменных:

    F(x1, x2) = 17278

    Эта точка является подозрительной на экстремум. Используя вторые частные производные, можно показать, что в точке (91,89) функция f имеет минимум.

    Метод множителей Лагранжа.

    Метод множителей Лагранжа является одним из методов, которые позволяют решать задачи нелинейного программирования.

    Нелинейное программирование-это раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и областью допустимых решений, определенной нелинейными ограничениями. В экономике это соответствует тому, что результаты (эффективность) возрастают или убывают непропорционально изменению масштабов использования ресурсов (или, что то же самое, масштабов производства): напр., из-за деления издержек производства на предприятиях на переменные и условно-постоянные; из-за насыщения спроса на товары, когда каждую следующую единицу продать труднее, чем предыдущую и т. д.

    Задача нелинейного программирования ставится как задача нахождения оптимума определенной целевой функции

    F(x 1 ,…x n), F (x ) → max

    при выполнении условий

    g j (x 1 ,…x n)≥0, g (x ) ≤ b , x ≥ 0

    где x -вектор искомых переменных;

    F (x ) -целевая функция;

    g (x ) - функция ограничений (непрерывно дифференцируемая);

    b - вектор констант ограничений.

    Решение задачи нелинейного программирования (глобальный максимум или минимум) может принадлежать либо границе, либо внутренней части допустимого множества.

    В отличие от задачи линейного программирования, в задаче программирования нелинейного оптимум не обязательно лежит на границе области, определенной ограничениями. Иначе говоря, задача состоит в выборе таких неотрицательных значений переменных, подчиненных системе ограничений в форме неравенств, при которых достигается максимум (или минимум) данной функции. При этом не оговариваются формы ни целевой функции, ни неравенств. Могут быть разные случаи: целевая функция нелинейная, а ограничения линейны; целевая функция линейна, а ограничения (хотя бы одно из них) нелинейные; и целевая функция, и ограничения нелинейные.

    Задача нелинейного программирования встречается в естественных науках, технике, экономике, математике, в сфере деловых отношений и в науке управления государством.



    Нелинейное программирование, например, связано с основной экономической задачей. Так в задаче о распределении ограниченных ресурсов максимизируют либо эффективность, либо, если изучается потребитель, потребление при наличии ограничений, которые выражают условия недостатка ресурсов. В такой общей постановке математическая формулировка задачи может оказаться невозможной, но в конкретных применениях количественный вид всех функций может быть определен непосредственно. Например, промышленное предприятие производит изделия из пластмассы. Эффективность производства здесь оценивается прибылью, а ограничения интерпретируются как наличная рабочая сила, производственные площади, производительность оборудования и т.д.

    Метод "затраты - эффективность" также укладывается в схему нелинейного программирования. Данный метод был разработан для использования при принятии решений в управлении государством. Общей функцией эффективности является благосостояние. Здесь возникают две задачи нелинейного программирования: первая - максимизация эффекта при ограниченных затратах, вторая - минимизация затрат при условии, чтобы эффект был выше некоторого минимального уровня. Обычно эта задача хорошо моделируется с помощью нелинейного программирования.

    Результаты решения задачи нелинейного программирования являются подспорьем при принятии государственных решений. Полученное решение является, естественно, рекомендуемым, поэтому необходимо исследовать предположения и точность постановки задачи нелинейного программирования, прежде чем принять окончательное решение.

    Нелинейные задачи сложны, часто их упрощают тем, что приводят к линейным. Для этого условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых переменных. Такой подход называется методом кусочно-линейных приближений, он применим, однако, лишь к некоторым видам нелинейных задач.

    Нелинейные задачи в определенных условиях решаются с помощью функции Лагранжа: найдя ее седловую точку, тем самым находят и решение задачи. Среди вычислительных алгоритмов Н. п. большое место занимают градиентные методы. Универсального же метода для нелинейных задач нет и, по-видимому, может не быть, поскольку они чрезвычайно разнообразны. Особенно трудно решаются многоэкстремальные задачи.

