Математическое ожидание для пуассоновского распределения. Распределение пуассона

Распределение Пуассона.

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть событие А появляется некоторое число раз в фиксированном участке пространства (интервале, площади, объеме) или промежутке времени с постоянной интенсивностью. Для определенности рассмотрим последовательное появление событий во времени, называемое потоком событий. Графически поток событий можно иллюстрировать множеством точек, расположенных на оси времени.

Это может быть поток вызовов в сфере обслуживания (ремонт бытовой техники, вызов скорой помощи и др.), поток вызовов на АТС, отказ в работе некоторых частей системы, радиоактивный распад, куски ткани или металлические листы и число дефектов на каждом из них и др. Наиболее полезным распределение Пуассона оказывается в тех задачах, где требуется определить лишь число положительных исходов («успехов»).

Представим себе булку с изюмом, разделенную на маленькие кусочки равной величины. Вследствие случайного распределения изюминок нельзя ожидать, что все кусочки будут содержать их одинаковое число. Когда среднее число изюминок, содержащееся в этих кусочках, известно, тогда распределение Пуассона задает вероятность того, что любой взятый кусочек содержит X =k (k = 0,1,2,...,)число изюминок.

Иначе говоря, распределение Пуассона определяет, какая часть длинной серии кусочков будет содержать равное 0, или 1, или 2, или и т.д. число изюминок.

Сделаем следующие предположения.

1. Вероятность появления некоторого числа событий в данном промежутке времени зависит только от длины этого промежутка, а не от его положения на временной оси. Это свойство стационарности.

2. Появление более одного события в достаточно малом промежутке времени практически невозможно, т.е. условная вероятность появления в этом же интервале другого события стремится к нулю при ® 0. Это свойство ординарности.

3. Вероятность появления данного числа событий на фиксированном промежутке времени не зависит от числа событий, появляющихся в другие промежутки времени. Это свойство отсутствия последействия.

Поток событий, удовлетворяющий перечисленным предложениям, называется простейшим .

Рассмотрим достаточно малый промежуток времени . На основании свойства 2 событие может появиться на этом промежутке один раз или совсем не появиться. Обозначим вероятность появления события через р , а непоявления – через q = 1-p. Вероятность р постоянна (свойство 3) и зависит только от величины (свойство 1). Математическое ожидание числа появлений события в промежутке будет равно 0×q + 1×p = p . Тогда среднее число появления событий в единицу времени называется интенсивностью потока и обозначается через a, т.е. a = .

Рассмотрим конечный отрезок времени t и разделим его на n частей = . Появления событий в каждом из этих промежутков независимы (свойство 2). Определим вероятность того, что в отрезке времени t при постоянной интенсивности потока а событие появится ровно X = k раз и не появится n – k . Так как событие может в каждом из n промежутков появиться не более чем 1 раз, то для появления его k раз на отрезке длительностью t оно должно появиться в любых k промежутках из общего числа n. Всего таких комбинаций , а вероятность каждой равна . Следовательно, по теореме сложения вероятностей получим для искомой вероятности известную формулу Бернулли

Это равенство записано как приближенное, так как исходной посылкой при его выводе послужило свойство 2, выполняемое тем точнее, чем меньше . Для получения точного равенства перейдем к пределу при ® 0 или, что то же, n ® . Получим после замены

P = a = и q = 1 – .

Введем новый параметр = at , означающий среднее число появлений события в отрезке t . После несложных преобразований и переходу к пределу в сомножителях получим.

= 1, = ,

Окончательно получим

, k = 0, 1, 2, ...

е = 2,718... –основание натурального логарифма.

Определение . Случайная величина Х , которая принимает только целые, положительные значения 0, 1, 2, ... имеет закон распределения Пуассона с параметром , если

для k = 0, 1, 2, ...

Распределение Пуассона было предложено французским математиком С.Д. Пуассоном (1781-1840 гг). Оно используется для решения задач исчисления вероятностей относительно редких, случайных взаимно независимых событий в единицу времени, длины, площади и объема.

Для случая, когда а) – велико и б) k = , справедлива формула Стирлинга:

Для расчета последующих значений используется рекуррентная формула

P (k + 1) = P (k ).

Пример 1. Чему равна вероятность того, что из 1000 человек в данный день родились: а) ни одного, б) один, в) два, г) три человека?

Решение. Так как p = 1/365, то q = 1 – 1/365 = 364/365 » 1.

