Клеточная мембрана и ее функция. Особенности строения клеточной мембраны

Для всех клеточных мембран характерен один принцип строения (рис.1). Их основу составляют два слоя липидов (молекул жиров, среди которых больше всего фосфолипидов, но имеется также холестерол и гликолипиды).

Рис.1. Схема строения клеточной мембраны

Молекулы мембранных липидов имеют головку (участок, притягивающий воду и стремящийся взаимодействовать с ней, называемый гидрофильным) и хвост, который является гидрофобным (отталкивается от молекул воды, избегает их соседства). В результате такого различия свойств головки и хвоста липидных молекул последние при попадании на поверхность воды выстраиваются рядами: головка к головке, хвост к хвосту и образуют двойной слой, в котором гидрофильные головки обращены к воде, а гидрофобные хвосты - друг к другу. Хвосты находятся внутри этого двойного слоя. Наличие липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создает препятствие для прохождения воды и растворимых в ней веществ через клеточную мембрану. Толщина такого липидного бислоя составляет около 5 нм.

В состав мембран также входят белки. Их молекулы по объему и по массе в 40-50 раз больше, чем молекулы мембранных липидов. За счет белков толщина мембраны достигает 7 - 10 нм. Несмотря на то, что суммарные массы белков и липидов в большинстве мембран почти равны, количество молекул белков в мембране в десятки раз меньше, чем молекул липидов. Обычно белковые молекулы расположены разрозненно. Они как бы растворены в мембране, могут в ней смещаться и изменять свое положение. Это послужило поводом к тому, что строение мембраны назвали жидкостно-мозаичным. Молекулы липидов тоже могут смещаться вдоль мембраны и даже перепрыгивать из одного липидного слоя в другой. Следовательно, мембрана имеет признаки текучести и вместе с тем обладает свойством самосборки, может восстанавливаться после повреждений за счет свойства липидных молекул выстраиваться в двойной липидный слой.

Белковые молекулы могут пронизывать всю мембрану так, что их концевые участки выступают за ее поперечные пределы. Такие белки называют трансмембранными или интегральными. Есть также белки, только частично погруженные в мембрану или располагающиеся на ее поверхности.

Белки клеточных мембран выполняют многочисленные Функции. Для осуществления каждой функции геном клетки обеспечивает запуск синтеза специфического белка. Даже в относительно просто устроенной мембране эритроцита имеется около 100 разных белков.

Среди важнейших функций мембранных белков отмечаются:

1) рецепторная - взаимодействие с сигнальными молекулами и передача сигнала в клетку;

2) транспортная - перенос веществ через мембраны и обеспечение обмена между цитозолем и окружающей средой. Существует несколько разновидностей белковых молекул (транслоказ), обеспечивающих трансмембранный транспорт. Среди них есть белки, формирующие каналы, которые пронизывают мембрану и через них идет диффузия определенных веществ между цитозолем и внеклеточным пространством. Такие каналы чаще всего ионоселективные, т.е. пропускают ионы только одного вещества. Есть также каналы, избирательность которых меньшая, например они пропускают ионы Na + и К, К и С1~. Есть также белки-переносчики, которые обеспечивают транспорт вещества через мембрану за счет изменения своего положения в этой мембране;

3) адгезивная - белки совместно с углеводами участвуют в осуществлении адгезии (слипание, склеивание клеток при иммунных реакциях, объединение клеток в слои и ткани);

4) ферментативная - некоторые встроенные в мембрану белки выполняют роль катализаторов биохимических реакций, протекание которых возможно только в контакте с клеточными мембранами;

5) механическая - белки обеспечивают прочность и эластичность мембран, их связь с цитоскелетом. Например, в эритроцитах такую роль выполняет белок спектрин, который в виде сетчатой структуры прикреплен к внутренней поверхности мембраны эритроцита и имеет связь с внутриклеточными белками, составляющими цитоскелет. Это придает эритроцитам эластичность, способность менять и восстанавливать форму при прохождении через кровеносные капилляры. Мембрана клеточная // http://humbio.ru/humbio/cytology/000e4e66.htm

Углеводы составляют лишь 2-10% от массы мембраны, количество их в разных клетках изменчиво. Благодаря углеводам осуществляются некоторые виды межклеточных взаимодействий, они принимают участие в узнавании клеткой чужеродных антигенов и совместно с белками создают своеобразную антигенную структуру поверхностной мембраны собственной клетки. По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для передачи сигнальных молекул. Соединения белков с сахарами называют гликопротеинами. Если же углеводы соединяются с липидами, то такие молекулы называют гликолипидами.