    Одним из методов, которые позволяют свести задачу нелинейного программирования к решению системы уравнений, является метод неопределенных множителей Лагранжа.

    С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде ра­венств. При этом задача с ограничениями преобразуется в эквива­лентную задачу безусловной оптимизации, в которой фигурируют некоторые неизвестные параметры, называемые множителями Ла­гранжа.

    Метод множителей Лагранжа заключается в сведении задач на условный экстремум к задачам на безусловный экстремум вспомогательной функции - т. н. функции Лагранжа.

    Для задачи об экстремуме функции f (х 1 , x 2 ,..., x n ) при условиях (уравнениях связи) φ i (x 1 , x 2 , ..., x n ) = 0, i = 1, 2,..., m , функция Лагранжа имеет вид

    L(x 1, x 2… x n ,λ 1, λ 2 ,…λm)=f(x 1, x 2… x n)+∑ i -1 m λ i φ i (x 1, x 2… x n)

    Множители λ 1 , λ 2 , ..., λm наз. множителями Лагранжа.

    Если величины x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λm суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

    то при достаточно общих предположениях x 1 , x 2 , ..., x n доставляют экстремум функции f.

    Рассмотрим задачу минимизации функции n переменных с учетом одного ограничения в виде равенства:

    Минимизировать f(x 1, x 2… x n) (1)

    при ограничениях h 1 (x 1, x 2… x n)=0 (2)

    В соответствии с методом множителей Лагранжа эта задача преобразуется в следующую задачу безусловной оптимизации:

    минимизировать L(x,λ)=f(x)-λ*h(x) (3)

    где Функция L(х;λ) называется функцией Лагранжа,

    λ - неизвестная постоянная, которая носит название множителя Лагранжа. На знак λ никаких требований не накладывается.

    Пусть при заданном значении λ=λ 0 безусловный минимум функции L(x,λ) по х достигается в точке x=x 0 и x 0 удовлетворяет уравнению h 1 (x 0)=0. Тогда, как нетрудно видеть, x 0 минимизирует (1) с учетом (2), поскольку для всех значений х, удовлетворяющих (2), h 1 (x)=0 и L(x,λ)=min f(x).

    Разумеется, необходимо подобрать значение λ=λ 0 таким образом, чтобы координата точки безусловного минимума х 0 удовлетворяла равенству (2). Это можно сделать, если, рассматривая λ как переменную, найти безусловный минимум функции (3) в виде функции λ, а затем выбрать значение λ, при котором выполняется равенство (2). Проиллюстрируем это на конкретном примере.

    Минимизировать f(x)=x 1 2 +x 2 2 =0

    при ограничении h 1 (x)=2x 1 +x 2 -2=0=0

    Соответствующая задача безусловной оптимизации записывается в следующем виде:

    минимизировать L(x,λ)=x 1 2 +x 2 2 -λ(2x 1 +x 2 -2)

    Решение. Приравняв две компоненты градиента L к нулю, получим

    → x 1 0 =λ

    → x 2 0 =λ/2

    Для того чтобы проверить, соответствует ли стационарная точка х° минимуму, вычислим элементы матрицы Гессе функции L(х;u), рассматриваемой как функция х,

    которая оказывается положительно определенной.

    Это означает, что L(х,u) - выпуклая функция х. Следовательно, координаты x 1 0 =λ, x 2 0 =λ/2 определяют точку глобального минимума. Оптимальное значение λ находится путем подстановки значений x 1 0 и x 2 0 в уравнение2x 1 +x 2 =2, откуда 2λ+λ/2=2 или λ 0 =4/5. Таким образом, условный минимум достигается при x 1 0 =4/5 и x 2 0 =2/5 и равен min f(x)=4/5.