Тогда

а) ,

б) ,

в) ,

г) .

Следовательно, если имеются выборки из 1000 человек, то среднее число человек, которые родились в определенный день, соответственно будут равны 65; 178; 244; 223.

Пример 2. Определить значение , при котором с вероятностью Р событие появилось хотя бы один раз.

Решение. Событие А = {появиться хотя бы один раз} и = {не появиться ни одного раза}. Следовательно .

Отсюда и .

Например, для Р = 0,5 , для Р = 0,95 .

Пример 3. На ткацких станках, обслуживаемых одной ткачихой, в течение часа происходит 90 обрывов нити. Найти вероятность того, что за 4 минуты произойдет хотя бы один обрыв нити.

Решение. По условию t = 4 мин. и среднее число обрывов за одну минуту , откуда . Требуемая вероятность равна .

Свойства . Математическое ожидание и дисперсия случайной величины, имеющей распределение Пуассона с параметром , равны:

M (X ) = D (X ) = .

Эти выражения получаются прямыми вычислениями:

Здесь была осуществлена замена n = k – 1 и использован тот факт, что .

Выполнив преобразования, аналогичные использованным при выводе М (X ), получим

Распределение Пуассона используется для аппроксимации биноминального распределения при больших n

Краткая теория

Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Для определения вероятности появлений события в этих испытаниях используют формулу Бернулли . Если же велико, то пользуются или . Однако эта формула непригодна, если мала. В этих случаях ( велико, мало) прибегают к асимптотической формуле Пуассона .

Поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно раз. Сделаем важное допущение: произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появления события в различных сериях испытаний, т.е. при различных значениях , остается неизменным.

Пример решения задачи

Задача 1

На базе получено 10000 электроламп. Вероятность того, что в пути лампа разобьется, равна 0,0003. Найдите вероятность того, что среди полученных ламп будет пять ламп разбито.

Решение

Условие применимости формулы Пуассона:

Если вероятность появления события в отдельном испытании достаточно близка к нулю, то даже при больших значениях количества испытаний вероятность, вычисляемая по локальной теореме Лапласа, оказывается недостаточно точной. В таких случаях используют формулу, выведенную Пуассоном.

Пусть событие – 5 ламп будет разбито

Воспользуемся формулой Пуассона:

В нашем случае:

Ответ

Задача 2

На предприятии 1000 единиц оборудования определенного вида. Вероятность отказа единицы оборудования в течение часа составляет 0,001. Составить закон распределения числа отказов оборудования в течение часа. Найти числовые характеристики.

Решение

Случайная величина – число отказов оборудования, может принимать значения

Воспользуемся законом Пуассона:

Найдем эти вероятности:

.

Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона равна параметру этого распределения:

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Снова напомним ситуацию, которая была названа схемой Бернулли: производится n независимых испытаний, в каждом из которых некоторое событие А может появиться с одной и той же вероятностью р . Тогда для определения вероятности того, что в этих n испытаниях событие А появится ровно k раз (такая вероятность обозначалась P n (k ) ) может быть точно вычислена по формуле Бернулли , гдеq =1− p . Однако при большом числе испытаний n расчеты по формуле Бернулли становятся очень неудобными, так как приводят к действиям с очень большими числами. Поэтому (если помните это когда-то проходилось при изучении схемы и формулы Бернулли при изучении первой части теории вероятностей «Случайные события») при больших n предлагались значительно более удобные (хотя и приближенные) формулы, которые оказывались тем точнее, чем больше n (формула Пуассона, локальная и интегральная формула Муавра-Лапласа). Если в схеме Бернулли число опытов n велико, а вероятность р появления события А в каждом испытании мала, то хорошее приближение дает упомянутая формула Пуассона
, где параметра = n p . Эта формула и приводит к распределению Пуассона. Дадим точные определения

Дискретная случайная величина Х имеет распределение Пуассона , если она принимает значения 0, 1, 2, ... с вероятностями р 0 , р 1 , ... , которые вычисляются по формуле

а число а является параметром распределения Пуассона. Обращаем внимание, что возможных значений с.в. Х бесконечно много это все целые неотрицательные числа. Таким образом, д.с.в Х с распределением Пуассона имеет следующий закон распределения:

При вычислении математического ожидания (по их определению для д.с.в. с известным законом распределения) придется теперь считать не конечные суммы, а суммы соответствующих бесконечных рядов (так как таблица закона распределения имеет бесконечно много столбцов). Если же посчитать суммы этих рядов, то окажется, что и математическое ожидание, и дисперсия случайной величины Х с распределением Пуассона совпадает с параметром а этого распределения:

,
.