Благодаря взаимодействию входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ.

Мембраны – это чрезвычайно вязкие и вместе с тем пластичные структуры, окружающие все живые клетки. Функции клеточных мембран:

1.Плазматическая мембрана является барьером, с помощью которого поддерживается различный состав вне- и внутриклеточной среды.

2.Мембраны формируют специализированные компартменты внутри клетки, т.е. многочисленные органеллы – митохондрии, лизосомы, комплекс Гольджи, эндоплазматический ретикулум, ядерные мембраны.

3.В мембранах локализованы ферменты, участвующие в преобразовании энергии в таких процессах, как окислительное фосфорилирование и фотосинтез.

Строение и состав мембран

Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы “растворены” в липидном бислое.

Структура липидов мембран

Мембранные липиды − амфифильные молекулы, т.к. в молекуле есть как гидрофильный участок (полярные головки), так и гидрофобный участок, представленный углеводородными радикалами жирных кислот, самопроизвольно формирующие бислой. В мембранах присутствуют липиды трех главных типов – фосфолипиды, гликолипиды и холестерол.

Липидный состав различен. Содержание того или иного липида, по-видимому, определяется разнообразием функций, выполняемых этими липидами в мембранах.

Фосфолипиды. Все фосфолипиды можно разделить на две группы – глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространенные глицерофосфолипиды – фосфатидилхолины и фосфатидилэтаноламины. Сфингофосфолипиды построены на основе аминоспирта сфингозина.

Гликолипиды. В гликолипидах гидрофобная часть представлена спиртом церамидом, а гидрофильная – углеводным остатком. В зависимости от длины и строения углеводной части различают цереброзиды и ганглиозиды. Полярные “головки” гликолипидов находятся на наружной поверхности плазматических мембран.

Холестерол (ХС). ХС присутствует во всех мембранах животных клеток. Его молекула состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи. Единственная гидроксильная группа в 3-положении является “полярной головкой”. Для животной клетки среднее молярное отношение ХС/фосфолипиды равно 0,3-0,4, но в плазматической мембране это отношение гораздо выше (0,8-0,9). Наличие ХС в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и поэтому может влиять на функции мембранных белков.

Свойства мембран :

1. Избирательная проницаемость. Замкнутый бислой обеспечивает одно из основных свойств мембраны: он непроницаем для большинства водорастворимых молекул, поскольку они не растворяются в его гидрофобной сердцевине. Способностью легко проникать в клетку обладают газы, такие как кислород, СО 2 и азот вследствие малого размера молекул и слабого взаимодействия с растворителями. Также без труда проникают через бислой молекулы липидной природы, например, стероидные гормоны.

2.Жидкостность. Для мембран характерна жидкостность (текучесть), способность липидов и белков к перемещениям. Возможны два типа перемещений фосфолипидов – это кувырок (в научной литературе называется “флип-флоп”) и латеральная диффузия. В первом случае противостоящие друг другу в бимолекулярном слое молекулы фосфолипидов переворачиваются (или совершают кувырок) навстречу друг другу и меняются местами в мембране, т.е. наружная становится внутренней и наоборот. Такие перескоки связаны с затратой энергии. Чаще наблюдаются повороты вокруг оси (ротация) и латеральная диффузия – перемещение в пределах слоя параллельно поверхности мембраны. Скорость перемещения молекул зависит от микровязкости мембран, которая, в свою очередь определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот.

3.Асимметрия мембран. Поверхности одной и той же мембраны различаются по составу липидов, белков и углеводов (поперечная асимметрия). Например, в наружном слое преобладают фосфатидилхолины, а во внутреннем – фосфатидилэтаноламины и фосфатидилсерины. Углеводные компоненты гликопротеинов и гликолипидов выходят на наружную поверхность, образуя сплошное поурытие, называемое гликокаликсом. На внутренней поверхности углеводы отсутствуют. Белки – рецепторы гормонов располагаются на наружной поверхности плазматической мембраны, а регулируемые ими ферменты – аденилатциклаза, фосфолипаза С – на внутренней и т.д.

Мембранные белки

Мембранные фосфолипиды играют роль растворителя для мембранных белков, создавая микроокружение, в котором последние могут функционировать. На долю белков приходится от 30 до 70% массы мембран. Число разных белков в мембране варьирует от 6-8 в саркоплазматическом ретикулуме до более чем 100 в плазматической мембране. Это ферменты, транспортные белки, структурные белки, антигены, в том числе антигены основной системы гистосовместимости, рецепторы для различных молекул.

По локализации в мембране белки подразделяются на интегральные (частично или полностью погруженные в мембрану) и периферические (расположенные на ее поверхности). Некоторые интегральные белки пронизывают мембрану один раз (гликофорин), другие прошивают мембрану многократно. Например, фоторецептор сетчатки глаза и β 2 -адренорецептор пересекает бислой 7 раз.

Периферические белки и домены интегральных белков, расположенные на наружной поверхности всех мембран, почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, а также участвуют в узнавании лигандов или адгезии.

text_fields

text_fields

arrow_upward

Клетки отделены от внутренней среды организма клеточной или плазматической мембраной.

Мембрана обеспечивает:

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы - гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов - структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

text_fields

text_fields

arrow_upward

Мембрана клетки - эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидоа и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные цереброзидами, сульфатидами, ганглиозидами и холестерином.

Рис. 1.1 Организация мембраны.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимо действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами. Различают:

интегральные белки , проникающие через всю толщу мембраны и
периферические белки , прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и шелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками - АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки - переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки . Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета - спектрином через низкомолекулярный белок анкирин (рис. 1.2).

Рис. 1.2 Схема расположения белков в примембранном цитоскелете эритроцитов.
1 - спектрин; 2 - анкирин; 3 - белок полосы 3; 4 - белок полосы 4,1; 5 - белок полосы 4,9; 6 - олигомер актина; 7 - белок 6; 8 - гпикофорин А; 9 - мембрана.

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков - гликопротеины . Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.

Особенности обмена веществ в мембране

text_fields

text_fields

arrow_upward

Мембранные компоненты подвержены многим метаболическим превращениям под влиянием ферментов, расположенных на их мембране или внутри ее. К ним относятся окислительные ферменты, играющие важную роль в модификации гидрофобных элементов мембран - холестерина и др. В мембранах же при активации ферментов - фосфолипаз происходит образование из арахидоновой кислоты биологически активных соединений - простагландинов и их производных. В результате активации метаболизма фосфолипидов в мембране образуются тромбоксаны, лейкотриены, оказывающие мощное воздействие на адгезию тромбоцитов, процесс воспаления и др.

В мембране непрерывно протекают процессы обновления ее компонентов . Так, время жизни мембранных белков колеблется от 2 до 5 дней. Однако в клетке существуют механизмы, обеспечивающие доставку вновь синтезированных молекул белка к мембранным рецепторам, облегчающим встраивание белка в мембрану. «Узнавание» данного рецептора вновь синтезированным белком облегчается образованием сигнального пептида, помогающего найти на мембране рецептор.

Липиды мембраны отличаются также значительной скоростью обмена , что требует для синтеза этих компонентов мембраны большого количества жирных кислот.
На специфику липидного состава мембран клеток влияют изменения среды обитания человека, характера его питания.

Например, увеличение в пище жирных кислот с ненасыщенными связями увеличивает жидкое состояние липидов мембран клеток различных тканей, приводит к благоприятному для функции мембраны клетки изменению отношения фосфолипидов к сфингомиелинам и липидов к белкам.

Избыток холестерина в мембранах, напротив, увеличивает микровязкость их бислоя фосфолипидных молекул, понижая скорость диффузии некоторых веществ через мембраны клеток.

Пища, обогащенная витаминами А, Е, С, Р улучшает обмен липидов в мембранах эритроцитов, снижает микровязкость мембран. Это повышает деформируемость эритроцитов, облегчает выполнение ими транспортной функции (глава 6).

Дефицит жирных кислот и холестерина в пище нарушает липидный состав и функции мембран клеток.

Например, дефицит жиров нарушает функции мембраны нейтрофилов, что угнетает их способность к движению и фагоцитозу (активный захват и поглощение микроскопических инородных живых объектов и твердых частиц одноклеточными организмами или некоторыми клетками).

В регулировании липидного состава мембран и их проницаемости, регуляции пролиферации клеток важную роль играют активные формы кислорода, образующиеся в клетке сопряженно с нормально протекающими метаболическими реакциями (микросомальным окислением и др.).

Образующиеся активные формы кислорода - супероксидный радикал (О 2), перекись водорода (H 2 О 2) и др. представляют собой чрезвычайно реакционноспособные вещества. Их основным субстратом в реакциях свободнорадикального окисления являются ненасыщенные жирные кислоты, входящие в состав фосфолипидов мембран клетки (так называемые реакции перекисного окисления липидов). Интенсификация этих реакций может вызвать повреждение мембраны клетки, ее барьерной, рецепторной и обменной функций, модификацию молекул нуклеиновых кислот и белков, что ведет к мутациям и инактивации ферментов.

В физиологических условиях интенсификация перекисного окисления липидов регулируется антиоксидазной системой клеток, представленной ферментами, инактивируюшими активные формы кислорода - супероксиддисмутазой, каталазой, пероксидазой и веществами, обладающими антиокислительной активностью - токоферолом (витамин Е), убихиноном и др. Выраженный защитный эффект на мембраны клетки (цитопротекторный эффект) при различных повреждающих воздействиях на организм оказывают простагландины Е и J2, «гася» активацию свободнорадикального окисления. Простагландины защищают слизистую желудка и гепатоциты от химических повреждений, нейроны, клетки нейроглии, кардиомиоциты - от гипоксических повреждений, скелетные мышцы — при тяжелой физической нагрузке. Простагландины, связываясь со специфическими рецепторами на клеточных мембранах стабилизируют бислой последних, уменьшают потерю мембранами фосфолипидов.

Функции рецепторов мембран

text_fields

text_fields

arrow_upward

Химический или механический сигнал вначале воспринимается рецепторами мембраны клетки. Следствием этого является химическая модификация мембранных белков, влекущая активацию «вторичных посредников», обеспечивающих быстрое распространение сигнала в клетке к ее геному, энзимам, сократительным элементам и т.д.

Схематично трансмембранная передача сигнала в клетке может быть представлена следующим образом:

1) Возбужденный воспринятым сигналом рецептор активирует у — белки мембраны клетки. Это происходит при связывании ими гуанозинтрифосфата (ГТФ).

2) Взаимодействие комплекса «ГТФ-у- белки», в свою очередь, активирует фермент - предшественник вторичных посредников, расположенный на внутренней стороне мембраны.

Предшественником одного вторичного посредника - цАМФ, образующегося из АТФ, является фермент аденилатциклаза;
Предшественником других вторичных посредников - инозитолтрифосфата и диацилглицерина, образующихся из фосфатидилинозитол-4,5-дифосфата мембраны, является фермент фосфолипаза С. Кроме того, инозитолтрифосфат мобилизует в клетке еще один вторичный посредник - ионы кальция, участвующие практически во всех регуляторных процессах в клетке. Так, например, образовавшийся инозитолтрифосфат вызывает выброс кальция из эндоплазматического ретикулума и повышение его концентрации в цитоплазме, тем самым включая различные формы клеточного ответа. С помощью инозитолтрифосфата и диацилглицерина регулируется функция гладких мышц и В-клеток поджелудочной железы ацетилхолином, передней доли гипофиза тиреогропин-релизинг фактором, ответ лимфоцитов на антиген и т.д.
В некоторых клетках роль вторичного посредника выполняет цГМФ, образующийся из ГТФ с помощью фермента гуанилатциклазы. Он служит, например, вторичным посредником для натрийуретического гормона в гладких мышцах стенок кровеносных сосудов. цАМФ служит вторичным посредником для многих гормонов - адреналина, эритропоэтина и др. (глава 3).

Клеточная мембрана - это плоскостная структура, из которой построена клетка. Она присутствует у всех организмов. Её уникальные свойства обеспечивают жизнедеятельность клеток.

Виды мембран

Можно выделить три вида клеточных мембран:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана создаёт границы клетки. Её не надо путать с клеточной стенкой или оболочкой, имеющейся у растений, грибов и бактерий.

Отличие клеточной стенки от клеточной мембраны в значительно большей толщине и преобладании защитной функции над обменной. Мембрана располагается под клеточной стенкой.

Ядерная мембрана отделяет от цитоплазмы содержимое ядра.

ТОП-4 статьи которые читают вместе с этой

Среди органоидов клетки есть такие, форма которых образована одной или двумя мембранами:

  • митохондрии;
  • пластиды;
  • вакуоли;
  • комплекс Гольджи;
  • лизосомы;
  • эндоплазматическая сеть (ЭПС).

Строение мембраны

По современным представлениям структура клеточной мембраны описывается с помощью жидкостномозаичной модели. Основу мембраны составляет билипидный слой - два уровня молекул липидов, образующих плоскость. С обеих сторон на билипидном слое расположены молекулы белков. Некоторые белки погружены в билипидный слой, некоторые проходят через него.

Рис. 1. Клеточная мембрана.

Животные клетки на поверхности мембраны имеют комплекс углеводов. При изучении клетки под микроскопом отмечено, что мембрана находится в постоянном движении и неоднородна по строению.

Мембрана является мозаикой и в морфологическом, и в функциональном смысле, т. к. её различные участки содержат различные вещества и имеют разные физиологические свойства.

Свойства и функции

Любая пограничная структура осуществляет защитные и обменные функции. Это касается и всех видов мембран.

Осуществлению данных функций способствуют такие свойства, как:

  • пластичность;
  • высокая способность к восстановлению;
  • полупроницаемость.

Свойство полупроницаемости заключается в том, что одни вещества не пропускаются мембраной, а другие пропускаются свободно. Так осуществляется контролирующая функция мембраны.

Также наружная мембрана обеспечивает связь между клетками за счёт многочисленных выростов и выделения клеящего вещества, заполняющего межклеточное пространство.

Транспорт веществ через мембрану

Поступление веществ через наружную мембрану идёт следующими путями:

  • через поры с помощью ферментов;
  • через мембрану непосредственно;
  • пиноцитозом;
  • фагоцитозом.

Первыми двумя способами транспортируются ионы и мелкие молекулы. Крупные молекулы поступают в клетку путём пиноцитоза (в жидком состоянии) и фагоцитоза (в твёрдом виде).

Рис. 2. Схема пино- и фагоцитоза.

Мембрана обхватывает пищевую частицу и замыкает её в пищеварительную вакуоль.

Вода и ионы проходят в клетку без затрат энергии, пассивным транспортом. Крупные молекулы перемещаются активным транспортом, с затратой энергетических ресурсов.

Внутриклеточный транспорт

От 30 % до 50 % объёма клетки занимает эндоплазматическая сеть. Это своеобразная система полостей и каналов, связывающая все части клетки и обеспечивающая упорядоченную внутриклеточную транспортировку веществ.

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 190.

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии;
  • ядро;
  • эндоплазматический ретикулум;
  • комплекс Гольджи;
  • лизосомы;
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «kingad.ru» — УЗИ исследование органов человека