    При решении задачи из примера мы рассматривали L(х;λ) как функцию двух переменных x 1 и x 2 и, кроме того, предполагали, что значение параметра λ выбрано так, чтобы выполнялось ограни­чение. Если же решение системы

    J=1,2,3,…,n

    в виде явных функций λ получить нельзя, то значения х и λ находятся путем решения следующей системы, состоящей из n+1 уравнений с n+1 неизвестными:

    J=1,2,3,…,n., h 1 (x)=0

    Для нахождения всех возможных решений данной системы можно использовать численные методы поиска (например, метод Ньютона). Для каждого из решений () следует вычислить элементы матрицы Гессе функции L, рассматриваемой как функция х, и выяснить, является ли эта матрица положительно определенной (локальный минимум) или отрицательно определенной (локальный максимум).

    Метод множителей Лагранжа можно распространить на случай, когда задача имеет несколько ограничений в виде равенств. Рассмотрим общую задачу, в которой требуется

    Минимизировать f(x)

    при ограничениях h k =0, k=1, 2, ..., К.

    Функция Лагранжа принимает следующий вид:

    Здесь λ 1 , λ 2 , ..., λk -множители Лагранжа, т.е. неизвестные параметры, значения которых необходимо определить. Приравнивая частные производные L по х к нулю, получаем следующую систему n уравнении с n неизвестными:

    Если найти решение приведенной выше системы в виде функций вектора λ оказывается затруднительным, то можно расширить систему путем включения в нее ограничений в виде равенств

    Решение расширенной системы, состоящей из n+К уравнений с n+К неизвестными, определяет стационарную точку функции L. Затем реализуется процедура проверки на минимум или максимум, которая проводится на основе вычисления элементов матрицы Гессе функции L, рассматриваемой как функция х, подобно тому, как это было проделано в случае задачи с одним ограничением. Для некоторых задач расширенная система n+К уравнений с n+K неизвестными может не иметь решений, и метод множителей Лагранжа оказывается неприменимым. Следует, однако, отметить, что такие задачи на практике встречаются достаточно редко.

    Рассмотрим частный случай общей задачи нелинейного программирования, предполагая, что система ограничений содержит только уравнения, отсутствуют условия неотрицательности переменных и и - функции непрерывные вместе со своими частными производными. Следовательно решив систему уравнений (7), получают все точки, в которых функция (6) может иметь экстремальные значения.

    Алгоритм метода множителей Лагранжа

    1.Составляем функцию Лагранжа.

    2.Находим частные производные от функции Лагранжа по переменным x J ,λ i и приравниваем их нулю.

    3.Решаем систему уравнений (7), находим точки, в которых целевая функция задачи может иметь экстремум.

    4.Среди точек, подозрительных на экстремум, находим такие, в которых достигается экстремум, и вычисляем значения функции (6) в этих точках.

    Пример.

    Исходные данные: По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве x 1 изделий 1 способом затраты равны 4x 1 +x 1 2 руб., а при изготовлении x 2 изделий 2 способом они составляют 8x 2 +x 2 2 руб. Определить сколько изделий каждым из способов следует изготовить, чтобы затраты на производство продукции были минимальными.

    Целевая функция для поставленной задачи имеет вид
    ®min при условиях x 1 +x 2 =180, x 2 ≥0.
    1.Составляем функцию Лагранжа
    .
    2. Вычисляем частные производные по x 1 , x 2, λ и приравниваем их нулю:

    3. Решая полученную систему уравнений, находим x 1 =91,x 2 =89

    4.Сделав замену в целевой функции x 2 =180-x 1 , получим функцию от одной переменной, а именно f 1 =4x 1 +x 1 2 +8(180-x 1)+(180-x 1) 2

    Вычисляем или 4x 1 -364=0 ,

    откуда имеем x 1 * =91, x 2 * =89.

    Ответ: Количество изделий изготовленных первым способом равно х 1 =91, вторым способом х 2 =89 при этом значение целевой функции равно 17278 руб.

    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «kingad.ru» — УЗИ исследование органов человека