Найдем моду d (X ) распределенной по Пуассону случайной величины Х . Применим тот же самый прием, что был использован для вычисления моды биномиально распределенной случайной величины. По определению моды d (X )= k , если вероятность
наибольшая среди всех вероятностей р 0 , р 1 , ... . Найдем такое число k (это целое неотрицательное число). При таком k вероятность p k должна быть не меньше соседних с ней вероятностей: p k −1 p k p k +1 . Подставив вместо каждой вероятности соответствующую формулу, получим, что число k должно удовлетворять двойному неравенству:

.

Если расписать формулы для факториалов и провести простые преобразования, можно получить, что левое неравенство дает k ≤ а , а правое k ≥ а −1 . Таким образом, число k удовлетворяет двойному неравенству а −1 ≤ k ≤ а , т.е. принадлежит отрезку [а −1, а ] . Поскольку длина этого отрезка, очевидно, равна 1 , то в него может попасть либо одно, либо 2 целых числа. Если число а целое, то в отрезке [а −1, а ] имеется 2 целых числа, лежащих на концах отрезка. Если же число а не целое, то в этом отрезке есть только одно целое число.

Таким образом, если число а целое, то мода распределенной по Пуассону случайной величины Х принимает 2 соседних значения: d (X )=а−1 и d (X )=а . Если же число а не целое, то мода имеет одно значение d (X )= k , где k есть единственное целое число, удовлетворяющее неравенству а −1 ≤ k ≤ а , т.е. d (X )= [а ] .

Пример . Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие повредится, равно 0.0002 . Какова вероятность, что повредится 18 изделий? Каково среднее значение поврежденных изделий? Каково наивероятнейшее число поврежденных изделий и какова его вероятность?

Где λ равна среднему числу появления событий в одинаковых независимых испытаниях, т.е. λ = n × p, где p – вероятность события при одном испытании, e = 2,71828 .

Ряд распределения закона Пуассона имеет вид:


Назначение сервиса . Онлайн-калькулятор используется для построения Пуассоновского распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Число испытаний: n = , Вероятность p =
Вычислить вероятность для: m =
наступит раз
менее раз
не менее раз
более раз
не более раз
не менее и не более раз
наступит хотя бы один раз
В случае, когда n велико, а λ = p·n > 10 формула Пуассона дает очень грубое приближение и для расчета P n (m) используют локальную и интегральную теоремы Муавра-Лапласа .

Числовые характеристики случайной величины Х

Математическое ожидание распределения Пуассона
M[X] = λ

Дисперсия распределения Пуассона
D[X] = λ

Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 P(5) = λ 5 e -5 /5! = 0.03609
Математическое ожидание : M[X] = λ = 2
Дисперсия : D[X] = λ = 2

Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:

X 0 1 2 m
P e -20 20e -20 200e -20 20 m e -20 /m!

Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P 200 (1).
Получаем: . Тогда P 200 (1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k < 3. Найдем P 200 (k < 3).
Имеем: a = 1.

в) Задано: n = 200, p = 1/200, k > 2. Найдем P 200 (k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем

Рассмотрим случай, когда n является достаточно большим, а p - достаточно малым; положим np = a, где a - некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:


Вероятность появления k событий за время длительностью t можно также найти по формуле Пуассона:
где λ - интенсивность потока событий, то есть среднее число событий, которые появляются в единицу времени.

Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.

Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5 < 10. Значит случайная величина Х – распределена по Пуассоновскому распределению. Составим закон.
Случайная величина X имеет область значений (0,1,2,...,m). Вероятности этих значений можно найти по формуле:

Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e - λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:

Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x<3) = P(0) + P(1) + P(2) = 0,01111 + 0,04999 + 0,1125 = 0,1736

Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e - λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366

Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P 1 (0) = e -λ1*t = e -0.02*10 = 0,8187

Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P 2 (0) = e -λ2*t = e -0.05*10 = 0,6065

а) оба элемента будут работать безотказно;
P(2) = P 1 (0)*P 2 (0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P 1 (0)*(1-P 2 (0)) + (1-P 1 (0))*P 2 (0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321

Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание : поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека